
A Note on Perfectly-Secure MPC with Amortized Linear
Communication Cost

Zihan Hu Zhouzi Li Wenhao Wang

June 15, 2023

Abstract
In this project, we focus on perfectly-secure communication-efficient multi-

party computation with guaranteed output delivery over point-to-point chan-
nels for corruption threshold t < n/3. We briefly review the protocol in [BTH08],
which achieves the aforementioned security guarantee with communication com-
plexity O(Cnκ+DMn2κ+n3κ) where C is the size of the circuit, n is the number
of parties, DM is the multiplicative depth of the circuit, and κ is the size of a
field element. We design a new protocol with the following advantages:

• Efficient: It achieves the same security guarantee as [BTH08], but within
communication complexity O(Cnκ + n3κ), which is as efficient as the
protocol in [GLS19], the best-known protocol in terms of communication
efficiency;

• Simple: Compared to the protocol in [GLS19], our protocol is simple to
understand and describe.

1 Introduction
Secure multi-party computation (MPC) [Yao82, CCD88, GMW87] allows a group of
n participants to evaluate a pre-agreed function securely, even if t of the participants
are corrupted by an adversary. A semi-honest adversary can observe the actions
of the corrupted participants and attempt to acquire unauthorized information. A
malicious adversary, on the other hand, can go further and manipulate the corrupted
participants to alter the computation outcome.

The MPC protocols differ in scenarios where the number of corrupted parties,
the adversary type and the security level of the protocol are different. There are
three different kinds of security, which are separately perfect security, uncondi-
tional security, and computational security. The perfect security requires a protocol
to guarantee the success of the computation with no error probability against any
information-theoretic adversary. If one allows small amount of error probability
(e.g., negligible to the security parameter), we say this protocol achieves uncon-
ditional security. Computational security refers to protocols that rely on crypto-
graphic assumptions and consider computationally bounded adversaries.

1



In the honest majority setting, n ≥ 2t + 1, where in the 1/3 corruption set-
ting, n ≥ 3t + 1. Also there are different settings about the adversary type, and
the MPC protocol can be against a semi-honest adversary or against a malicious
adversary. Previous works have shown that in the honest majority setting, it is pos-
sible to construct a protocol that is unconditionally secure to compute any function
against semi-honest adversaries, and that in the 1/3 corruption setting the protocol
is perfectly secure against malicious adversaries [GBOW88]. It is known that 1/3
corruption setting is also necessary for the perfect security. Moreover, it is shown
that if we think it tolerable for errors to happen with low probability, then the hon-
est majority setting suffices to be secure against malicious adversaries. The honest
majority security is known to be sufficient for unconditional security.

The origins of the MPC problem can be traced back to Yao’s work in 1982
[Yao82]. Initial generic solutions, relying on cryptographic complexity assumptions
and later on information-theoretic security, were largely inefficient, making them
primarily of theoretical significance [CCD88, GMW87, GBOW88].

Afterwards more practical MPC protocols with perfect security for arbitrary
computational functions emerged [BTH08, GLS19]. These protocols make MPC
protocols efficient and possible to be implemented in real-life. There are many
criteria of measuring the efficiency of an MPC protocol, such as communication
complexity w.r.t. circuit size, computation complexity w.r.t. circuit size, etc.. In
our work we will mainly focus on the communication complexity, which is measured
in number of bits sent among different parties within the protocol specification. The
communication complexity of the work [BTH08] is O(Cn +DMn2 + n3) fields ele-
ments, where C is the size of the circuit, n is the number of parties and DM is the
multiplicative depth of the circuit. The work of [GLS19] further improves the com-
munication complexity to O(Cn+n3) field elements, which eliminates the overhead
that includes the multiplicative depth. Yet the techniques included in [GLS19] to get
rid of the overhead are complex and can be made simpler with proper modifications.

In our work, we introduce our perfectly secure MPC protocol that achieves
O(Cn+n3) communication complexity with simpler techniques than [GLS19]. The
settings of our protocol are exactly the same as those of [GLS19]. The high-level
description of our protocol is given in section 2.

2 Technical Overview
In this section, we will start with a brief overview of the protocol in [BTH08],
identify its key bottleneck, and show how to overcome the barrier to achieve better
communication complexity. In the following, we will use n to denote the total
number of parties and t to denote the corrupted threshold. We will always use C
to denote the arithmetic circuit we are computing, DM to denote the multiplicative
depth of C, and κ to denote the size of a field element. We use [x]d to denote
a degree-d Shamir secret sharing with secret x. It allows any d + 1 parties to

2



reconstruct the secret x, but the shares of any d parties do not leak any information
about x.

2.1 Review: The Protocol in [BTH08]
The main contribution of [BTH08] is a method to non-robustly but detectably gener-
ate Ω(n) uniform random sharings with perfect security and O(n2) communication.
Combined with some techniques from [Bea92, HMP00, DN07], they can achieve
communication cost O(Cnκ+DMn2κ+ n3κ).

The protocol includes two phases called the preparation phase and the compu-
tation phase. In the preparation phase, we generate random double sharings to
construct triples in batches, which will help us to compute the multiplication gate.
In the computation phase, we consume the triples and evaluate the circuit gate by
gate. Our main focus is the computation phase, so we will omit the details of the
preparation phase and only emphasize that we can robustly prepare l triples in com-
munication complexity O(lnκ + n3κ). Readers can refer to Appendix A for more
details about the preparation phase.

Protocol 1. [BTH08]
1: Invoke the preparation protocol to get C Beaver triples ([ak]t, [bk]t, [ck]t)

C
k=1

where ak, bk are independent uniform random values and ck = akbk
2: Evaluate the circuit gate by gate as follows

• Input Gate:
1. For each input gate, we associate it with a triple ([ak]t, [bk]t, [ck]t)

2. All parties send their shares of [ak]t to the dealer who is the owner
of the input

3. The dealer reconstructs ak, and computes d = x − ak where x is
the input

4. Invoke Broadcast to let every dealer robustly broadcast the differ-
ences d in batches efficiently

5. Each party computes [x]t = d+ [ak]t as its input shares
• Random Gate: Use the sharings [ak]t in a fresh triple ([ak]t, [bk]t, [ck]t)

• Addition Gate: Each party locally computes the addition of their shares
• Multiplication Gate: Up to ⌊T/2⌋ (T := n−2t) multiplication gates are

processed in batches. For multiplication gates in the batch, we denote
the associated triples as ([ak]t, [bk]t, [ck]t)⌊T/2⌋k=1 , the input sharings of the
gates as ([xk]t, [yk]t)

⌊T/2⌋
k=1 , and we compute the output sharings of the

gates ([zk]t)
⌊T/2⌋
k=1 as follows

3



1. Each party locally computes [dk]t = [xk]t− [ak]t, [ek]t = [yk]t− [bk]t

2. Invoke ReconsPubl to publicly reconstruct the secrets (dk, ek)
⌊T/2⌋
k=1

3. Each player locally computes [zk]t = dkek + dk[bk]t + ek[ak]t + [ck]t

• Output gate: Each party sends his shares to the owner of the output,
who reconstruct the output.

Here Broadcast can let each of n dealers robustly broadcast at most T elements in
total communication complexity O(n3κ). It ensures that each honest party broad-
casts the value he wants and that each honest party gets the same value no matter
how corrupted parties deviate from the protocol. We only need each dealer to broad-
cast one element in step 4 for the input gate, so this step can be done in O(n3).

ReconsPubl is a protocol that can robustly reconstruct the secrets of up to T t-
degree Shamir secret sharings in batches in total communication complexity O(n2κ).
Roughly speaking, it uses Error Correction Code to encode the T secrets. So honest
parties can always recover the secret even though corrupted parties may send incor-
rect values. For more details about the protocol, readers can refer to Appendix B.

Communication Complexity of Protocol 1 Apart from the O(n3κ) overhead
in generating the triples and in distributing the inputs, Protocol 1 achieves lin-
ear amortized communication complexity per gate if each time there are enough
multiplication gates to compute in batches. However, if a multiplication layer con-
tains only a few gates (say only constant gates), we still need O(n2κ) to reconstruct
the secrets before moving on to the next layer, causing O(n2κ) overhead per each
multiplication layer. Thus the total communication complexity of Protocol 1 is
O(Cnκ+DMn2κ+ n3κ).

2.2 Our Protocol: Faulty Computation Before Batched Verification
2.2.1 A Naive Attempt and its Attack

As the O(DMn2κ) overhead is incurred by the public reconstruction for each mul-
tiplication layer, our first attempt is to first let one party reconstruct the secret
(which is O(nκ) even when we don’t have a batched of reconstructions), and then
verify the reconstruction for gates from potentially different multiplication layers in
batches using ReconsPubl. Formally, to compute [xy]t, parties will go through the
following steps:

1. All parties use a new Beaver triple ([a]t, [b]t, [c]t)

2. All parties locally compute [x+ a]t = [x]t + [a]t, [y + b]t = [y]t + [b]t, and send
the shares to Pking

4



3. Pking reconstructs x+ a, y + b and broadcasts the values

4. All parties compute [xy]t = (x+ a)(y + b)− (x+ a)[b]t − (y + b)[a]t + [c]t

And they will invoke ReconsPubl to verify the reconstruction only after a batch of
multiplication gates.

However, this naive attempt may leak information to corrupted parties. To
understand why this is the case, let’s consider the following explicit attack.

Suppose we have sharings [x]t, [y]t, [z]t and we want to compute (x · y) · z.
If Pking is corrupted, he can deviate from the protocol by sending x+ a to t+ 1

parties and sending x + a + 1 to the other 2t parties. Then after step 4, t + 1
parties hold shares of [xy]t while the other 2t parties hold shares of [(x+1)y]t. Then
when they compute the second multiplication gate, t+ 1 parties will send shares of
[xy]t + [a′]t to Pking while the other 2t parties will send shares of [(x + 1)y]t + [a′]t
where ([a′]t, [b

′]t, [c
′]t) is the Beaver triple for the second multiplication gate. Thus

Pking can obtain both xy+a′ and (x+1)y+a′, so he will get the intermediate result
y, which should not be allowed.

2.2.2 Protecting the Sharings with a Mask

The above attack works because a corrupted party could potentially distribute arbi-
trary degree polynomials to other parties when he is supposed to broadcast, which
will make the degree of the input wire for the next layer greater than t. Thus a
degree-t Shamir secret sharing [a]t is not enough for protecting the secret.

In realizing this, our solution is to use degree-(n−1) Shamir secret sharing [a]n−1

to protect our sharings. Notice that double sharings [a]t, [a]n−1 can also be generated
by first generating [a]t, then generating degree-(n− 1) random zero sharing [0]n−1,
and finally computing [a]t = [0]n−1 + [a]t. So we give the following procedure to
compute [xy]t given [x]t, [y]t:

1. All parties use a new Beaver triple ([a]t, [b]t, [c]t)

2. All parties use two new degree-(n− 1) random zero sharing [0(1)]n−1, [0
(2)]n−1

(Random zero sharings can be generated in batches efficiently in a similar way
as the generation of random sharings Appendix A.2. Specifically, each party
Pi distributes a degree-(n−1) random zero sharing [0(i)]n−1 to all other party.
Then all parties locally apply a hyber-invertible matrix M on their shares and
sends 2t of the resulting shares to 2t different parties to check whether it’s a
zero sharing. If the check passes, the remaining n− 2t resulting shares satisfy
our requirements.)

3. All parties locally compute two sharings [x+a]n−1 = [x]t+[a]t+[0(1)]n−1 and
[y + b]n−1 = [y]t + [b]t + [0(2)]n−1, and send the shares to Pking

4. Pking reconstructs x+ a, y + b and broadcasts the values

5



5. All parties compute [xy]t = (x+ a)(y + b)− (x+ a)[b]t − (y + b)[a]t + [c]t

In this way, honest parties only send their shares after adding an independent
random value as a mask. Thus they can evaluate multiple multiplication layers
without leaking any information. However, the computation is faulty and we need
to verify the computation carefully.

In the following section, we will follow the Player Elimination framework. Namely,
it combines a procedure that does not leak any information but may be incorrect
with two procedures called FaultDetection and FaultLocalization to verify
whether the computation of the segment is correct and find two disputed parties (at
least one of them is corrupted) if incorrect. In this way, we can kick out at least
one corrupted party while maintaining the number of remaining corrupted parties
t′ does not exceed the corruption threshold each time the computation of the seg-
ment fails. So by dividing the whole computation into t segments and retrying a
segment when the computation of the segment fails, we can achieve perfect secu-
rity efficiently. More details about the Player Elimination framework are included
in Section 3.1 for completeness.

We already present a way to evaluate the circuit gate by gate without leaking
any information. In the remainder of this section, we will focus on how to verify the
computation and how to detect the cheaters.

2.2.3 Verifying the Faulty Computation

After evaluating a batch of multiplication gates, it’s time to run a verification pro-
cedure to tell us whether the computation is correct. We use the same method
as [GLS19] to do the verification.

First, every party checks whether Pking sends the same value to them. This
can be done based on a procedure called CheckConsistency, which can check
whether a party Pking broadcasts T elements to all other parties, and if the check
fails, find two disputed parties in communication complexity O(n2κ). As we have
Ω(n) multiplication gates to be verified in batches, the amortized cost for each gate
is O(n).

Now we know that Pking sends consistent values. We only need to check that
Pking sends correct values. This can be done by publicly reconstructing the values.
As we have Ω(n) reconstructions to verify, ReconsPubl can efficiently reconstruct the
correct values of x + a, y + b from [x + a]t, [y + b]t with amortized communication
complexity O(nκ) per reconstruction.

However, if the check fails, we need to identify whether (1) Pking is corrupted
and he sends wrong values; or (2) Pking is honest and we should find another party
who sends wrong shares of [x+a]n−1, [y+b]n−1, which results in the incorrect values.
As degree-(n − 1) Shamir secret sharing does not have any redundancy, a change
of only a single share can transfer a valid degree-(n − 1) Shamir secret sharing to

6



another valid one, which makes it difficult, even for honest Pking, to tell who causes
the error.

2.2.4 Detecting the Cheaters

We will solve the problem by providing Pking with more necessary information in
addition to the true whole sharing [x+ a]t so that he can localize the error. In the
following, we will focus on how to enable an honest Pking to find a corrupted party
or two disputed parties who hold different opinions about the same message (and
thus at least one of them is corrupted).

Without loss of generality, suppose the first wrong value reconstructed by Pking

is x(i)+a(i) (The ith x+a we need to reconstruct in this segment). Let [x(i) + a(i)]n−1

be the sharing Pking receives in the previous stage. If Pking is honest, he can localize
the error as follows

1. All parties send their shares of [x(i) + a(i)]t to Pking

2. Pking uses the shares to recover the correct shares [x(i) + a(i)]t

3. Pking computes [x(i) + a(i)]n−1 − [x(i) + a(i)]t, which is supposed to be a zero
sharing [0(i)]n−1

4. All the parties send the randomness they use in constructing [0(i)]n−1 to Pking.
Formally, for j = 1, 2, · · · , n, Pj send his shares of [0(k)]n−1(1 ≤ k ≤ n) and the
whole shares of [0(j)]n−1 to Pking where [0(k)]n−1 is used to generate [0(i)]n−1.
Denote the coefficients to get [0(i)]n−1 (a row of the hyber-invertible matrix
M) to be ℓk(1 ≤ k ≤ n)

5. Pking checks whether there exists Pj , Pk such that they send different values
as the jth sharing of [0(k)]n−1. If so, Pj and Pk are two disputed parties.
Otherwise, there must exist j such that one of the followings holds:

• the jth sharing of [x(i) + a(i)]n−1 − [x(i) + a(i)]t does not equal to the jth

sharing of
∑n

k=1 ℓk[0(k)]n−1

• [0(j)]n−1 is not a zero sharing

Then Pj must be corrupted

It’s easy to see that the above procedure allows an honest Pking to identify where
the error comes from. To further ensure that a malicious Pking cannot charge two
innocent parties, we need to make the following modification as the standard player
elimination framework

• if Pking broadcasts that Pj is corrupted, all parties take Pking, Pj as two dis-
puted parties who will be kicked out in the next round;

7



• if Pking broadcasts that Pj and Pk are inconsistent, Pking also broadcasts the
index of the inconsistent message and the different values Pj and Pk sends.
If Pj disagrees (he thinks the value is not what he sends to Pking), he broad-
casts Disagree and all parties take Pking, Pj as two disputed parties. Similarly,
if Pk broadcasts Disagree, all parties take Pking, Pk as two disputed parties.
Otherwise, all parties take Pj , Pk as two disputed parties.

Remark 1. The main difference between our protocol and the protocol in [GLS19]
is the way of detecting the cheaters when the verification fails.

They create redundant sharings called 4-Consistent tuples to help Pking recover
the whole correct degree-(n− 1) Shamir secret sharing and then find the cheater.

Our key observation is that the randomness used in generating the random zero
sharings is safe to reveal (after the broadcast is done) and is enough to help Pking

find the cheater. Thus our simple protocol also works.

3 Preliminary
3.1 Player Elimination Framework
The player elimination framework, first introduced in [HMP00], is widely used to
achieve perfect security in MPC protocols [BTH08, GLS19]. On a high level, we
divide the computation that may have errors into several segments. The players
first follow the computation within the segments and then verify the execution
correctness. If there exists errors, at least one honest player will report the existence
of errors. We call the player unhappy if he/she detects errors. If an error indeed
happens, all players run another protocol to locate two players where at least one of
them is corrupted. Then these two players are eliminated from the active player set
PA and this segment will be run again on the active player set. After some player
elimination steps we have n′ players where a maximum t′ of them can be malicious.
It follows that n′ − 2t′ = n − 2t, and we denote T = n − 2t. T remains constant
throughout the protocol under our player elimination framework.

In the following we introduce the player elimination framework instance in
[BTH08]. In the framework a procedure π is taken as an input output a proce-
dure that either outputs the original output of π or outputs a pair of disputed
parties to all parties. Each party maintains locally a happy-bit in the framework.

Procedure 1 (Player Elimination (π)).

1. Initialize Phase: All players have their happy-bits be happy.

2. Computation Phase: All players run π.

3. Fault Detection Phase:

8



- All players broadcast their happy-bits.
- For each party, if he or she receives at least one unhappy then sets

his or her happy-bit to unhappy.
- All players run a consensus protocol on their happy-bits. If the con-

sensus is happy, all parties output the output of π and terminate the
procedure. Otherwise, they proceed to the following steps.

4. Fault Localization Phase:

- All players agree the party with the smallest index in PA as the dealer
D. All other players send all their generated values and communica-
tion to D.

- On receiving all the information, the dealer simulates π and the fault
detection phase himself or herself. The dealer either prepares the
message (Pi, Incorrect) if Pi failed to follow the protocol, or the
message (Pj , Pk, l,m,m′, Inconsistent) if the message m that Pj

sends to Pk in round l is inconsistent with Pk’s message m′ that Pk

claims to have received. Then D broadcasts the prepared message to
all parties.

- If (Pi, Incorrect) is broadcast, all players set the eliminating set E =
{D,Pi}. Otherwise (Pj , Pk, l,m,m′, Inconsistent) is broadcast. Pj

and Pk will broadcast if they agree with D. If Pj does not agree, all
players set the eliminating set E = {D,Pj}; if Pk does not agree, all
players set the eliminating set E = {D,Pk}; otherwise all players set
the eliminting set E = {Pj , Pk}.

- All players update PA := PA − E and terminate.

Suppose Ω(π) is the total communication cost in the procedure π. In the third
step, the players communication a total of O(n2) bits. Then the communication
cost for π with player elimination is O(n2 + Ω(π)) bits. The overhead is negligible
asymptotically if Ω(π) is at least O(n2).

4 Protocol
In this section, we combine each parts to form our protocol. Only the way we
multiply is different from Protocol 1.

Protocol 2. Our Protocol

9



1: Invoke the preparation protocol to get 2C Beaver triples ([ak]t, [bk]t, [ck]t)2Ck=1

where ak, bk are independent uniform random values and ck = akbk
2: We first deal with the input gates

1. For each input gate, we associate it with a triple ([ak]t, [bk]t, [ck]t)

2. All parties send their shares of [ak]t to the dealer who is the owner of
the input

3. The dealer reconstructs ak, and computes d = x − ak where x is the
input

4. Invoke Broadcast to let every dealer robustly broadcast the differences
d in batches efficiently

5. Each party computes [x]t = d+ [ak]t as its input shares

3: Initialize n′ ← n, t′ ← t and P ′ ← P (the set of all parties)
4: All parties agree on a division of the remaining computation (except for the

output gates) into t segments with roughly the equal length. Active parties
(parties in P ′) evaluate each segment gate by gate as follows

• Before any computation, active parties generate ⌈2C/t⌉ degree-(n′−1)
random zero sharings by applying player elimination framework to the
method we describe in Section 2.2.2. They agree on a party Pking ∈ P ′.

• Random Gate: Use the sharings [ak]t in a fresh triple ([ak]t, [bk]t, [ck]t)

• Addition Gate: Each party locally computes the addition of their shares
• Multiplication Gate: Given [x]t, [y]t, to compute [xy]t

1. Each active party consumes a new triple ([a]t, [b]t, [c]t) and two
fresh degree-(n′ − 1) random zero sharings [0(1)]n′−1, [0

(2)]n′−1

2. Active parties locally compute [x+ a]n′−1 = [x]t + [a]t + [0(1)]n′−1

and [y+b]n′−1 = [y]t+[b]t+[0(2)]n′−1, and send the shares to Pking

3. Pking reconstructs x+ a, y + b and broadcasts the values to P ′

4. Parties in P ′ compute [xy]t = (x + a)(y + b) − (x + a)[b]t − (y +
b)[a]t + [c]t

• After completing all the computations of the segment, all the active
parties do verification as follows

1. Invoke CheckConsistency to check Pking indeed does the broad-
cast (instead of sending different values to different parties) in this
segments. If the check fails, two disputed parties are kicked out
from P ′, n′ ← n′− 2, t′ ← t′− 1 and all other parties will retry the
computation of this segment;

10



2. Active parties locally compute [x+ a]t = [x]t + [a]t and [y + b]t =
[y]t+[b]t, and invoke ReconsPubl to get the real values of x+a, y+b.
If any party finds the real value is different from what Pking sends,
he gets unhappy;

3. Active parties run a consensus protocol to see if someone of them
is unhappy. If not, they take this segment’s computation result
as output, and move on to compute the next segment. Otherwise,
suppose the first wrong value reconstructed by Pking is x(i) + a(i),
and all active parties do the fault localization as follows
(a) All active parties send their shares of [x(i) + a(i)]t to Pking

(b) Pking uses the shares to recover the correct shares [x(i) + a(i)]t

(c) Pking computes [x(i) + a(i)]n′−1−[x(i)+a(i)]t, which is supposed
to be a zero sharing [0(i)]n′−1

(d) All active parties send the randomness they use in constructing
[0(i)]n′−1 to Pking. Formally, for j = 1, 2, · · · , n′, active party
Pj sends his shares of [0(k)]n′−1(1 ≤ k ≤ n′) and the whole
shares of [0(j)]n′−1 to Pking where [0(k)]n′−1 is used to generate
[0(i)]n′−1. Denote the coefficients to get [0(i)]n′−1 (a row of the
hyber-invertible matrix M) to be ℓk(1 ≤ k ≤ n′)

(e) Pking checks whether there exists Pj , Pk such that they send
different values as the jth sharing of [0(k)]n′−1. If so, Pking

broadcasts the index of the inconsistent message and the dif-
ferent values Pj and Pk send. Otherwise, Pking finds j such
that one of the followings holds:
– the jth sharing of [x(i) + a(i)]n′−1−[x(i)+a(i)]t does not equal

to the jth sharing of
∑n′

k=1 ℓk[0(k)]n′−1

– [0(j)]n′−1 is not a zero sharing
In this case, Pking broadcasts that Pj is corrupted.

(f) If Pking broadcasts that Pj is corrupted, each party sets E =
{Pj , Pking}
If Pking broadcasts that Pj and Pk sends two different val-
ues, then Pj checks whether the value is what he sent to
Pking. If not, Pj broadcasts Disagree, each party sets E =
{Pj , Pking}. Similarly, if Pk broadcasts Disagree, each party
sets E = {Pk, Pking}. Otherwise, each party sets E = {Pj , Pk}

(g) n′ ← n′ − 2, t′ ← t′ − 1,P ′ ← P ′ −E. All the remaining active
parties (parties in P ′) retry the computation of this segment.

5: For each output gate, the remaining active parties send his shares to the
owner of the output, who reconstruct the output.

11



This protocol achieves O(Cnκ+ n3κ) communication complexity as desired.

References
[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomiza-

tion. In Advances in Cryptology—CRYPTO’91: Proceedings 11, pages
420–432. Springer, 1992.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure mpc
with linear communication complexity. In Theory of Cryptography:
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008. Proceedings 5, pages 213–230. Springer, 2008.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncon-
ditionally secure protocols. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 11–19, 1988.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Advances in cryptology—CRYPTO
2007, volume 4622 of Lecture Notes in Comput. Sci., pages 572–590.
Springer, Berlin, 2007.

[GBOW88] S Goldwasser, M Ben-Or, and A Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computing. In Proc. of
the 20th STOC, pages 1–10, 1988.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient
unconditional mpc with guaranteed output delivery. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part II, pages 85–114. Springer, 2019.

[GMW87] O Goldreich, S Micali, and A Wigderson. A completeness theorem for
protocols with honest majority. In STOC 87, 1987.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure
multi-party computation. In Advances in Cryptology—ASIACRYPT
2000: 6th International Conference on the Theory and Application of
Cryptology and Information Security Kyoto, Japan, December 3–7, 2000
Proceedings, pages 143–161. Springer, 2000.

[Yao82] Andrew C Yao. Protocols for secure computations. In 23rd annual
symposium on foundations of computer science (sfcs 1982), pages 160–
164. IEEE, 1982.

12



A Preparation Phase
A.1 Overview
In this section, we will show how [BTH08] generates the random triples. [BTH08]
shows that if the triples are not secure, the honest parties can detect that. A further
using of Player Elimination can give a bound of the total time.

A.2 Generating random shares
First, we introduce the DoubleShareRandom protocol. It either generates T inde-
pendent secret values and their (d, d′) secret sharing, or it fails. In the following
context, when we refer to a matrix M , it is the hyper invertible matrix.

Procedure 2 (DoubleShareRandom (d, d′)).

1. Secret Share: Every Pi ∈ P ′ chooses a random si and acts (twice in
parallel) as a dealer in Share to distribute the shares among the players in
P ′, resulting in [si]d,d′ .

2. Apply M : The players in P ′ (locally) compute
(
[r1]d,d′ , . . . , [rn′ ]d,d′

)
=

M
(
[s1]d,d′ , . . . , [sn′ ]d,d′

)
. In order to do so, every Pi computes his double-

share of each rj as linear combination of his double-shares of the sk-values.

3. Check: For i = T + 1, . . . , n′, every Pj ∈ P ′ sends his double-share of
[si]d,d′ to Pi, who checks that all n′ double-shares define a correct double-
sharing of some value si. More precisely, Pi checks that all d-shares indeed
lie on a polynomial g(·) of degree d, and that all d′-shares indeed lie on a
polynomial g′(·) of degree d′, and that g(0) = g′(0). If any of the checks
fails, Pi gets unhappy.

4. Output: The remaining T double-sharings [r1]d,d′ , . . . , [rT ]d,d′ are out-
putted.

If all honest players are happy, then at least t′ double-sharings are correct (the
n′ − t′ double-sharings inputted by honest players, as well as the t′ double-sharings
verified by honest players), and due to the hyper-invertibility of M , all 2t′ double-
sharings must be correct.

13



A.3 Generating triples
Then we use the following protocol to generate Beavers triples using the random
sharings.

Procedure 3 (GenerateTriples).

1. Generate Double-Sharings: Invoke DoubleShareRandom three times
to generate the double-sharings [a1]t,t′ , . . . , [aT ]t,t′ , [b1]t,t′ , . . . , [bT ]t,t′ , and
[r1]t,2t′ , . . . , [rT ]t,2t′ .

2. Multiply:

- For k = 1, . . . , T , the players in P ′ compute (locally) the 2t′-sharing
[ck]2t′ of ck = akbk as [ck]2t′ = [ak]t′ [bk]t′ (by every player computing
the product of his shares).

- For k = 1, . . . , T , the players in P ′ compute (locally) a 2t′-sharing of
the difference [dk]2t′ = [ck]2t′ − [rk]2t′ .

- Invoke ReconsPubl (Appendix B) to reconstruct d1, . . . , dT towards
every player in P ′.

- For k = 1, . . . , T , the players in P ′ compute (locally) the t-sharing
[ck]t = [rk]t + [dk]0, where [dk]0 denotes the constant sharing [dk]0 =
(dk, . . . , dk).

3. Output: The t-shared triples ([a1]t , [b1]t , [c1]t) , . . . , ([aT ]t , [bT ]t , [cT ]t)
are outputted.

The security comes from the security of DoubleShareRandom. The total commu-
nication cost is O(n2κ).

B Batched Secret Reconstruction
Following the idea of the BH protocol [BTH08], there exist two protocols to recon-
struct the Shamir sharings over some field of size O(n). We note that these two
protocols follow the player elimination framework. Denote t as the remaining num-
ber of corrupted players, n as the remaining number of players and d as the degree
of the sharing to be reconstructed.

One reconstruction protocol is private where one player receives the shares from
all parties and reconstruct the secret or becomes unhappy. We state this protocol
as follows.

14



Protocol 3. ReconsPriv(P, d, [s]d)

1. Each player sends his/her share of [s]d to player P .

2. If at least d+ t′ + 1 of the shares lies on a degree-d polynomial, P recon-
structs the secret; otherwise P gets unhappy.

The total communication cost of ReconsPriv is O(n) field elements, which
is O(n · log n) bits. We point out that following fact holds for the ReconsPriv
protocol [BTH08]:

Lemma 1. If d < n′ − 2t′, then the player P can robustly recover the secret s from
[s]d. If d < n′ − t′, then the player P can either correctly reconstruct the secret s or
detect errors and get unhappy.

The other reconstruction protocol is public where all players jointly recover T
degree-d Shamir sharings [s1]d, · · · , [sT ]d. The γj in the protocol are pre-agreed
points used as linear error correction code.

Protocol 4. ReconsPubl(d, [s1]d, · · · , [sT ]d).

1. All players locally compute

[wj ]d =

T∑
l=1

γl−1
j · [sl]d.

2. Each player Pi invokes ReconsPriv to reconstruct [wi]d.

3. Each player Pi broadcast wi or unhappy.

4. Each player Pi will reconstruct s1, · · · , sT on receiving at least T + t con-
sistent values; otherwise Pi gets unhappy.

The communication cost for ReconsPubl is O(n2) field elements, which is O(n2 log n)
bits. We have the following property for ReconsPubl [BTH08]:

Lemma 2. If d < n′−2t′, then all the players can robustly recover the secrets {si}Ti=1

from {[si]d}Ti=1. If d < n′ − t′, then either the players can correctly reconstruct the
secrets or at least one honest player detects errors and gets unhappy.

15


	Introduction
	Technical Overview
	Review: The Protocol in beerliova2008perfectly
	Our Protocol: Faulty Computation Before Batched Verification
	A Naive Attempt and its Attack
	Protecting the Sharings with a Mask
	Verifying the Faulty Computation
	Detecting the Cheaters


	Preliminary
	Player Elimination Framework

	Protocol
	Preparation Phase
	Overview
	Generating random shares
	Generating triples

	Batched Secret Reconstruction

