
Review: How to go beyond the black-box simulation barrier

Zihan Hu
2019012330

Kai Su
2019012346

Shiyu Zhao
2019012358

June 3, 2021

Abstract

Former simulators mostly use V ∗ in black-box way.
The paper [Bar01] gives a non-black-box simulator
which utilizes the description of V ∗. In this way, we
can go beyond many limitations.

1 General Idea

In Zero-knowledge (ZK) interacitve proofs, the
challenge of the simulator is how to convince the veri-
fier without the witness. Generally, it’s acknowledged
that the simulator has two advantages. The first ad-
vantage is that, unlike in the actual interaction, the
simulator has many attempts at answering the veri-
fier’s questions. It can just abort and retry if it fails
and output the answer only when it succeeds. This
is called rewinding technique. The second advantage
is that, unlike in the true interaction, the simulator
has access to the verifier’s random-tape. This means
that it can actually predict the next question that the
verifier is going to ask.

However, the verifier could be malicious enough to
embed a hash function or PRF in its algorithm. Then
the output of the verifier remains uncontrollable in
some sense, as if the result is still random for the
simulator. Therefore, the second advantage is hard
to be utilized if the verifier is a black-box strategy.

In all previously known zero-knowledge protocols,
the simulator uses the verifier’s strategy V ∗ as a
black-box subroutine and thus are constricted to use
only the first advantage. Rewinding does not guar-
antee a high probability of generating “easy ques-
tions”(questions simulator can reply successfully)
within a few attempts. It is difficult to construct
constant-round zero-knowledge proof under concur-
rent composition [Can+01], and it’s also impossible
to construct a constant-round zero-knowledge proof

with strict rather than expected polynomial time sim-
ulators [BL04], and so on.

This paper [Bar01] aims to to go beyond the black-
box simulation barrier by providing the simulator the
code of the (possibly cheating) efficient verifier as an
auxiliary input, that is what we call non-black-box
simulator. The simulation definition of ZK says that
verifiers can recreate the view without knowledge.
Since the verifiers is supposed to know its own code, a
non-black-box simulator is reasonable. The change of
definition only occurs in the proof of security, which
does not affect real world executions.

It is unfortunate that little can be done in reverse-
engineering the description of the source code of the
verifier. The code can be well-obfuscated. It can
also contain OWFs so that even if we understand
the functionality of the code, we would still not be
able to make it produce “easy questions”. Instead of
trying to make the next question “easy”, the KEY
IDEA is to change the definition of “easy questions”
to something trivial like “what the verifier would ask”
in assistance of the verifier’s code. This information
is impossible to obtain during real executions, but
transparent to the simulator since the code is known.
The FLS technique [FLS99] is used to implement such
modification.

See the appendix B for definitions and notations.

2 FLS-type Protocols

The idea of FLS is to define a set of trapdoor in-
formation such that if the prover possesses such trap-
door, it can convince the verifier even without a wit-
ness for x ∈ L. Additionally, a WI proof is needed so
that the verifier wouldn’t notice whether the prover
is using a trapdoor or not.

First we introduce how to construct a zero-
knowledge proof by FLS technique. It reduces the

1

construction to two stages: a generation protocol and
a WI proof system.

• stage 1: Generation Protocol.
Both prover and verifier engage in a generation
protocol and output the transcript τ

• stage 2: WI Proof.
Given some witness w, the prover is required to
show x ∈ L or τ ∈ Λ using a WI proof, where Λ
is a public predetermined language.

Here Λ, generation protocol and WI proof need to
be further specified. Λ depends on how the gen-
eration protocol is specified and WI proof is con-
structed through universal arguments(see appendix
A for more). The generation protocol needs to sat-
isfy the following two properties:

1. Soundness
In order that the proof is meaningful, we re-
quires that as long as the verifier follows the pre-
scribed strategy, prover cannot cheat with trap-
door information τ rather than honestly proving
x ∈ L. That is, Pr[τ ∈ Λ] < ε(n), where ε
is a negligible function, so that ∀P ∗, if x /∈ L,
Pr[〈P ∗, V 〉(x) = 1] < ε(n).

2. Generation (of trapdoors)
There exists a simulator SGenProt, for any ver-
ifier V ∗, given public input and the description
of V ∗, it outputs (v, σ) which satisfies:

(a)
{

viewV ∗
n
〈P (xn, yn) , V ∗n (xn)〉

}
n∈N ≈C v

(b) τ ∈ Λ and σ is the witness for it

Here (b) is the simulator’s method to convince
the verifier.

Suppose we have specified Λ, the generation pro-
tocol (called GenProt) and the WI proof (called
WIProt), we need to show FLS-type protocols is
zero-knowledge argument in general. Concretely, we
need to show the completeness, soundness and zero-
knowledge.

1. Completeness
Naturally holds. If x ∈ L, then 〈x, τ〉 ∈ L′ by
definition. Witness for x ∈ L is also witness for
〈x, τ〉 ∈ L′.

2. Soundness
It holds by the soundness of generation protocol.
If x /∈ L, since Pr[τ ∈ Λ] < ε(n), then Pr[x ∈
L or τ ∈ Λ] < ε(n)

3. Zero-knowledge

To prove that FLS-type protocols is zero-
knowledge, we construct the following simulator:

• stage 1: Simulated Generation Protocol
Given V ′′, SGenProt outputs (v, σ) just as gener-
ation protocol. v is the view and τ ∈ Λ.

• stage 2: Simulated WI Proof
Given x, τ, σ, V ′′′ accepts or rejects by whether
x ∈ L or τ ∈ Λ. v′ is the view.

• output: (v, v′)

• Notation. x is public input, V ′ is the descrip-
tion of verifier, V ′′ is V ′ with x hardwired in,
V ′′′ is V ′′ with view v hardwired in.

Note that although generation protocol doesn’t use
x as prescribed, but in case the prover or verifier is
malicious to utilize x, x is hardwired into V ′ during
stage 1 simulation. By the definition of SGenProt and
WI, the combined view is indistinguishable from that
in a real-world execution.

3 GenProt with Uniform Veri-
fiers

The trapdoors in the FLS technique corresponds to
“easy questions”. As mentioned in section 1, we set
the trapdoor information to be related to the question
that the verifier asks.

Notice that the entropy of uniform verifiers are lim-
ited by its random tape. Such weakness can be identi-
fied by Kolmogorov complexity. That is, the strings
generated by the verifier can be described by some
short Turing machine codes.

Protocol 1 (Kolmogorov GenProt). Define τ ∈ Λ

⇐⇒ ∃M, |M | < |r|
2 and r ←M() in |r|log log|r|

steps.

Prover Verifier

1 : r ∈ {0, 1}n

Proof. (Sketch)
Soundness. By the counting argument, there are

at most 2
n
2 +1 − 1 strings in Λ for a fixed n. For an

honest verifier, Pr[τ /∈ Λ] = 1−O
(
2−

n
2

)
.

Generation. Use a PRG {0, 1}0.1n → {0, 1}∗ to
generate the random input for the verifier. Then the

2

verifier’s output can be described using a string of
length 0.1n, the PRG, and the uniform verifier’s code.
The view is indistinguishable due to the PRG.

This scheme is not extensible since the mechanism
relies on the low complexity of a uniform verifier.
Consider another scheme that directly uses the be-
havior of the verifier.

Protocol 2 (Uniform). Define τ = (z, r) ∈ Λ ⇐⇒
∃Π, z = Com(Π), and r ← Π(z) in |r|log log|r|

steps.

Prover Verifier

1 : z = Com(Π)

2 : r ∈ {0, 1}n

Proof. (Sketch) The verifier loses if it fails to output
a string different from the output of Π, the program
sent by the prover.

Soundness. Verifier wins with high probability by
sending random string since the program sent by the
prover has a fixed output.

Generation. The prover sends z = Com(V ∗),
where V ∗ is the verifier’s description hardwired with
a random tape. Then the verifier would have a same
output as V ∗ since they both have the same input
z. The view is indistinguishable in simulation due to
the hiding property of commitment schemes.

4 GenProt with Non-Uniform
Verifiers

Protocol 2 doesn’t work with non-uniform verifiers
since the description size of the verifier can be a poly-
nomial of the size of the input. Thus we can’t send
the verifier’s description to the verifier itself.

The prover is required to make a commitment to
the verifier so that the prover cannot cheat during real
executions. However, full-fledged binding property
of the commitment is not necessary. Hash functions
can also guarantee some level of commitment, while
controlling the length of the commitment.

In this section, the definition of GenProt is slightly
modified such that τ ∈ Λ is allowed, but it’s hard
for the prover to obtain a witness. When x /∈ L, if
an honest verifier accepts with non-negligible proba-
bility δ, a malicious prover can simulate the verifier
and use the knowledge extractor on the WI proof to

obtain the witness for τ ∈ Λ, a contradiction. So the
soundness of this modification is ensured.

Protocol 3 (Non-Uniform GenProt). Define τ =
(h, z, r) ∈ Λ ⇐⇒ ∃Π, z = Com(h(Π)), and

r ← Π(z) in |r|log log|r|
steps.

Prover Verifier

1 : h← Hn

2 : z = Com(h(Π))

3 : r ∈ {0, 1}n

Proof. (Sketch)

Soundness. If the prover can obtain a witness
Π for non-negligible probability δ, it can generate
two r 6= r′ randomly and obtain Π 6= Π′ from
(h, z, r) 6= (h, z, r′). Then the collision h(Π) = h(Π′)
is generated with probability O(δ3), a contradiction
to collision resistance.

Generation. Similar to Protocol 2.

5 GenProt with Bounded Con-
current Zero-knowledge

Roughly speaking, a protocol is bounded concur-
rent zero-knowledge if the verifier can not get any
extra information when n statements are proved si-
multaneously. As verifier can jump back and forth
between different sessions, its next message can de-
pend on the response of the prover of another ses-
sion. Therefore, in order to let the previous frame-
work work, SGenProt is required to output the trap-
door even if several sessions interleave, which makes
the previous one fail.

But wait a minute, we can put the prover’s re-
sponse into the trapdoor and send the generalized
next message function. Formally, we give the follow-
ing protocol.

Protocol 4 (Bounded Concurrent ZK GenProt).

Define τ = (h, z, r) ∈ Λ ⇐⇒ ∃Π, |y| < |r|
2 such

that z = Com(h(Π)), and r ← Π(z, y) in |r|log log|r|

steps.

3

Prover Verifier

1 : h← Hn

2 : z = Com(h(Π))

3 : r ∈ {0, 1}n
4

Proof. (Sketch)
Completeness. Trivial.
Soundness. Similar to Protocol 3. The fact that

Π and Π′ are different with high probability follows

from |y| ≤ |r|2 .
Bounded Concurrent ZK. Notice that the

prover’s responses are short and there are only n
provers. Messages from other provers can fit into y.
So SGenProt can surely output the computationally
indistinguishable view along with the trapdoor even
if n sessions interleave. Simulating the second stage
is trivial.

6 Summary

Using a non-black-box simulator, the paper
presents a zero-knowledge argument system with the
following properties:

1. Constant number of rounds;

2. Bounded concurrent zero-knowledge;

3. Arthur-Merlin(Public Coins);

4. Exists a simulator in strict poly-time.

The intuition is clearly explained by the paper.
The method embodies a novel exploitation of the

non-black-box property without reverse-engineering.
The description of a Turing machine can be stored
and committed, as a part of the witness. It can also
be sent to another party for computations under ho-
momorphic encryptions. These are impossible for or-
acles. The power of non-black-box over black-box
oracles can be seen as an implication of the nonexis-
tence of VBB.

As mentioned in the last section of the paper, there
remains the question that whether black-box reduc-
tions can be strengthened with the non-black-box
proof. Under the context of security, non-black-box
proofs are closer to the real world impossibilities.

In Fiat-Shamir paradigm, the verifier is replaced
with some nice public hash function. Then every-
one knows the code of the verifier. As indicated by
this paper, the simulator can probably use the code
to cheat, which implies the insecurity of Fiat-Shamir
paradigm.

This work has some limitations. First of all,
all the conclusions are based on the (seemingly
strong) assumption that collision-resistant hash func-
tion against nlogn-sized adversary exists. This limi-
tation is overcome by [BG02]. Moreover, this work
can only construct a bounded concurrent zero-
knowledge argument system rather than a concur-
rent zero-knowledge one. Because to ensure the
soundness, we have to bound the length of y. Thus y
can not contain messages from a not pre-fixed poly-
nomial number of provers.

Appendix A: Notes on Time Is-
sues

One thing needs to be noticed. We use the de-
scription of the verifier as a witness for τ ∈ Λ. But
the running time of possibly malicious verifier is not
prior bounded by any fixed polynomial, so the time
to verify the witness is not a pre-fixed polynomial.
That is, ∀c,Λ 6∈ Ntime(nc), which may lead to inef-
ficiency. The solution is to force the time of verifying
the witness to be a fixed poly in the running time of
the possibly malicious verifier, and to use universal
arguments, which can ensure the running time of the
prover in the second stage to be a fixed poly of the
time needed to verify the witness.

Why do we need the assumption that collision-
resistant hash function against nlogn-sized adversary
exists? An important reason is that we can only
bound Λ to be in Ntime(T (n)) where T is any su-
per polynomial. Based on [Kil92] and [Mic94], un-
der this assumption, WI universal argument system
for Ntime(nlog logn) exists, which is a very important
part of the framework.

Can this be improved? The subsequent work
[BG02] analyzes the security of universal arguments
in a new way, and constructs a WI universal argu-
ments based on weaker assumption that collision-
resistant hash function against poly-sized adversary
exists. Finally, it shows that a slightly changed pro-
tocol can enjoy the same properties shown in [Bar01].

4

Appendix B: Definitions and No-
tations

Definition 1 (Witness indistinguishability). Let
L=L(R) be some language and let (P,V) be
an interactive argument for L. We say that
(P,V) is witness-indistinguishable if for every
polynomial-sized circuit family {V ∗n }n∈N and every
sequence {(xn, yn, y′n)}n∈N, where xn ∈ {0, 1}n and
(xn, yn) , (xn, y

′
n) ∈ R the following two probability

ensembles are computationally indistinguishable:

•
{

viewV ∗
n
〈P (xn, yn) , V ∗n (xn)〉

}
n∈N

•
{

viewV ∗
n
〈P (xn, y

′
n) , V ∗n (xn)〉

}
n∈N

Definition 2 (Concurrent execution). A t-times
concurrent execution of a two-party protocol (P, V)
coordinated by V on inputs {(ai, bi)}ti=1 is:

1. Run t independent copies of P with the ith copy
getting private input bi and V getting public inputs
a1, · · · , at.

2. On each step V outputs (i,m). The ith copy
of P is given with the message m and V is given the
prover’s response.

Definition 3 (Bounded concurrent zero-knowledge).
Protocol (P, V) is bounded concurrent zero-knowledge
for a language L = L(R) if ∃ a p.p.t. S such that ∀
p.p.t. V and every instance {(xi, yi)}ni=1 such that
(xi, yi) ∈ R, S(V, x1, x2, · · · , xn) is computationally
indistinguishable from the view of V in a real n-time
concurrent execution of (P, V) on that instance.

Definition 4 (Commitment). Denote Com(x, Un)
as Com(x) for simplicity. Define Com−1(y) =
x if ∃x, r such that Com(x, r) = y. Otherwise,
Com−1(y) = ⊥. x is unique by the binding property.

References

[Bar01] Boaz Barak. “How to go beyond the
black-box simulation barrier”. In: Pro-
ceedings 42nd IEEE Symposium on Foun-
dations of Computer Science. IEEE.
2001, pp. 106–115.

[BG02] Boaz Barak and Oded Goldreich. “Uni-
versal arguments and their applications”.
In: Proceedings 17th IEEE Annual Con-
ference on Computational Complexity.
IEEE. 2002, pp. 194–203.

[BL04] Boaz Barak and Yehuda Lindell. “Strict
polynomial-time in simulation and ex-
traction”. In: SIAM Journal on Comput-
ing 33.4 (2004), pp. 783–818.

[Can+01] Ran Canetti et al. “Black-box concurrent
zero-knowledge requires\tilde {Ω}(log n)
rounds”. In: Proceedings of the thirty-
third annual ACM symposium on Theory
of computing. 2001, pp. 570–579.

[FLS99] Uriel Feige, Dror Lapidot, and Adi
Shamir. “Multiple noninteractive zero
knowledge proofs under general assump-
tions”. In: SIAM Journal on computing
29.1 (1999), pp. 1–28.

[Kil92] Joe Kilian. “A note on efficient zero-
knowledge proofs and arguments”. In:
Proceedings of the twenty-fourth annual
ACM symposium on Theory of comput-
ing. 1992, pp. 723–732.

[Mic94] Silvio Micali. “CS proofs”. In: Proceed-
ings 35th Annual Symposium on Founda-
tions of Computer Science. IEEE. 1994,
pp. 436–453.

5

	General Idea
	FLS-type Protocols
	GenProt with Uniform Verifiers
	GenProt with Non-Uniform Verifiers
	GenProt with Bounded Concurrent Zero-knowledge
	Summary

