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After a week...

Bob may have access to Alice’s mailbox
after returning one of the keys.
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* It’'s weaker than copy-protection
[Aar09], yet meaningful, and can be
based on weaker assumptions

* Unlike cryptography with certified

deletion [BI20, HMNY21, BK22], an
No-Cloning Theorem: |?> > |?>|?>

honest user is supposed to return the
original quantum key for revocation
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What Is revocable cryptography?

Leverage the no-cloning principle of quantum mechanics to delegate and revoke
cryptographic capabilities enabled by secret keys.

| The ability to decrypt |
Correctness: ) R AN

(1) with ﬁ?) , Bob has the cryptographic capabillities Revocable public-key encryption

(2) honest Bob can pass the check Revoke The ability to decrpt

Revocable FHE =e=—

Revocable PRF

e ——— P ——

Security: | The ability to evaluate

After sending a state that passes the check
Revoke, Bob no longer has the cryptographic

capabillities
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Enc(pk, b) — ct,

It suffices to consider encryption for a bit b € {0,1}.
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Revocable PKE: Syntax

Leverage quantum mechanics to delegate and revoke the| o
| The returned quantum key is valid!

Y  (:pk
Correctness: _
> ’ PR

(1) with ‘?) Bob can decrypt U

KeyGen(lﬁ) — (pk, msk, pg)
Revoke(pk, msk, p) — Valid/Invalid

(2) honest Bob can pass the check Revoke

Security:

After sending a state that passes the check
Revoke, polynomial-time Bob can no longer Enc(pk, b) — ct,

distinguish encryption of O and encryption of 1

It suffices to consider encryption for a bit b € {0,1}.
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* Assuming simultaneous dual-Regev conjecture, the dual-Regev PKE scheme is
revocable [APV23]

* Assuming post-quantum sub-exponential hardness of LWE, there exists a revocable
PKE scheme with classical revocation [CGJL23]
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Prior work

* Assuming post-quantum PKE, there exists a revocable PKE scheme [AKN+23]

®* Assuming simultaneous dual-Regev conjecture, the dual-Regev PKE scheme is
revocable [APV23]

* Assuming post-quantum sub-exponential hardness of LWE, there exists a revocable
PKE scheme with classical revocation [CGJL23]

[APV23]: Can we prove that the dual-Regev PKE scheme is revocable from LWE?
Why do we care about the dual-Regev PKE scheme?

(1) [APV23] gave many reductions from revocable dual-Regev PKE scheme!
(2) It's a textbook PKE, and may inspire other protocols with similar structures.



Our work

Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,

* The dual-Regev PKE scheme (the construction in [APV23]) is revocable

+ the results in [APV23]

Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,

* The dual-Regev PKE scheme has classical revocation
* There exists revocable FHE with quantum/classical revocation
* There exists revocable PRF with guantum/classical revocation



Our work

Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,

* The dual-Regev PKE scheme (the construction in [APV23]) is revocable

+ the results in [APV23]

Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,

e ———————— — e e __

®* The dual- Regev PKE SCh The first revocable PRF from concrete assumptions

* There exists revocable F T guantum/crassicar revocaton
* There exists revocable PRF with guantum/classical revocation
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Recall: Dual-Regev PKE

The public key is (A, y) for a random matrix A & ZZX’" and somey € Z

ki

To encrypt: Enc(pk, b) = (s'A +el,s'y + b >

+ ¢)

The quantum decryption key:

The classical decryption key:

A short preimage X such that A superposition of short preimages X such that

Ax =y [ @y) = Z Po(X) | X)

xeZ, ,AX=y

q

To decrypt: Notice that STy + b

+ e’ — (STA-I-ET)XR’Jb [%]

To revoke: use msk (a short basis of A) to check whether the returned state is | @y )
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The route in [APV23]

The public key is (A, y) for a random matrix A & 72””” and some y € 7’;

The decryption key is | @y) = Z p.(X) | x)

XEZ,,AX=Yy Challenge: get X, and X, simultaneously?
| py) ’
| R & —— ~—
Revocation succeeds w.p. 1/poly(r) PAul  Extraction succeeds w.p. 1/poly(q)
f e ————— e S / | B -
Revoke passes: pg & | @y @y | (wu/fFe)vsu,r

Computational Measurement => a short preimage X, Extract a short preimage X;
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Our approach: almost perfect extraction

The public key is (A, y) for a random matrix A & 72””” and some y € 7’;

The decryption key is | @y) = Z p.(X) | x)
XeZ; ,AX=y
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| Guess entry by entry |

|
|

pAux

— \\ ° Testifitis a good distinguisher for (s"A + e”,s”y + ¢’) vs (u, r) via AT

* Ifyes, testiton (A + e’ +ci,s'y + e’ + c - g) vs (u, r) for each guess g
¢ If the i entry of X is g, it's a good distinguisher with certainty

* Otherwise, it’s a bad distinguisher with certainty

h

i is the unit vector where the i™ entry is 1.
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pAux

T

Otherwise,

ci, s’y
~ (u,r)

¢ If the i entry of X is g, it's a good distinguisher with certainty

* Otherwise, it’s a bad distinguisher with certainty

h

i is the unit vector where the i™ entry is 1.
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The decryption key is | @y) = Z p.(X) | x)
XxeZ, AX=y If the i entry of X, is g,
(s!A+el +ci,s'ly+e' +c-9)
~ (s'A +el,s'y +¢)
[ gy) O'x
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Our approach: almost perfect extraction

The public key is (A, y) for a random matrix A & 72””” and some y € 7’;

The decryption key is \goy) = Z p.(X) | x)
XEZ! AX=y We can get Xy and X; simultaneously!
| The test and the revocation pass ‘¢y> @ @
simultaneously w.p. 1/poly(n) a " .

PR %

| * Testifitis a good distinguisher for (STA + eT, STy + ¢’) vs (u, r) via AT

pAux

| * Ifyes, testiton (s'A + el +ci, s’y + e’ + c- g) vs (u, r) for each guess g
¢ If the i entry of X, is g, it's a good distinguisher with certainty

* Otherwise, it’s a bad distinguisher with certainty
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Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,

* The dual-Regev PKE scheme (the construction in [APV23]) is revocable

+ the results in [APV23]

Assuming post-quantum polynomial hardness of LWE over sub-exponential modulus,
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* There exists revocable FHE with quantum/classical revocation
* There exists revocable PRF with guantum/classical revocation



Thank you!
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