On the (Im)plausibility of Public-
Key Quantum Money from CRHFs

ASIACRYPT 2023
Prabhanjan Ananth Zihan Hu Henry Yuen
UCSB Tsinghua University Columbia University

eprint 2023/069

No-Cloning Theorem

vy HI;l /WJ)

This motivates many classically impossible primitives

e Copy Protection [Aar09, ...]
* Unclonable Encryption [BL20, ...]
 Quantum Money [Wie83, AC13, ...]

Public-Key Quantum Money (PKQM)

o o
111

KeyGen: 1" — (pk, sk)
Mint: sk — |$)

* Bank can generate the money state efficiently

Public-Key Quantum Money (PKQM)

B -

i i i Ver: (pk, |$)) — Accept/Reject
al .
E—

KeyGen: 1" - (pk, sk) .

Mint: sk — |$) .

Ver: (pk, |$)) — Accept/Reject

* Bank can generate the money state efficiently

* Honest parties can check whether the money state is valid

Public-Key Quantum Money (PKQM)

Correctness: @
o
/\m @’: pk |$>/' .

i i i Ver: (pk, [$)) — Accept/Reject
il B .
——
KeyGen: 1" - (pk, sk) .
Mint: sk — |$)

Ver: (pk, |$)) — Accept/Reject

* Bank can generate the money state efficiently

* Honest parties can check whether the money state is valid

Public-Key Quantum Money (PKQM)

Security: @
y -

pk

(1)

i i Ver: (pk, |$)) — Accept/Reject
- i
KeyGen: 1" — (pk, sk) .
Mint: sk = |$) .

Ver: (pk, |$)) — Accept/Reject

* Bank can generate the money state efficiently
* Honest parties can check whether the money state is valid

e |t is difficult for a malicious party (adversary) to counterfeit

Constructions of PKQM

e Oracle Model: unconditional construction [AC13]

e Standard Model:

e Constructions based on non-standard assumptions [FGH+12, KSS21, Zha21].

* Constructions based on very strong cryptographic primitives, e.g. post-
guantum indistinguishability obfuscation [Zha21].

Question: Is the difficulty in constructing PKQM from
standard assumptions inherent?

When everyone can query the oracle @ at unit cost,

Our Result

When everyone can query a random oracle R and PSPACE oracle,

(by default, quantum queries)

a classhof PKQMs

CRAES... where Ver only'has €lassical access to R

Our Result

When everyone can query a random oracle R and PSPACE oracle,

(by default, quantum queries)

a classhof PKQMs

CRAES... where Ver only'has ¢lassical access to R

There does not exist reusable and secure public-key quantum money
scheme (KeyGen!RMPSPACE) Mint|R)MPSPACE) y7orR [PSPACE)) \yhere R

is @ random oracle.

For Today,

There does not exist reusable and secure public-key qguantum money

scheme (KeyGen®, MintR, Ver®) where R is a random oracle, and we

only require that the query complexity of every party is polynomial (no
bound for time complexity).

or
R ab
<5k
111 Ver: (pk, |$)) — Accept/Reject
KeyGen: 1" — (pKk, sk) o R
Mint: sk - |$) a

Ver: (pk, [$)) — Accept/Reject

For Today,

There does not exist reusable and secure public-key quantum money

scheme (KeyGen?~, MintR,VerR) where R is a random oracle, and we

only require that the query complexity of every party is polynomial (no

bound for time complexity).

@Epk R
11 RN,)

O
=~/

KeyGen: 1" — (pKk, sk)
Mint: sk — |$)

T~

D

Ver: (pk, |$)) — Acce
® R

Ver: (pk, [$)) — Accept/Reject

Technical Details: without R

Goal of: Find good money states.

Technical Details: without R

Goal of: Find good money states.

Just do brute-force search! e Repeat the following for enough
times:
* Guess a random state
e Ifit’s good, output it
* OQutput |0) if we run out of time

Technical Details: without R

Goal of: Find good money states.

Just do brute-force search! * Repeat the following for enough

times:
* Guess a random state
e Ifit’s good, output it
* OQutput |0) if we run out of time

o
We can easily synthesize a good money state for @g. ‘ Syn

Technical Details: with R

* When Ver makes queries to R, the brute-force algorithm also needs
R to work...

* Repeat the following for enough

times:
We need to query R here * Guess a random state

e Ifit's good, output it
* OQutput |0) if we run out of time

Technical Details: with R

* The key idea: find a proper database D to replace the random oracle

Technical Details: with R

* The key idea: find a proper database D to replace the random oracle

|
’ :
’ :
| NGY @ R
R | R I P e
A <pk | () . |
111 px_1%) i Run gg@ on different states _Q Syn for Y4 T Ver (pk |$)) — Accept/Reject
===) @)
. | Collect the query-answer L P
eyGen: 1" — (pk, sk) |
: y(li/lintzlsk—> |R$1; ‘ : \E\‘ &R
|
|

- _] Ver: (pk, |$)) — Accept/Reject

Technical Details: with R

What's the requirement for D?

Technical Details: with R

What's the requirement for D?

On a money state |$) and the synthesized state o,

1)~ & (1) 2’0~ &0

Technical Details: with R

What's the requirement for D?

On a money state |$) and the synthesized state o,

S~ &

1$)) 2~ &0

Technical Details: with R

What's the requirement for D?

On a money state |$) and the synthesized state o,

o ($)~ & ($)

20~ &)

Technical Details: with R

What's the requirement for D?

On a money state |$) and the synthesized state o,

.p@ R @ 1)@

o ($)~ & ($)

- (0) =~

&)

Technical Details: with R

What's the requirement for D?

On a money state |$) and the synthesized state o,

» €
&)

D

D D

@ (5)~ o “(19))

- (0) =~

Technical Details: with R

D R
How to get D such that 8 (I$) =~ & (I$))

Technical Details: with R

D R D R
How to get D such that & (I$)) ~ & (I$) & (o)~ & (o)
o7 _ e ,
By lazy sampling, @@ = @@ WhereD = D U Dgeygen Y Dumint

p(l)

I
i a
R i R i &R
A pk | . |
111 PX_I%) i= {Run ‘ on different states _Q Syn for aD ’m:wﬂmeptmeject
o1 ' | Collect the query-answer | P
eyGen: 1" - .S I
) yE\;/Iint:lsk —>(|I?$l; 9 : \E\‘ OR
I
I

- _ J Ver: (pk, |$)) — Accept/Reject

Technical Details: with R

D R D R
How to get D such that 8 (I$)) ~ & (I$) & (o)~ & (o)
o7 _ e ,
By lazy sampling, @@ = @@ WhereD = D U Dgeygen Y Dumint

D R
If we make a mistake: & (p) £ a (p)

R
we make progress learns DgeyGen U Dmint better

Technical Details: with R

D R D
How to get D such that 8 (I$)) =~ & (1$)) & (0) = &
e eV :
By lazy sampling, @@ = @@ WhereD = D U Dgeygen Y Dumint

D R
If we make a mistake: & (p) £ a (p)

R
we make progress learns DgeyGen U Dmint better

At most |DgeyGen Y Dmint| = poly mistakes!

Technical Details: with R

 Run verification on |$) for randomized polynomial
i times and collect the pairs

Run verification on o for randomized polynomial
times and collect the pairs

Sl e st st s @ K
R R e 1 e

A Cpk . E ISPt |

T $ | Run @& on di...rerit states | D Syn for e ’m:w»%cceptmeject
L I

Collect the query-answer e P

eyGen: 1™ - (pk, sk)
e T &F

IR),|PSPACE) wf:+|R),|PSPACE) R,|PSPACE)
€dsS TOr (KeyGen , Mint ,Ver

* From query-efficient to time-efficient with |PSPACE)

* Use Marriott-Watrous technique (MW technique) [MWO05]. The brute force
algorithm actually runs in quantum polynomial space.

“Quantum Brute-Force Search”
* Repeat the following for exponential times:
e Start with maximally mixed state
* Apply MW technique on it to estimate the
acceptance probability
* If the estimation is high enough, output the
residual state
e OQutput |0) if we run out of time

IR),|PSPACE) wf:+|R),|PSPACE) R,|PSPACE)
€dsS TOr (KeyGen , Mint ,Ver

* From query-efficient to time-efficient with |PSPACE)

* Use Marriott-Watrous technique (MW technique) [MWO05]. The brute force
algorithm actually runs in quantum polynomial space.

* Quantum states computable in quantum polynomial space can be synthesized
by a quantum polynomial time algorithm with |PSPACE) [RY21, MY23].

IR),|PSPACE) wf:+|R),|PSPACE) R,|PSPACE)
€dsS TOr (KeyGen , Mint ,Ver

* From query-efficient to time-efficient with |PSPACE)

* Use Marriott-Watrous technique (MW technique) [MWO05]. The brute force
algorithm actually runs in quantum polynomial space.

* Quantum states computable in quantum polynomial space can be synthesized
by a quantum polynomial time algorithm with |PSPACE) [RY21, MY23].

* KeyGen, Mint: from R to |R)
e The same construction also works.

* In the analysis, use Zhandry’s compressed oracle technique [Zha18] to find
analogue of DkeyGen U Dumint:-

Wrap-up

* Take-Away Message

Public-key guantum money schemes are difficult to construct.
A classical access to a weak cryptographic primitive may not be enough.

* Open Problems

* Quantum queries in verification?
e Separations between other primitives?

Thank youl!

eprint 2023/069

