
On the (Im)plausibility of Public-
Key Quantum Money from CRHFs

ASIACRYPT 2023

Zihan Hu

Tsinghua University

Prabhanjan Ananth

UCSB

Henry Yuen

Columbia University

eprint 2023/069

No-Cloning Theorem

• Copy Protection [Aar09, …]

• Unclonable Encryption [BL20, …]

• Quantum Money [Wie83, AC13, …]

• …

𝜓
𝜓

𝜓

This motivates many classically impossible primitives

Public-Key Quantum Money (PKQM)

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

pk

• Bank can generate the money state efficiently

Public-Key Quantum Money (PKQM)

pk

Ver: pk, |$⟩ → Accept/Reject

Ver: pk, |$⟩ → Accept/Reject

• Bank can generate the money state efficiently

• Honest parties can check whether the money state is valid

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

Public-Key Quantum Money (PKQM)

pk

Correctness:

|$⟩

Accept!

• Bank can generate the money state efficiently

• Honest parties can check whether the money state is valid

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

Ver: pk, |$⟩ → Accept/Reject

Ver: pk, |$⟩ → Accept/Reject

Public-Key Quantum Money (PKQM)

pk

Security:

|$⟩

Accept!

𝜌(1)

Accept!

• Bank can generate the money state efficiently

• Honest parties can check whether the money state is valid

• It is difficult for a malicious party (adversary) to counterfeit

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

Ver: pk, |$⟩ → Accept/Reject

Ver: pk, |$⟩ → Accept/Reject

𝜌(2)

Constructions of PKQM

• Oracle Model: unconditional construction [AC13]

• Standard Model:
• Constructions based on non-standard assumptions [FGH+12, KSS21, Zha21].

• Constructions based on very strong cryptographic primitives, e.g. post-
quantum indistinguishability obfuscation [Zha21].

Question: Is the difficulty in constructing PKQM from
standard assumptions inherent?

When everyone can query the oracle at unit cost,

Primitive A Primitive B

Our Result

When everyone can query a random oracle 𝑅 and PSPACE oracle,

(by default, quantum queries)

CRHFs…
a class of PKQMs

where Ver only has classical access to 𝑅

Our Result

When everyone can query a random oracle 𝑅 and PSPACE oracle,

(by default, quantum queries)

There does not exist reusable and secure public-key quantum money

scheme KeyGen 𝑅 , PSPACE , Mint 𝑅 , PSPACE , Ver𝑅, PSPACE where 𝑅

is a random oracle.

CRHFs…
a class of PKQMs

where Ver only has classical access to 𝑅

For Today,

There does not exist reusable and secure public-key quantum money

scheme KeyGen𝑅 , Mint𝑅 , Ver𝑅 where 𝑅 is a random oracle, and we

only require that the query complexity of every party is polynomial (no

bound for time complexity).

Ver: pk, |$⟩ → Accept/Reject

Ver: pk, |$⟩ → Accept/Reject

R

R

pk
R

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

For Today,

There does not exist reusable and secure public-key quantum money

scheme KeyGen𝑅 , Mint𝑅 , Ver𝑅 where 𝑅 is a random oracle, and we

only require that the query complexity of every party is polynomial (no

bound for time complexity).

Ver: pk, |$⟩ → Accept/Reject

Ver: pk, |$⟩ → Accept/Reject

R

RKeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

pk
R

|$⟩

𝜌(1)

𝜌(2)

R

Accept!

Accept!

Technical Details: without 𝑅

Goal of : Find good money states.

Technical Details: without 𝑅

Goal of : Find good money states.

Just do brute-force search! • Repeat the following for enough
times:
• Guess a random state
• If it’s good, output it

• Output |0⟩ if we run out of time

Technical Details: without 𝑅

Goal of : Find good money states.

Just do brute-force search!

We can easily synthesize a good money state for .

• Repeat the following for enough
times:
• Guess a random state
• If it’s good, output it

• Output |0⟩ if we run out of time

Syn

Technical Details: with 𝑅

• When Ver makes queries to 𝑅, the brute-force algorithm also needs
𝑅 to work…

• Repeat the following for enough
times:
• Guess a random state
• If it’s good, output it

• Output |0⟩ if we run out of time

We need to query 𝑅 here

Technical Details: with 𝑅

• The key idea: find a proper database 𝐷 to replace the random oracle

Technical Details: with 𝑅

• The key idea: find a proper database 𝐷 to replace the random oracle

Ver: pk, |$⟩ → Accept/Reject

R

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

pk
R

|$⟩
𝜌(1)

𝜌(2)
𝐷

Ver: pk, |$⟩ → Accept/Reject

R

Syn for
DRun on different states

Collect the query-answer

R

R

Technical Details: with 𝑅

What’s the requirement for 𝐷?

D R
≈

Technical Details: with 𝑅

What’s the requirement for 𝐷?

On a money state |$⟩ and the synthesized state 𝜎,

D R
≈(|$⟩) (|$⟩)

D R
≈(𝜎) (𝜎)

Technical Details: with 𝑅

What’s the requirement for 𝐷?

On a money state |$⟩ and the synthesized state 𝜎,

D R
≈(𝜎) (𝜎)

Accept!

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

What’s the requirement for 𝐷?

On a money state |$⟩ and the synthesized state 𝜎,

D R
≈(𝜎) (𝜎)

Accept!Accept!

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

What’s the requirement for 𝐷?

On a money state |$⟩ and the synthesized state 𝜎,

D R
≈(𝜎) (𝜎)

Accept!Accept! Accept!

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

What’s the requirement for 𝐷?

On a money state |$⟩ and the synthesized state 𝜎,

D R
≈(𝜎) (𝜎)

Accept!Accept! Accept! Accept!

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

How to get 𝐷 such that
D R

≈(𝜎) (𝜎)
D R

≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

How to get 𝐷 such that

By lazy sampling, =

Ver: pk, |$⟩ → Accept/Reject

R

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

pk
R

|$⟩

𝜌(1)

𝜌(2)
𝐷

Ver: pk, |$⟩ → Accept/Reject

R

Syn for
DRun on different states

Collect the query-answer

R

R

R D'
where 𝐷′ = 𝐷 ∪ 𝐷KeyGen ∪ 𝐷Mint

D R
≈(𝜎) (𝜎)

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

How to get 𝐷 such that

By lazy sampling,

If we make a mistake:

we make progress

=
R D'

where 𝐷′ = 𝐷 ∪ 𝐷KeyGen ∪ 𝐷Mint

D R
≈(𝜎) (𝜎)

D R
≈(𝜌) (𝜌)

learns 𝐷KeyGen ∪ 𝐷Mint better
R

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

How to get 𝐷 such that

By lazy sampling,

If we make a mistake:

we make progress

=
R D'

where 𝐷′ = 𝐷 ∪ 𝐷KeyGen ∪ 𝐷Mint

D R
≈(𝜎) (𝜎)

D R
≈(𝜌) (𝜌)

learns 𝐷KeyGen ∪ 𝐷Mint better
R

At most |𝐷KeyGen ∪ 𝐷Mint| = 𝐩𝐨𝐥𝐲 mistakes!

D R
≈(|$⟩) (|$⟩)

Technical Details: with 𝑅

Ver: pk, |$⟩ → Accept/Reject

R

KeyGen: 1𝑛 → pk, sk
Mint: sk → |$⟩

pk
R

|$⟩

𝜌(1)

𝜌(2)
𝐷

Ver: pk, |$⟩ → Accept/Reject

R

Syn for
DRun on different states

Collect the query-answer

R

R

• Run verification on |$⟩ for randomized polynomial
times and collect the pairs

• Run verification on 𝜎 for randomized polynomial
times and collect the pairs

Ideas for KeyGen 𝑅 , PSPACE , Mint 𝑅 , PSPACE , Ver𝑅, PSPACE

• From query-efficient to time-efficient with |PSPACE⟩
• Use Marriott-Watrous technique (MW technique) [MW05]. The brute force

algorithm actually runs in quantum polynomial space.

“Quantum Brute-Force Search”
• Repeat the following for exponential times:

• Start with maximally mixed state
• Apply MW technique on it to estimate the

acceptance probability
• If the estimation is high enough, output the

residual state
• Output |0⟩ if we run out of time

Ideas for KeyGen 𝑅 , PSPACE , Mint 𝑅 , PSPACE , Ver𝑅, PSPACE

• From query-efficient to time-efficient with |PSPACE⟩
• Use Marriott-Watrous technique (MW technique) [MW05]. The brute force

algorithm actually runs in quantum polynomial space.

• Quantum states computable in quantum polynomial space can be synthesized
by a quantum polynomial time algorithm with |PSPACE⟩ [RY21, MY23].

Ideas for KeyGen 𝑅 , PSPACE , Mint 𝑅 , PSPACE , Ver𝑅, PSPACE

• From query-efficient to time-efficient with |PSPACE⟩
• Use Marriott-Watrous technique (MW technique) [MW05]. The brute force

algorithm actually runs in quantum polynomial space.

• Quantum states computable in quantum polynomial space can be synthesized
by a quantum polynomial time algorithm with |PSPACE⟩ [RY21, MY23].

• KeyGen,Mint: from 𝑅 to |𝑅⟩
• The same construction also works.

• In the analysis, use Zhandry’s compressed oracle technique [Zha18] to find
analogue of 𝐷KeyGen ∪ 𝐷Mint.

Wrap-up

• Take-Away Message
Public-key quantum money schemes are difficult to construct.

A classical access to a weak cryptographic primitive may not be enough.

• Open Problems

• Quantum queries in verification?

• Separations between other primitives?

eprint 2023/069

Thank you!

