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Sometimes we want to delegate and then revoke…

I'll be heading to Milan soon. Could 
you please take care of my mailbox 
while I'm away?
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Sometimes we want to delegate and then revoke…

But Bob may duplicate my key 
and return only one of the keys.

After a week…

Bob may have access to Alice’s mailbox 
after returning one of the keys.
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Leverage the no-cloning principle of quantum mechanics to delegate and revoke 
cryptographic capabilities enabled by secret keys.
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• It’s weaker than copy-protection 
[Aar09], yet meaningful, and can be 
based on weaker assumptions

• Unlike cryptography with certified 
deletion [BI20, HMNY21, BK22], an 
honest user is supposed to return the 
original quantum key for revocation
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What is revocable cryptography?

Correctness: 
(1) with       , Bob has the cryptographic capabilities
(2) honest Bob can pass the check 𝖱𝖾𝗏𝗈𝗄𝖾

Security: 
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The ability to decrypt

The ability to decrypt

The ability to evaluate
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cryptographic capabilities enabled by secret keys.



Revocable PKE: Syntax
Leverage quantum mechanics to delegate and revoke the ability to decrypt.
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Revocable PKE: Syntax
Leverage quantum mechanics to delegate and revoke the ability to decrypt.

Correctness: 
(1) with       , Bob can decrypt
(2) honest Bob can pass the check 𝖱𝖾𝗏𝗈𝗄𝖾

Security: 
After sending a state that passes the check 

, polynomial-time Bob can no longer 
distinguish encryption of 0 and encryption of 1
𝖱𝖾𝗏𝗈𝗄𝖾
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PKE scheme with classical revocation [CGJL23]
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PKE scheme with classical revocation [CGJL23]

Prior work

[APV23]: Can we prove that the dual-Regev PKE scheme is revocable from LWE?

Why do we care about the dual-Regev PKE scheme? 
(1) [APV23] gave many reductions from revocable dual-Regev PKE scheme!
(2) It’s a textbook PKE, and may inspire other protocols with similar structures.
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The first revocable PRF from concrete assumptions



The public key is ( , ) for a random matrix  and some A y A ∈ ℤn×m
q y ∈ ℤn
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To encrypt: 𝖤𝗇𝖼(𝗉𝗄, b) = (sTA + eT, sTy + b [ q
2 ] + e′ )

The classical decryption key:
A short preimage  such that

 
x

Ax = y

To decrypt: Notice that  sTy + b [ q
2 ] + e′ − (sTA + eT) x ≈ b [ q

2 ]
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Recall: Dual-Regev PKE

To encrypt: 𝖤𝗇𝖼(𝗉𝗄, b) = (sTA + eT, sTy + b [ q
2 ] + e′ )

The classical decryption key:
A short preimage  such that

 
x

Ax = y

To decrypt: Notice that  sTy + b [ q
2 ] + e′ − (sTA + eT) x ≈ b [ q

2 ]

The quantum decryption key:
A superposition of short preimages  such thatx

|φy⟩ = ∑
x∈ℤm

q ,Ax=y

ρσ(x) |x⟩

To revoke: use  (a short basis of ) to check whether the returned state is  𝗆𝗌𝗄 A |φy⟩
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 vs (sTA + eT, sTy + e′ ) (u, r)Extract a short preimage  from  and a short 
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Then use  to break SIS!

x0 𝖱
x1 𝖠𝗎𝗑
x0 − x1
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x0

Ax0 = y
Extract a short preimage 

 

x1

Ax1 = y

 vs (u, uTx1 + e′ ) (u, r)

Challenge: get  and  simultaneously?x0 x1

 Extraction succeeds w.p. 1/𝗉𝗈𝗅𝗒(q) Revocation succeeds w.p. 1/𝗉𝗈𝗅𝗒(n)
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advantages of a quantum state 
with only one copy of the state
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Thank you!
eprint 2024/738


