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1. The syntax and the semantics of PDL

1.1 The syntax of PDL

In the language of PDL, there are two components, say programs P and propositions F . They are defined

as follows:

F := atomic propositions|qF |F ∧ F | 〈P 〉F

P := atomic programs| (P ;P ) | (P ∪ P ) |P ∗| (F )?

Note that test (F )? takes a proposition into a program. 〈 〉 takes a program and a proposition into a

proposition.

1.2 The semantics of PDL

Proposition can be seen as a set of the states where it holds true. Program can be seen as a binary relation

(u, v) over states where a successful execution of the program can lead u to v. To be more specific, M, s |= F

says that F is true at the state s. M, s1, s2 |= P says that there is successful execution of the program P

that lead s1 to s2.

The notation ’;’ is a sequence of two programs, ’∪’ is choice of two programs ,’∗’ is an iteration and ’?’

just check whether the proposition holds true ta that state. The notation ’q’ and ’∧’ are used in the usual

way. 〈P 〉F just says that there is a successful execution of the program P that ends in a position where F

holds true. [π]ϕ is shorthand for q 〈π〉qϕ.

Its formal form is listed in [1] as follows,

M, s |= p iff s ∈ V (p)

M, s |=qψ iff notM, s |= ψ

M, s |= ψ1 ∧ ψ2 iff M, s |= ψ1 and M, s |= ψ2

M, s |= 〈π〉ψ iff ∃s such that M, s, s′ |= π and M, s′ |= ψ
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M, s1, s2 |= a iff (s1, s2) ∈ Ra

M, s1, s2 |= π1;π2 iff ∃s3 such that M, s1, s3 |= π1 and M, s3, s2 |= π2

M, s1, s2 |= π1 ∪ π2 iff M, s1, s2 |= π1 or M, s1, s2 |= π2

M, s1, s2 |= π∗ iff some finite sequence of π-transitions in M connects the state s1 with the state s2

M, s1, s2 |= (φ)? iff s1 = s2 and M, s1 |= φ

In [2], the author gives axioms and rules of inference for PDL and proves the completeness of it.

2 Connections between PDL and PAL

In PDL, a program can be considered as binary relations between states. After a public announcement, the

accessibility relation of an agent will change. So it is natural to consider the connections between PDL and

PAL.

2.1 Reduce PAL to PDL

In [3], the author shows how to reduce general dynamic epistemic logic to PDL via program transformation.

As a special case, we can reduce public announcement logic to PDL by program transformation.

Using the notation in [3], the action model of public announcement [!ϕ] is Pϕ = ([s0] ,pre, T ) where

pre(s0) = ϕ, T (a) = (s0, s0) for all agents a. Basically, it just says that only when the precondition

pre(s0) = ϕ is satisfied, the action s0 (public announcement [!ϕ]) can be taken. The map T from the set of

agents to binary relations of the action states tells that all the agents a can not distinguish the action s0

from itself. For agent a, let a be a program. If we execute it, we can go from a world w to a world w′ where

(w,w′) ∈ {(w,w′)|agent a can not distinguish w from w′}.

Then Kaψ can be converted into [a]ψ. [!ϕ] is equivalent to execute the pointed action model (Pϕ, s0).

Therefore, we can convert [!ϕ] p, [!ϕ]qψ, [!ϕ] (ψ1 ∧ ψ2) and [!ϕ]Kaψ into [Pϕ, s0]p, [Pϕ, s0]qψ, [Pϕ, s0] (ψ1 ∧ ψ2)

and [Pϕ, s0][a]ψ respectively.

The program transformation for Pϕ has only one program transformer T
Pϕ

00 . T
Pϕ

00 (π) is a program. If we

execute it, we can go from a world w to a world w′ if and only if there is a π path from (w, s0) to (w′, s0) in

the model after we take the action (Pϕ, s0) (the public announement that ϕ). Using the reduction axioms

shown in [3], we can get that for proposition letters p and agent a,

[Pϕ, s0]p↔ (pre(s0) → p) ↔ (ϕ→ p)

[Pϕ, s0]qψ ↔ (pre(s0) →q[Pϕ, s0]ψ) ↔ (ϕ→q[Pϕ, s0]ψ)

[Pϕ, s0] (ψ1 ∧ ψ2) ↔ ([Pϕ, s0]ψ1 ∧ [Pϕ, s0]ψ2)

[Pϕ, s0][a]ψ ↔
[
T

Pϕ

00 (a)
]

[Pϕ, s0]ψ ↔ [pre(s0)?; a] [Pϕ, s0]ψ ↔ [ϕ?; a] [Pϕ, s0]ψ

In this way, with the help of program transformation, we can reduce PAL to PDL.
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2.2 Derive recursion axioms for PAL via PDL

It is easy to derive some recursion axioms for PAL.

From section 2.1, we can convert [!ϕ] p, [!ϕ]qψ, [!ϕ] (ψ1 ∧ ψ2) , [!ϕ]Kaψ into [Pϕ, s0]p, [Pϕ, s0]qψ, [Pϕ, s0] (ψ1 ∧ ψ2)

and [Pϕ, s0][a]ψ respectively.

Then from [Pϕ, s0]p↔ (ϕ→ p), we can get [!ϕ]p↔ (ϕ→ p).

From [Pϕ, s0]qψ ↔ (ϕ→q[Pϕ, s0]ψ), we can get [!ϕ]qψ ↔ (ϕ→q[!ϕ]ψ).

From [Pϕ, s0] (ψ1 ∧ ψ2) ↔ ([Pϕ, s0]ψ1 ∧ [Pϕ, s0]ψ2), we can get [!ϕ] (ψ1 ∧ ψ2) ↔ ([!ϕ]ψ1 ∧ [!ϕ]ψ2).

From [Pϕ, s0][a]ψ ↔ [ϕ?; a] [Pϕ, s0]ψ, we can get [!ϕ]Kaψ ↔ [ϕ?; a] [!ϕ]ψ ↔ [ϕ?][a] [!ϕ]ψ ↔ (ϕ→ [a][!ϕ]ψ) ↔
(ϕ→ Ka[!ϕ]ψ). Note that it is simpler than the axiom shown in the slides.

Note that the fifth axiom [!ϕ][!ψ]α↔ [! (ϕ ∧ [!ϕ]ψ)]α shown in the slides is unneccessary, because we can

use the above axioms to reduce [!ψ]α first.

2.3 About Kleene star

The Kleene star is an important component of PDL. In some cases, we need Kleene star to convert some

extensions of PAL into PDL.

For example, we need Kleene star to convert common knowledge among group into PDL. [!ϕ]CGψ can

be converted into [Pϕ, s0][
(⋃

g∈G g
)∗

]ψ. As shown in [3], it is equivalent to [
(
ϕ?;
⋃

g∈G g
)∗

][Pϕ, s0]ψ. In

fact, in [4], the authors point out that every sentence of the extension of PAL with the common knowledge

is effectively equivalent to a sentence of PDL.

We also need Kleene star to express [!ϕ∗]ψ (after repeated public announcement that ϕ, ψ holds true).

But note that in [4], the authors show that the iterated modal relativation is undecidable while PDL is

decidable. So [!ϕ∗]ψ can not be converted into PDL directly. Maybe some extensions of PDL is needed.

3 Connections between PDL and games

3.1 The syntax and the semantics of dynamic game logic

In the language of DGL, there are two components: formulas F and game expressions G. They are defined

as follows:

F := atomic formulas|qF |F ∨ F |{G}F

G := atomic game expressions|G ∪G|Gd|G;G|?F

It is similar to the language of the propositional dynamic logic. Formulas are similar to propositions and

game expressions are similar to programs. ’;’ is for sequential composition, ’∪’ is for a choice of the first

player E and ’?’ taking formulas into game expressions is for a test game. Dual ’d’ is for role switch. ’q’, ’∨’

are used in the usual way. {G}F just says that the first player E has a strategy to force F in the game G.

Note that if the two players play the game G starting from a point, the player E can only force a set of

outcomes in general. (By taking different strategies, he may be able to force multiple sets of outcomes.) So

the game G can be considered as a binary relation of point and sets of outcomes that E can force starting
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from the point, which is different from the program that can be considered as a binary relation between

states. This is the key of P ; (P ′ ∪ P ′′) = (P ;P ′) ∪ (P ;P ′′) in PDL but G; (G′ ∪G′′) 6= (G;G′) ∪ (G;G′′) in

DGL.

3.2 Define strategies with PDL

It is easy to define any specific strategies σ in a finite game with PDL. In a finite game, σ is a finite set of

the form {(s, t)|in the strategy σ, if the player is at the point s, he may go to t}. Denote the set as S. For

any point s, let fs denote the proposition such that it is true only at the point s. For any pair (s, t) such

that we can reach t from s in a move, let A(s,t) denote the corresponding move. As shown in [5], we can

define σ as
⋃

(s,t)∈S
(
fs?;A(s,t); ft?

)
. But in the infinite games, the strategies may be infinite set of pairs, so

we can not define it in the way above.

In a finite game, we can also define power in PDL. For example, in a finite two-person game of perfect infor-

mation, the first player E can force power ψ can be defined in PDL as 〈moveE〉 [moveA] 〈moveE〉 [moveA] . . . ψ.

That either E can force ψ or A can force qψ can be expressed in 〈moveE〉 [moveA] 〈moveE〉 [moveA] . . . ψ ∨
[moveE ] 〈moveA〉 [moveE ] 〈moveA〉 . . .qψ.

In real games, usually the players not only care about whether they ’win’ or ’lose’, but only care about

what they get after the game. That is, the players have preferences over all the possible outcomes. Under

the common knowledge that both players are rational, the two players will play the game according to

Backward Induction strategies. As shown in [5], Backward Induction strategy is also definable in PDL, say

it is the relation σ satisfying (turni ∧ 〈σ∗〉 (end ∧ p)) → [movei] 〈σ∗〉 (end ∧ 〈prefi〉 p) for every player i and

every propositions p where prefi can be considered as a program which can let us go from the current state

to any state such that the player i perfers to the current state.

As discussed in the lecture, we can add public announcement to the game in order to cooperate with the

other player. Both PAL and DGL are related to PDL. Maybe it is possible to describe strategies in games

with public announcement with PDL.

4 Conclusions

By the discussion above, propositional dynamic logic can be used in many scenarios. The test and the

iteration makes it extremely expressive.

Acknowledgements: Thanks the professor Johan van Benthem and the teaching assistant Li Lei for their

tons of useful advice on the mini paper.
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