
How to Prove
Post-Quantum Security for

Succinct Non-Interactive Reductions
Alessandro Chiesa, Zijing Di, Zihan Hu, Yuxi Zheng

To appear in Eurocrypt 2026

What are
succinct non-interactive reductions?

2

Succinct non-interactive arguments (SNARGs)

3

Succinct non-interactive arguments (SNARGs)

3

Succinct non-interactive arguments (SNARGs)

3

The graph is 3-colorable.G

Succinct non-interactive arguments (SNARGs)

3

The graph is 3-colorable.G

Prove that!

Succinct non-interactive arguments (SNARGs)

3

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Completeness: → convinces .(x, w) ∈ R P(x, w) V(x)

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Completeness: → convinces .(x, w) ∈ R P(x, w) V(x)

Soundness: → every efficient convinces with small probability .x ∉ L(R) P̃ V(x) ϵ

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Completeness: → convinces .(x, w) ∈ R P(x, w) V(x)

Soundness: → every efficient convinces with small probability .x ∉ L(R) P̃ V(x) ϵ

Succinctness: .|π | ≪ |w |

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

3

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Completeness: → convinces .(x, w) ∈ R P(x, w) V(x)

Soundness: → every efficient convinces with small probability .x ∉ L(R) P̃ V(x) ϵ

Succinctness: .|π | ≪ |w |

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Knowledge soundness: every efficient that convinces must “know” a witness s.t. (up to a small error).P̃ V(x) w (x, w) ∈ R κ

4

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)
Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

4

SNARGs have numerous real-world applications.

...

Succinct non-interactive arguments (SNARGs)
Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

4

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)
Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

4

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)
Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

SNARGs are powerful, but sometimes more than needed.

4

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)
Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

Recent work shows for certain applications, a more lightweight primitive called SNRDXs suffices.

SNARGs are powerful, but sometimes more than needed.

Succinct non-interactive reductions (SNRDXs)

5

Succinct non-interactive reductions (SNRDXs)

5

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Then is checked via other protocols G

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Then is checked via other protocols G

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Then is checked via other protocols G

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Then is checked via other protocols G

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Then is checked via other protocols G x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

Succinctness: .|π | ≪ |w |

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

Succinctness: .|π | ≪ |w |

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Knowledge soundness: every efficient that outputs a witness s.t. , must “know” s.t. (up to a small error).P̃ w′￼ (x′￼, w′￼) ∈ R′￼ w (x, w) ∈ R κ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

Succinctness: .|π | ≪ |w |

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Knowledge soundness: every efficient that outputs a witness s.t. , must “know” s.t. (up to a small error).P̃ w′￼ (x′￼, w′￼) ∈ R′￼ w (x, w) ∈ R κ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G

Why are SNRDXs useful?

Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

Succinctness: .|π | ≪ |w |

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Knowledge soundness: every efficient that outputs a witness s.t. , must “know” s.t. (up to a small error).P̃ w′￼ (x′￼, w′￼) ∈ R′￼ w (x, w) ∈ R κ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G

Why are SNRDXs useful? (+) generalization of SNARGs: SNARG for = SNRDX from to trivial relation .R R R′￼ = {(x′￼, w′￼) : x′￼ = 1}

Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

5

Completeness: → outputs and outputs such that .(x, w) ∈ R P(x, w) (π, w′￼) V(x, π) x′￼ (x′￼, w′￼) ∈ R′￼

Soundness: every efficient makes output s.t. (up to a small error). x ∉ L(R) → P̃ V(x) x′￼ x′￼ ∉ L(R′￼) ϵ

Succinctness: .|π | ≪ |w |

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Knowledge soundness: every efficient that outputs a witness s.t. , must “know” s.t. (up to a small error).P̃ w′￼ (x′￼, w′￼) ∈ R′￼ w (x, w) ∈ R κ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G

Why are SNRDXs useful? (+) generalization of SNARGs: SNARG for = SNRDX from to trivial relation .R R R′￼ = {(x′￼, w′￼) : x′￼ = 1}
(+) cheaper to construct than SNARGs for some relations .R′￼

Is ?x′￼∈ L(R′￼)

x′￼w′￼

6

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

x′￼

Hard relation

Easier relation

Is ?x′￼∈ L(R′￼)

Succinct non-interactive reductions (SNRDXs)

w′￼

6

SNRDXs have numerous real-world applications. 
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
incrementally verifiable computation, etc.

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

x′￼

Hard relation

Easier relation

Is ?x′￼∈ L(R′￼)

Succinct non-interactive reductions (SNRDXs)

w′￼

6

SNRDXs have numerous real-world applications. 
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
incrementally verifiable computation, etc.

...

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

x′￼

Hard relation

Easier relation

Is ?x′￼∈ L(R′￼)

Succinct non-interactive reductions (SNRDXs)

w′￼

7

Where do SNARGs/SNRDXs come from?

7

Where do SNARGs/SNRDXs come from?

A few places.

7

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

7

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

7

Efficient

Where do SNARGs/SNRDXs come from?

A few places.

✅

Our focus:

Hash-based SNARGs/SNRDXs

7

Efficient Public (transparent) setup

Where do SNARGs/SNRDXs come from?

A few places.

✅ ✅

Our focus:

Hash-based SNARGs/SNRDXs

7

Efficient Public (transparent) setup Plausibly post-quantum

Where do SNARGs/SNRDXs come from?

A few places.

✅ ✅ ✅

Our focus:

Hash-based SNARGs/SNRDXs

7

Efficient Public (transparent) setup Plausibly post-quantum

Where do SNARGs/SNRDXs come from?

A few places.

✅ ✅ ✅

today

Our focus:

Recall: SNARG BCS[IOP, MT]

8

Recall: SNARG BCS[IOP, MT]

8

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

Π1

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

Π1

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

The BCS protocol is widely-used in practice.

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

Security holds even against quantum attackers:

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Recall: SNARG BCS[IOP, MT]

8

⋮

Π1

Π2

P𝖨𝖮𝖯(x, w)

Ingredient #1: Interactive oracle proof (IOP)

V𝖨𝖮𝖯(x)

?x ∈ L(R)

b𝖨𝖮𝖯

P(x, w) V(x)

?x ∈ L(R)

0/1

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

The BCS protocol is widely-used in practice.

[CMS19]:
the BCS protocol is secure in the
quantum random oracle model

Security is analyzed in an ideal model: random oracle model.

Security holds even against quantum attackers:

🥳

Ingredient #2: Merkle commitment scheme (MT)
𝖼𝗆

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

[BMNW25]: SNRDX BCS[IOR, MT]

9

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R) 𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

P(x, w) V(x)

?x ∈ L(R)

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

P(x, w) V(x)

?x ∈ L(R)

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

?x′￼∈ L(R′￼)

?x′￼∈ L(R′￼) x′￼

x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

P(x, w) V(x)

?x ∈ L(R)

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

?x′￼∈ L(R′￼)

?x′￼∈ L(R′￼) x′￼

x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

P(x, w) V(x)

?x ∈ L(R)

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

?x′￼∈ L(R′￼)

?x′￼∈ L(R′￼) x′￼

x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

Secure in the ROM against classical attackers [BMNW25].

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

[BMNW25]: SNRDX BCS[IOR, MT]

9

P(x, w) V(x)

?x ∈ L(R)

π = ((𝖼𝗆1, …, 𝖼𝗆k), ans, 𝗉𝖺𝗍𝗁)

?x′￼∈ L(R′￼)

?x′￼∈ L(R′￼) x′￼

x′￼

⋮

Π1

Π2

P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

Secure in the ROM against classical attackers [BMNW25].

OUR QUESTION:
Are these hash-based SNRDXs

secure in the QROM?
🤔

𝖼𝗆
Ingredient #2: Merkle commitment scheme (MT)

f 𝖬𝖳

f 𝖬𝖳

𝖺𝗇𝗌
⋮ ⋮ ⋮

f 𝖬𝖳

Why post-quantum security matters
for hash-based SNRDXs?

10

Why post-quantum security matters
for hash-based SNRDXs?

10

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

Why post-quantum security matters
for hash-based SNRDXs?

10

are likely to be an important building block
for post-quantum redesigns of Ethereum.

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

Why not use [CMS19]?

11

Why not use [CMS19]?

11

We cannot. Also, we should not.

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic" proof approach

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic" proof approach

We want a quantum proof of BCS[IOR, MT]
that aligns with the classical one (we want the "right" one!).

Why not use [CMS19]?

11

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a weaker variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic" proof approach

We want a quantum proof of BCS[IOR, MT]
that aligns with the classical one (we want the "right" one!).

Back to the

drawing board!

Our results

12

13

13

Theorem 1:

13

Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

13

Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:
PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:
PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]
Grover’s alg:

Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]
Grover’s alg:

Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has extractability error

 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]
Grover’s alg:

Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]
Grover’s alg:

Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Putting it
together:

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Vector commitment (VC) :
an abstraction of MT

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Putting it
together:

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Vector commitment (VC) :
an abstraction of MT

 κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱) + O(t2/2σ)

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case

 κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)

Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Putting it
together:

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Vector commitment (VC) :
an abstraction of MT

 κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱) + O(t2/2σ)

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case

 κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)

Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Putting it
together:

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Asymptotically tight bound
✅

Vector commitment (VC) :
an abstraction of MT

 κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱) + O(t2/2σ)

13

PQSR KS IOR
κ⋆,𝗌𝗋

𝖨𝖮𝖱

PQ Extractable VC
ϵ⋆

𝖵𝖢

BCS[IOR, VC] is PQ
knowledge sound

 .κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ⋆,𝗌𝗋

𝖨𝖮𝖱 + ϵ⋆
𝖵𝖢)

Post-quantum case

 κ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)

Classical case

SR KS IOR
κ𝗌𝗋

𝖨𝖮𝖱

Extractable VC
ϵ𝗏𝖼

BCS[IOR, VC] is knowledge sound
 .κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(κ𝗌𝗋

𝖨𝖮𝖱 + ϵ𝖵𝖢)

[BMNW25b,BCS16]

Theorem 1:

Theorem 2:

Theorem 3:
MT has PQ extractability error

 ϵ⋆
𝖬𝖳 = O(t3/2σ)

MT has extractability error
 ϵ𝖬𝖳 = O(t2/2σ)

PQSR KS IOR
 κ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

RBR KS IOR

relaxed
RBR KS IOR

κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱

SR KS IOR
 κ𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱)

[BCFW25]

Putting it
together:

BHT alg:
The collision error

Grover’s alg:
Preimage finding

Asymptotically tight bound
✅

Vector commitment (VC) :
an abstraction of MT

Small constant in O notation
✅

 κ𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k) ⋅ κ𝗋𝗋𝖻𝗋
𝖨𝖮𝖱) + O(t2/2σ)

Technical Overview

14

15

Ideal model for hash functions

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

Quantum random oracle f ← ({0,1}* → {0,1}σ)

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

Quantum random oracle f ← ({0,1}* → {0,1}σ)

Alg A⋆

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

Quantum random oracle f ← ({0,1}* → {0,1}σ)

Alg A⋆ f

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

Quantum random oracle f ← ({0,1}* → {0,1}σ)

Alg A⋆ f

Superposition query ∑ |q⟩ |y⟩

15

Ideal model for hash functions

Random oracle f ← ({0,1}* → {0,1}σ)

Alg A f

Query q ∈ {0,1}*

f(q)

Quantum random oracle f ← ({0,1}* → {0,1}σ)

Alg A⋆ f

Superposition query ∑ |q⟩ |y⟩

∑ |q⟩ |y ⊕ f(q)⟩

How to remove interaction?

16

How to remove interaction?

16

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

How to remove interaction?

16

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

Interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

Interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

Interactive Non-interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

Interactive Non-interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

Interactive Non-interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

Interactive Non-interactive

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Π2

x, Π1, Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

Π2

x, Π1, Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

f2

Π2

x, Π1, Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

⋮

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

Interactive Non-interactive

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

⋮

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

Interactive Non-interactive

w′￼

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

⋮

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

(Π1, …, Πk)

Interactive Non-interactive

w′￼

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

⋮

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

(Π1, …, Πk)

Interactive Non-interactive

V𝖥𝖲

V𝖨𝖮𝖱(x)

w′￼ x′￼

Derive  
like P𝖥𝖲

Π1

Omitted: instances can also include oracles. x, x′￼

How to remove interaction?

16

FS

:= f1(x, Π1)

⋮

P𝖨𝖮𝖱(x, w)

Use random function to derive randomness

f1

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

P𝖥𝖲

x, Π1

:= f2(x, Π1, Π2)
f2

Π2

x, Π1, Π2

(Π1, …, Πk)

Interactive Non-interactive

V𝖥𝖲

V𝖨𝖮𝖱(x)

w′￼ x′￼

Derive  
like P𝖥𝖲

Too long …

🤔

Π1

Omitted: instances can also include oracles. x, x′￼

17

Review: the BCS protocol for IOR

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

[BCS16,BMNW25]

17

Review: the BCS protocol for IOR

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

[BCS16,BMNW25]

17

Review: the BCS protocol for IOR
Ingredient #2: Vector commitment scheme (VC)

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

[BCS16,BMNW25]

17

Review: the BCS protocol for IOR
Ingredient #2: Vector commitment scheme (VC)

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

[BCS16,BMNW25]

 an abstraction of MT

17

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

Interactive

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

FS

Interactive

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

FS

Interactive Non-interactive

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼
w′￼

f1 f2 fk⋯

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

FS

Interactive Non-interactive

P(x, w) V(x)
 ?x ∈ L(R)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

17

⋮

𝖼𝗆1 = 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

, 𝖺𝗇𝗌 𝗉𝖿

Review: the BCS protocol for IOR

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

 Now succinct!

🥳

 P

P𝖨𝖮𝖱

V

V𝖨𝖮𝖱

x′￼w′￼
w′￼

f1 f2 fk⋯

f𝖵𝖢

[BCS16,BMNW25]

 an abstraction of MT

FS

Interactive Non-interactive

P(x, w) V(x)
 ?x ∈ L(R)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :
?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

f𝖵𝖢

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :

Two potential attacks to BCS[IOR, VC]:

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

f𝖵𝖢

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :

Two potential attacks to BCS[IOR, VC]:

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

1. can query many times to
get that makes output .
P̃

V𝖨𝖮𝖱 x′￼ ∈ L(R′￼)
f1 f2 fk⋯

f𝖵𝖢

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :

Two potential attacks to BCS[IOR, VC]:

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

1. can query many times to
get that makes output .
P̃

V𝖨𝖮𝖱 x′￼ ∈ L(R′￼)
f1 f2 fk⋯

2. can attack VC (e.g. use inconsistent).P̃ 𝖺𝗇𝗌

f𝖵𝖢

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :

Two potential attacks to BCS[IOR, VC]:

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

1. can query many times to
get that makes output .
P̃

V𝖨𝖮𝖱 x′￼ ∈ L(R′￼)
f1 f2 fk⋯

2. can attack VC (e.g. use inconsistent).P̃ 𝖺𝗇𝗌

f𝖵𝖢

FS error of V𝖨𝖮𝖱

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

18

P(x, w) V(x)

x′￼

 π = ((𝖼𝗆1, …, 𝖼𝗆k), 𝖺𝗇𝗌, 𝗉𝖿)

 ?x′￼∈ L(R′￼)

BCS[IOR, VC]

𝖵𝖢 . 𝖮𝗉𝖾𝗇

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Provides a proof for .𝗉𝖿 𝖺𝗇𝗌 = Π[I]

Checks if is correct.
𝗉𝖿

𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

Ingredient #2: Vector commitment scheme (VC)

Outputs a commitment for .𝖼𝗆 Π

Π :

Two potential attacks to BCS[IOR, VC]:

?x′￼∈ L(R′￼) x′￼

⋮

Π1

Π2
P𝖨𝖮𝖱(x, w)

Ingredient #1: Interactive oracle reduction (IOR)

V𝖨𝖮𝖱(x)

?x ∈ L(R)

w′￼

w′￼

1. can query many times to
get that makes output .
P̃

V𝖨𝖮𝖱 x′￼ ∈ L(R′￼)
f1 f2 fk⋯

2. can attack VC (e.g. use inconsistent).P̃ 𝖺𝗇𝗌

f𝖵𝖢

FS error of V𝖨𝖮𝖱

VC error

[BCS16,BMNW25]

 ?x ∈ L(R)
f1 f2 fk⋯

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

Today’s focus: soundness

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

Today’s focus: soundness

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

Today’s focus: soundness

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

Today’s focus: soundness

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

BCS error = FS error + VC error for PQ case!

Today’s focus: soundness

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

BCS error = FS error + VC error for PQ case!

Today’s focus: soundness

PQSR is weak enough
s.t. it only captures the FS error

and is implied by a classical property

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

BCS error = FS error + VC error for PQ case!

Today’s focus: soundness

PQSR is strong enough
s.t. from PQSR to BCS, there is only VC error

PQSR is weak enough
s.t. it only captures the FS error

and is implied by a classical property

Part 1

19

The role of state-restoration

Thm 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1Part 2

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

BCS error = FS error + VC error for PQ case!

Today’s focus: soundness

PQSR is strong enough
s.t. from PQSR to BCS, there is only VC error

PQSR is weak enough
s.t. it only captures the FS error

and is implied by a classical property

So how to define PQSR game
to separate two errors nicely? 🤔

Part 1

Part 1:
PQSR soundness is

implied by RBR soundness

20

21

State-restoration captures the classical FS error

21

State-restoration captures the classical FS error

P̃𝗌𝗋

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋

⋮f1 f2 fk

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋

⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋 classical movest ⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋 classical movest

x, (Π1, …, Πk)

⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋 classical movest

x, (Π1, …, Πk)

⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋 classical movest

x, (Π1, …, Πk)

Soundness: 
-move cannot output  

s.t. it reduces a no instance  
to a yes instance , except with error

t P̃𝗌𝗋 x, (Π1, …, Πk)
x ∉ L(R)

x′￼∈ L(R′￼) ϵ𝗌𝗋
𝖨𝖮𝖱(t)

⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

21

State-restoration captures the classical FS error

x, (Π1, …, Πi)

P̃𝗌𝗋 classical movest

x, (Π1, …, Πk)

Soundness: 
-move cannot output  

s.t. it reduces a no instance  
to a yes instance , except with error

t P̃𝗌𝗋 x, (Π1, …, Πk)
x ∉ L(R)

x′￼∈ L(R′￼) ϵ𝗌𝗋
𝖨𝖮𝖱(t)

⋮f1 f2 fkfi(x, (Π1, . . . , Πi))

Classical adversary

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

the (classical) soundness error of ϵ𝗌𝗋
𝖨𝖮𝖱 = 𝖥𝖲[𝖨𝖮𝖱]

22

Our PQ state-restoration captures the PQ FS error

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary

Soundness: 
-move cannot output  

s.t. it reduces a no instance  
to a yes instance , except with error

t P̃⋆,𝗌𝗋 x, (Π1, …, Πk)
x ∉ L(R)

x′￼∈ L(R′￼) ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t)

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

the PQ soundness error of ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 = 𝖥𝖲[𝖨𝖮𝖱]

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

x, (Π1, …, Πk)

23

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

x, (Π1, …, Πk)

Our PQ state-restoration captures the PQ FS error

23

🤔 has quantum power.
What if it queries multiple oracles at once?

P̃⋆,𝗌𝗋

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

x, (Π1, …, Πk)

Our PQ state-restoration captures the PQ FS error

23

🤔 has quantum power.
What if it queries multiple oracles at once?

P̃⋆,𝗌𝗋
Our final definition captures this!

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

x, (Π1, …, Πk)

Our PQ state-restoration captures the PQ FS error

23

🤔 has quantum power.
What if it queries multiple oracles at once?

P̃⋆,𝗌𝗋
Our final definition captures this!

🤔 PQSR is a quantum property (too difficult).
Can we connect it with an easy classical property?

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

x, (Π1, …, Πk)

Our PQ state-restoration captures the PQ FS error

24

PQSR soundness is implied by RBR soundness

Thm 1

Thm 2
Part 1

Part 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

24

PQSR soundness is implied by RBR soundness

Thm 1

Thm 2
Part 1

Part 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

A classical property. Standard. Easier to deal with.

25

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

Almost impossible to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed x, Π1, ρ1, …, ρi−1, Πi

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1, Π2x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1, Π2x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

 for a -query ϵ𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜 finds such x, Π1, . . . , ρi] (t + k) 𝒜

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

 for a -query ϵ𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜 finds such x, Π1, . . . , ρi] (t + k) 𝒜

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

Search problem for
some sparse set!

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

 for a -query ϵ𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜 finds such x, Π1, . . . , ρi] (t + k) 𝒜

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

RBR soundness induces a search problem in the SR game

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

Search problem for
some sparse set!

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

 for a -query ϵ𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜 finds such x, Π1, . . . , ρi] (t + k) 𝒜

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

Definition of RBR soundness : 

Each partial transcript is labeled either  
 doomed 
 or not doomed

ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

25

doomed

not doomed

w.p. ϵ𝗋𝖻𝗋
𝖨𝖮𝖱

x, Π1, ρ1, …, ρi−1, Πi

x, Π1, ρ1, …, ρi−1, Πi, ρi

RBR soundness induces a search problem in the SR game

To win SR game, needs to find such that but outputs .P̃𝗌𝗋 x, (Π1, . . . , Πk) x ∉ L V𝖥𝖲 x′￼ ∈ L′￼

 is doomed, but is not doomed.x x, Π1, ρ1, . . . , Πk, ρk

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

Search problem for
some sparse set!

Almost impossible to make output V x′￼∈ L′￼

Promising to make output V x′￼∈ L′￼

: run and compute (at most classical queries);  

 then wins can find and that jumps to not doomed.

𝒜 P̃𝗌𝗋 ρ1, ⋯, ρk t + k

P̃𝗌𝗋 ⇒ 𝒜 x, Π1, ρ1, …, Πi ρi

 for a -query ϵ𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜 finds such x, Π1, . . . , ρi] (t + k) 𝒜 = O((t + k) ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱)

x, Π1 x, Π1, ρ1, Π2 …x, Π1, ρ1x x, Π1, ρ1, …, Πk, ρk

26

What happens in the quantum case?

26

What happens in the quantum case?
Quantumly, the same search problem,

but with quantum queries!find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

26

What happens in the quantum case?
Quantumly, the same search problem,

but with quantum queries!find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!find and x, Π1, ρ1, …, Πi ρi

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!find and x, Π1, ρ1, …, Πi ρi

-sparseϵ𝗋𝖻𝗋
𝖨𝖮𝖱

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

Grover’s optimality is also true for finding for sparse relation .(q, fi(q)) ∈ R R

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

Grover’s optimality is also true for finding for sparse relation .(q, fi(q)) ∈ R R

But wait, we have in the relation.ρ1, . . . , ρi−1

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

Grover’s optimality is also true for finding for sparse relation .(q, fi(q)) ∈ R R

Our solution: fix when analyzing for , then it’s searching for -sparse .f1, …, fi−1 fi (q, fi(q)) ∈ R′￼ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱 R′￼

But wait, we have in the relation.ρ1, . . . , ρi−1

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

Grover’s optimality is also true for finding for sparse relation .(q, fi(q)) ∈ R R

Our solution: fix when analyzing for , then it’s searching for -sparse .f1, …, fi−1 fi (q, fi(q)) ∈ R′￼ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱 R′￼

But wait, we have in the relation.ρ1, . . . , ρi−1

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

Proof uses instability lemma from [CMS19].

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆

26

What happens in the quantum case?

Search is faster in the quantum world: Grover’s algorithm for multiple oracles

Quantumly, the same search problem,
but with quantum queries!

There’s a limit to the speed up: Grover’s optimality

find and x, Π1, ρ1, …, Πi ρi
-sparseϵ𝗋𝖻𝗋

𝖨𝖮𝖱

Almost there…
But we are not searching in a set ρi S 🤔

 needs to find and  
s.t. in a relation

𝒜⋆ q = (x, Π1, . . . , Πi) ρi = fi(q)
((x, Π1, ρ1, . . . , Πi), ρi)

Grover’s optimality is also true for finding for sparse relation .(q, fi(q)) ∈ R R

Our solution: fix when analyzing for , then it’s searching for -sparse .f1, …, fi−1 fi (q, fi(q)) ∈ R′￼ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱 R′￼

But wait, we have in the relation.ρ1, . . . , ρi−1

We can find a preimage of a set for some w.p. with queries to .S fi Ω(T2 ⋅ sparsity of S) T f1, . . . , fk

Every -query can find a preimage of a set for some w.p. .T 𝒜⋆ S fi O(T2 ⋅ sparsity of S)

🥳

Proof uses instability lemma from [CMS19].

 for a -query quantum ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t) ≤ 𝖯𝗋[𝒜⋆ finds such x, Π1, . . . , ρi] (t + k) 𝒜⋆ = O((t + k)2 ϵ𝗋𝖻𝗋

𝖨𝖮𝖱)

Part 2: From PQSR IOR
to PQ NRDX

27

BCS PQ soundness = PQSR soundness + VC PQ error

Thm 1

Thm 2
Part 1

Part 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

 ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

28

What happens in the classical case?

29

30

30

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

🤔
f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

🤔 How to…
f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

🤔 How to…

1. Answer queries?f𝖵𝖢
f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

🤔 How to…

1. Answer queries?f𝖵𝖢

2. Answer queries?f𝖥𝖲

f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

30

A construction: simulates .P̃𝗌𝗋 P̃

Goal: we want to construct a SR prover such that
P̃𝗌𝗋

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

🤔 How to…

1. Answer queries?f𝖵𝖢

2. Answer queries?f𝖥𝖲

3. Derive the output of from the output of ?P̃𝗌𝗋 P̃

f𝖵𝖢 f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

P̃ V

Malicious BCS prover

Classical case

31

Step 1: how to answer queries?f𝖵𝖢

Classical case Construction of P̃𝗌𝗋

31

Malicious BCS prover

f𝖵𝖢P̃

Step 1: how to answer queries?f𝖵𝖢

Classical case Construction of P̃𝗌𝗋

31

Malicious BCS prover

f𝖵𝖢P̃

Step 1: how to answer queries?f𝖵𝖢

Classical case Construction of P̃𝗌𝗋

31

Malicious BCS prover

f𝖵𝖢P̃

 does not have oracle access to P̃𝗌𝗋 f𝖵𝖢

Step 1: how to answer queries?f𝖵𝖢

Classical case Construction of P̃𝗌𝗋

31

Malicious BCS prover

f𝖵𝖢P̃

Malicious SR prover P̃𝗌𝗋

D𝖵𝖢P̃

 does not have oracle access to P̃𝗌𝗋 f𝖵𝖢

Step 1: how to answer queries?f𝖵𝖢

Classical case Construction of P̃𝗌𝗋

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

A natural attempt

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

f𝖥𝖲(x, Π)

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

A natural attempt

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

But can query , with the same
underlying message .

P̃ 𝖼𝗆1 ≠ 𝖼𝗆′￼1
Π1

f𝖥𝖲(x, Π)

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢)

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

Instead…

But can query , with the same
underlying message .

P̃ 𝖼𝗆1 ≠ 𝖼𝗆′￼1
Π1

f𝖥𝖲(x, Π)

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

f𝖥𝖲(x, Π, 𝖼𝗆)
f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π, 𝖼𝗆)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢) , 𝖼𝗆

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

Instead…

But can query , with the same
underlying message .

P̃ 𝖼𝗆1 ≠ 𝖼𝗆′￼1
Π1

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

 Extractor needs database▶

f𝖥𝖲(x, Π, 𝖼𝗆)
f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

P̃
f𝖥𝖲(x, Π, 𝖼𝗆)

Π = (Πj)j∈[i] for some i ∈ [k]
∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, D𝖵𝖢) = Πj

x, Π := 𝖤𝗑𝗍(𝖼𝗆, D𝖵𝖢) , 𝖼𝗆

32

Classical case

Step 2: how to answer queries?f𝖥𝖲

Construction of P̃𝗌𝗋

P̃𝗌𝗋

P̃
x, 𝖼𝗆

f𝖥𝖲

𝖤𝗑𝗍

Instead…

But can query , with the same
underlying message .

P̃ 𝖼𝗆1 ≠ 𝖼𝗆′￼1
Π1

Omitted: actual PQSR definition includes salt

 needs to query on IOR stringsP̃𝗌𝗋 f𝖥𝖲

33

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

33

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

33

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k] V

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

33

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

33

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

33

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

 needs to output the chosen IOR stringsP̃𝗌𝗋

33

P̃𝗌𝗋

P̃
𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

 needs to output the chosen IOR stringsP̃𝗌𝗋

33

P̃𝗌𝗋

P̃
𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

𝖤𝗑𝗍
x, (𝖼𝗆i)i∈[k]

 needs to output the chosen IOR stringsP̃𝗌𝗋

33

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

P̃𝗌𝗋

P̃
𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

𝖤𝗑𝗍
x, (𝖼𝗆i)i∈[k]

 needs to output the chosen IOR stringsP̃𝗌𝗋

33

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

P̃𝗌𝗋

P̃
𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

BCS verifier V

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

V𝖨𝖮𝖱

FS verifier V𝖥𝖲

Πi

∀i ∈ [k]P̃
x,

(𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

Step 3: how to derive the output
Classical case Construction of P̃𝗌𝗋

𝖤𝗑𝗍
x, (𝖼𝗆i)i∈[k]

 needs to output the chosen IOR stringsP̃𝗌𝗋

Classical case

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

Malicious BCS prover

P̃

Malicious SR prover P̃𝗌𝗋

P̃

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

f𝖵𝖢

Malicious BCS prover

P̃

D𝖵𝖢

Malicious SR prover P̃𝗌𝗋

P̃

How to answer queries?f𝖵𝖢

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

f𝖵𝖢

Malicious BCS prover

P̃

D𝖵𝖢

Malicious SR prover P̃𝗌𝗋

P̃

How to answer queries?f𝖥𝖲

f𝖥𝖲
f𝖥𝖲

𝖤𝗑𝗍x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆 x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

f𝖵𝖢

Malicious BCS prover

P̃

D𝖵𝖢

Malicious SR prover P̃𝗌𝗋

P̃

How to derive the output of from the output of ?P̃𝗌𝗋 P̃

f𝖥𝖲
f𝖥𝖲

𝖤𝗑𝗍x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆 x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]
V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
𝖤𝗑𝗍x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k] x, (𝖼𝗆i)i∈[k] x, (𝖼𝗆i)i∈[k], (Πi)i∈[k]

34

The construction in summary: simulates .P̃𝗌𝗋 P̃ Classical case

f𝖵𝖢

Malicious BCS prover

P̃

D𝖵𝖢

Malicious SR prover P̃𝗌𝗋

P̃

How to derive the output of from the output of ?P̃𝗌𝗋 P̃

 Extractor needs database▶

f𝖥𝖲
f𝖥𝖲

𝖤𝗑𝗍x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆 x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]
V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
𝖤𝗑𝗍x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k] x, (𝖼𝗆i)i∈[k] x, (𝖼𝗆i)i∈[k], (Πi)i∈[k]

34

The construction in summary: simulates .P̃𝗌𝗋 P̃

Goal: we want to show Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V] − ϵ𝖵𝖢

Classical case

f𝖵𝖢

Malicious BCS prover

P̃

D𝖵𝖢

Malicious SR prover P̃𝗌𝗋

P̃

 Extractor needs database▶

f𝖥𝖲
f𝖥𝖲

𝖤𝗑𝗍x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆 x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]
V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
𝖤𝗑𝗍x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k] x, (𝖼𝗆i)i∈[k] x, (𝖼𝗆i)i∈[k], (Πi)i∈[k]

34

35

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

Difference 1

35

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

Difference 1

35

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

Difference 1

35

vs.

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲
𝖤𝗑𝗍

x, 𝖼𝗆

Difference 1 f𝖥𝖲 ∘ 𝖤𝗑𝗍

35

vs.

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲
𝖤𝗑𝗍

x, 𝖼𝗆

Difference 1 f𝖥𝖲 ∘ 𝖤𝗑𝗍

35

vs.

VC Property 1: Online consistency

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲
𝖤𝗑𝗍

x, 𝖼𝗆

Difference 1 f𝖥𝖲 ∘ 𝖤𝗑𝗍

35

vs.

VC Property 1: Online consistency

≈ϵ𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

Classical case

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲 ∘ 𝖤𝗑𝗍

Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, Π, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲
𝖤𝗑𝗍

x, 𝖼𝗆

36

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

36

Difference 2

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

36

Difference 2

V𝖨𝖮𝖱𝖺𝗇𝗌i

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

36

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

36

VC Property 2: Offline extractability

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

36

VC Property 2: Offline extractability

≈
ϵ𝖵𝖢,𝗈𝖿𝖿𝗅𝗂𝗇𝖾

if = 1𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Classical case Goal: we want to show

Pr[P̃𝗌𝗋 wins SR game] ≥ Pr[P̃ fools V]−ϵ𝖵𝖢

What happens in the quantum case?

37

38

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

f𝖵𝖢

P̃⋆

f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V

Malicious BCS prover

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

f𝖵𝖢

P̃⋆

f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V

Malicious BCS prover

🤔 How to…

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

f𝖵𝖢

P̃⋆

f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V

Malicious BCS prover

🤔 How to…

1. Answer quantum queries?f𝖵𝖢

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

f𝖵𝖢

P̃⋆

f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V

Malicious BCS prover

🤔 How to…

1. Answer quantum queries?f𝖵𝖢

2. Answer quantum queries?f𝖥𝖲

38

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

Our construction: simulates .P̃⋆,𝗌𝗋 P̃⋆

f𝖵𝖢

P̃⋆

f𝖥𝖲

x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V

Malicious BCS prover

🤔 How to…

1. Answer quantum queries?f𝖵𝖢

2. Answer quantum queries?f𝖥𝖲

3. Derive the output of from the output of ?P̃⋆,𝗌𝗋 P̃⋆

39

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

39

The VC extractor needs some trapdoor information
about adversary’s queries.

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

39

Starting point: Use compressed oracle!

The VC extractor needs some trapdoor information
about adversary’s queries.

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

39

Starting point: Use compressed oracle!

It gives you “Quantum Database” ,
but additional care is required to simulate without much disturbance.

𝒟VC
P̃⋆

The VC extractor needs some trapdoor information
about adversary’s queries.

Quantum case Goal: we want to construct a PQSR prover such that
P̃⋆,𝗌𝗋

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V] − ϵ⋆
𝖵𝖢

40

Step 1: how to answer quantum queries?f𝖵𝖢

Quantum case Our construction of P̃⋆,𝗌𝗋

40

f𝖵𝖢P̃⋆

Malicious BCS prover

Step 1: how to answer quantum queries?f𝖵𝖢

Quantum case Our construction of P̃⋆,𝗌𝗋

40

Malicious SR prover P̃⋆,𝗌𝗋

𝒟𝖵𝖢P̃⋆f𝖵𝖢P̃⋆

Malicious BCS prover

Step 1: how to answer quantum queries?f𝖵𝖢

Quantum case Our construction of P̃⋆,𝗌𝗋

41

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

41

f𝖥𝖲P̃⋆

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

41

f𝖥𝖲P̃⋆

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

U𝖤𝗑𝗍

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

∑ |𝖼𝗆⟩

∑ |x, y⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍 ⊗ I

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

∑ |𝖼𝗆⟩

∑ |x, y⟩

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍 ⊗ I

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

∑ |𝖼𝗆⟩

∑ |x, y⟩

f𝖥𝖲

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍 ⊗ I

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

∑ |𝖼𝗆⟩

∑ |x, y⟩

U†
𝖤𝗑𝗍 ⊗ I

f𝖥𝖲

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

P̃⋆,𝗌𝗋

P̃⋆

41

𝖼𝗆 = (𝖼𝗆j)j∈[i] for some i ∈ [k]

f𝖥𝖲P̃⋆

∀j ∈ [i], 𝖤𝗑𝗍(𝖼𝗆j, 𝒟𝖵𝖢) = Πj

Quantum case

U𝖤𝗑𝗍 ⊗ I

U𝖤𝗑𝗍
|𝖼𝗆⟩

|0⟩

𝒟𝖵𝖢

| Π := 𝖤𝗑𝗍(𝖼𝗆, 𝒟𝖵𝖢)⟩

𝒟𝖵𝖢
|𝖼𝗆⟩

∑ |𝖼𝗆⟩

∑ |x, y⟩

∑ |x, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |𝖼𝗆⟩

U†
𝖤𝗑𝗍 ⊗ I

f𝖥𝖲

Step 2: how to answer quantum queries?f𝖥𝖲

Our construction of P̃⋆,𝗌𝗋

 Extractor needs database▶

42

Quantum case

Step 3: how to derive the output
Our construction of P̃⋆,𝗌𝗋

42

Quantum case

P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

Step 3: how to derive the output
Our construction of P̃⋆,𝗌𝗋

42

Quantum case

P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

Step 3: how to derive the output
Our construction of P̃⋆,𝗌𝗋

42

Quantum case

P̃⋆,𝗌𝗋

P̃⋆P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

Step 3: how to derive the output
Our construction of P̃⋆,𝗌𝗋

42

Quantum case

P̃⋆,𝗌𝗋

P̃⋆P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

Step 3: how to derive the output

x, (𝖼𝗆i)i∈[k]

Our construction of P̃⋆,𝗌𝗋

42

Quantum case

P̃⋆,𝗌𝗋

P̃⋆P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

Step 3: how to derive the output

x, (𝖼𝗆i)i∈[k]

Our construction of P̃⋆,𝗌𝗋

U𝖤𝗑𝗍

42

Quantum case

P̃⋆,𝗌𝗋

P̃⋆

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

Step 3: how to derive the output

x, (𝖼𝗆i)i∈[k]

Our construction of P̃⋆,𝗌𝗋

U𝖤𝗑𝗍

42

Quantum case

P̃⋆,𝗌𝗋

P̃⋆

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

P̃⋆ x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

BCS verifier V

𝖺𝗇𝗌i

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

with randomnesses
 f𝖥𝖲(x, (𝖼𝗆j)j∈[i])

∀i ∈ [k]
V𝖨𝖮𝖱

FS verifier V𝖥𝖲

V𝖨𝖮𝖱Πi

∀i ∈ [k]

Step 3: how to derive the output

x, (𝖼𝗆i)i∈[k]

Our construction of P̃⋆,𝗌𝗋

U𝖤𝗑𝗍

43

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆
Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

𝒟𝖵𝖢f𝖵𝖢

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆

How to answer quantum queries?f𝖵𝖢

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

𝒟𝖵𝖢f𝖵𝖢

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆f𝖥𝖲

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

f𝖥𝖲
U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

∑
x, 𝖼𝗆, Π,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

How to answer quantum queries?f𝖥𝖲

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

𝒟𝖵𝖢f𝖵𝖢

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆f𝖥𝖲

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

f𝖥𝖲
U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

∑
x, 𝖼𝗆, Π,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

How to derive the output?

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]

x, (𝖼𝗆i)i∈[k]
U𝖤𝗑𝗍

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

 Extractor needs database▶

𝒟𝖵𝖢f𝖵𝖢

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆f𝖥𝖲

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

f𝖥𝖲
U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

∑
x, 𝖼𝗆, Π,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

How to derive the output?

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]

x, (𝖼𝗆i)i∈[k]
U𝖤𝗑𝗍

Quantum case

43

Our construction in summary: simulates .P̃⋆,𝗌𝗋 P̃⋆

 Extractor needs database▶

𝒟𝖵𝖢f𝖵𝖢

P̃⋆

P̃⋆,𝗌𝗋

P̃⋆

Goal: we want to show Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆
𝖵𝖢

f𝖥𝖲

∑ |x, 𝖼𝗆, y⟩

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

f𝖥𝖲
U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

∑
x, 𝖼𝗆, Π,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

x, (𝖼𝗆i)i∈[k],
(Πi)i∈[k]

V𝖨𝖮𝖱

V𝖥𝖲

Πi

∀i ∈ [k]
x, (𝖼𝗆i, 𝖺𝗇𝗌𝗂, 𝗉𝖿𝗂)i∈[k]

V𝖨𝖮𝖱

𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

V

𝖺𝗇𝗌i

∀i ∈ [k]

x, (𝖼𝗆i)i∈[k]
U𝖤𝗑𝗍

Quantum case

44

Quantum case Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1

44

Quantum case Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1

44

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1

44

vs.

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲

U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑ x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1 f𝖥𝖲 ∘ U𝖤𝗑𝗍

44

vs.

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲

U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑ x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1 f𝖥𝖲 ∘ U𝖤𝗑𝗍

44

Our PQ VC Property 1: Online consistency

vs.

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲

U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑ x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1 f𝖥𝖲 ∘ U𝖤𝗑𝗍

44

Our PQ VC Property 1: Online consistency

vs.

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲

U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑ x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

Difference 1 f𝖥𝖲 ∘ U𝖤𝗑𝗍

44

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

vs.

Quantum case

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲

U𝖤𝗑𝗍

U†
𝖤𝗑𝗍

∑ x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩ ∑ |x, Π, 𝖼𝗆, y⟩

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

45

Quantum case Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

45

Quantum case

Difference 2

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

45

Quantum case

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

45

Our PQ VC Property 2: Offline extractability

Quantum case

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

45

Our PQ VC Property 2: Offline extractability

≈
ϵ⋆

𝖵𝖢,𝗈𝖿𝖿𝗅𝗂𝗇𝖾

if = 1𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

Quantum case

Difference 2

vs. V𝖨𝖮𝖱ΠiV𝖨𝖮𝖱𝖺𝗇𝗌i

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Goal: we want to show

Pr[P̃⋆,𝗌𝗋 wins PQSR game] ≥ Pr[P̃⋆ fools V]−ϵ⋆

𝖵𝖢

46

🤔 Is this the right VC PQ extractability definition?

46

🤔 Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition✅

46

🤔 Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

46

🤔 Is this the right VC PQ extractability definition?

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

46

🤔 Is this the right VC PQ extractability definition?

*For instances that include oracles: require extra VC properties

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

46

🤔 Is this the right VC PQ extractability definition?

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

46

🤔 Is this the right VC PQ extractability definition?

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

Does MT satisfy this??

46

🤔 Is this the right VC PQ extractability definition?

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

Does MT satisfy this?? Next part Takeaways

47

MT has PQ extractability error O(t3/2σ)

Thm 2
Part 1

Part 2

RBR sound IOR
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR
 ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound
 .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

Thm 1

48

Recall our PQ VC properties

48

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

48

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

48

Recall our PQ VC properties

Our PQ VC Property 2: Offline extractability

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

48

Recall our PQ VC properties

Our PQ VC Property 2: Offline extractability

≈
ϵ⋆

𝖵𝖢,𝗈𝖿𝖿𝗅𝗂𝗇𝖾

if = 1𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

48

Recall our PQ VC properties

Proof uses the instability lemma from [CMS19].

Our PQ VC Property 2: Offline extractability

≈
ϵ⋆

𝖵𝖢,𝗈𝖿𝖿𝗅𝗂𝗇𝖾

if = 1𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

48

Recall our PQ VC properties

Proof uses the instability lemma from [CMS19].

Our PQ VC Property 2: Offline extractability

≈
ϵ⋆

𝖵𝖢,𝗈𝖿𝖿𝗅𝗂𝗇𝖾

if = 1𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄

𝖺𝗇𝗌i V𝖨𝖮𝖱 V𝖨𝖮𝖱Πi

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

Need new techniques

49

Online consistency

VC Property 1: Online consistency

≈ϵ𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾
f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲 ∘ 𝖤𝗑𝗍

49

Online consistency

VC Property 1: Online consistency

≈ϵ𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾
f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲 ∘ 𝖤𝗑𝗍

Extract later is the same as extract earlier

49

Online consistency

VC Property 1: Online consistency

≈ϵ𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾
f𝖥𝖲

x, 𝖼𝗆

f𝖥𝖲(x, 𝖼𝗆)

x, 𝖼𝗆

f𝖥𝖲(x, Π, 𝖼𝗆)

f𝖥𝖲 ∘ 𝖤𝗑𝗍

Extract later is the same as extract earlier
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

But now is in superposition𝖼𝗆 🤔
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

But now is in superposition𝖼𝗆

Our solution: Consider the extraction results for every in the database of 𝖼𝗆 f𝖥𝖲

🤔
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

But now is in superposition𝖼𝗆

Our solution: Consider the extraction results for every in the database of 𝖼𝗆 f𝖥𝖲
and show the results does not change after more quantum queriesf𝖵𝖢

🤔
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

But now is in superposition𝖼𝗆

Our solution: Consider the extraction results for every in the database of 𝖼𝗆 f𝖥𝖲
and show the results does not change after more quantum queriesf𝖵𝖢

We want some unitary that reads and do extraction coherently on those
to almost commute with a quantum query !

𝒟𝖥𝖲 𝖼𝗆
𝖵𝖢

🤔
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Extract later is the same as extract earlier

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

≈
ϵ⋆

𝖵𝖢,𝗈𝗇𝗅𝗂𝗇𝖾

f𝖥𝖲

∑ |x, 𝖼𝗆, y ⊕ f𝖥𝖲(x, 𝖼𝗆)⟩

∑ |x, 𝖼𝗆, y⟩

f𝖥𝖲 ∘ U𝖤𝗑𝗍

∑
x, 𝖼𝗆,

y ⊕ f𝖥𝖲(x, Π, 𝖼𝗆)
⟩

∑ |x, 𝖼𝗆, y⟩

But now is in superposition𝖼𝗆

Our solution: Consider the extraction results for every in the database of 𝖼𝗆 f𝖥𝖲
and show the results does not change after more quantum queriesf𝖵𝖢

We want some unitary that reads and do extraction coherently on those
to almost commute with a quantum query !

𝒟𝖥𝖲 𝖼𝗆
𝖵𝖢

For this talk, let’s consider
that does extraction on only one coherently.

U𝖤𝗑𝗍
𝖼𝗆

🤔
i.e. every queried by is mapped to the same even after more VC queries𝖼𝗆 f𝖥𝖲 Π

Prior commutator bounds

51

Prior commutator bounds
[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

51

Prior commutator bounds
[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

51

Prior commutator bounds
[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔
Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

51

Prior commutator bounds
[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

51

Prior commutator bounds
[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

After an additional classical query,
D′￼ = D + [x ↦ y]

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

51

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

Projector on the databases in P

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

Projector on the databases in P

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Conditioned on |D | ≤ t

s.t. |D | ≤ t

s.t. |D | ≤ t

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

Projector on the databases in P

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Conditioned on |D | ≤ t

s.t. |D | ≤ t

s.t. |D | ≤ t

A classical quantity that is usually easy to analyze

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

It does not work for .
 does not form a binary partition.

U𝖤𝗑𝗍
U𝖤𝗑𝗍 🤔

Projector on the databases in P

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Conditioned on |D | ≤ t

s.t. |D | ≤ t

s.t. |D | ≤ t

A classical quantity that is usually easy to analyze

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = 𝖯 ⊗ I + 𝖯̄ ⊗ X

Prior commutator bounds

For database property , consider the binary partition ,P = {P, P̄}

with small probD ∉ P D′￼∈ P
D′￼= D + [x ↦ y]

D ∈ P with small prob D′￼∉ P
D′￼= D + [x ↦ y]

It does not work for .
 does not form a binary partition.

U𝖤𝗑𝗍
U𝖤𝗑𝗍 🤔

Projector on the databases in P

[DFMS22]: For basic commitments, almost commutes with the quantum query.U𝖤𝗑𝗍

But not tight enough. 🤔Even worse when there are a lot of ….𝖼𝗆

Implies that for MT, almost commutes with the quantum query.U𝖤𝗑𝗍

[CMS19]: The commutator between a database property and a quantum query can be bounded by a classical quantity.P

Flip the second register if D ∉ P

51

Conditioned on |D | ≤ t

s.t. |D | ≤ t

s.t. |D | ≤ t

A classical quantity that is usually easy to analyze

Instability lemma

After an additional classical query,
D′￼ = D + [x ↦ y]

We need a new technique!

52

Our generalized instability lemma

52

Our generalized instability lemma
For any partition {Pi}i,

52

Our generalized instability lemma
For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma
For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi
with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma
For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Add to the second register if i D ∈ Pi

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma
For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add to the second register if i D ∈ Pi

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma
For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add to the second register if i D ∈ Pi

Conditioned on |D | ≤ ts.t. |D | ≤ t

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma

Our technique works
for more general ’s!U

For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add to the second register if i D ∈ Pi

Conditioned on |D | ≤ ts.t. |D | ≤ t

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma

Our technique works
for more general ’s!U

For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add to the second register if i D ∈ Pi

Conditioned on |D | ≤ ts.t. |D | ≤ t

This in particular includes for MT!U𝖤𝗑𝗍 🥳

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

52

Our generalized instability lemma

Our technique works
for more general ’s!U

For any partition {Pi}i,

After an additional classical query,
D′￼ = D + [x ↦ y]

Quantum query &
almost commute

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add to the second register if i D ∈ Pi

Conditioned on |D | ≤ ts.t. |D | ≤ t

This in particular includes for MT!U𝖤𝗑𝗍

And this also includes the unitary that
reads and does the extraction!𝒟𝖥𝖲 🥳

🥳

with small probD ∈ Pi

For all , i

D′￼ ∉ Pi

Takeaways

Takeaways
• BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM 

if the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

Takeaways
• BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM 

if the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

• Our proof analyzes the error from FS and MT separately through an intermediate  
FS-style security notion (PQSR), mirroring the classical proof.

Relaxed RBR KS IOR

PQSR KS IOR
PQ Extractable VC

e.g. MT

BCS[IOR, VC] is post-quantum
knowledge sound

Post-quantum case

FS error

VC error

Takeaways

Thank you!

• BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM 
if the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

• Our proof analyzes the error from FS and MT separately through an intermediate  
FS-style security notion (PQSR), mirroring the classical proof.

Relaxed RBR KS IOR

PQSR KS IOR
PQ Extractable VC

e.g. MT

BCS[IOR, VC] is post-quantum
knowledge sound

Post-quantum case

FS error

VC error

More technical details

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES!

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

Superposition query model.YES!

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

Superposition query model.

Algorithm A⋆ f1, …, fk

∑ | i⟩ |q⟩ |y⟩

∑ | i⟩ |q⟩ |y ⊕ fi(q)⟩

YES!

54

More technical details

55

More technical details

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

55

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

55

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

55

A naïve proposal: D → 𝒟

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

55

A naïve proposal: D → 𝒟
PQ knowledge soundness (first attempt): There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, 𝒟)

≤ κ

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

55

A naïve proposal: D → 𝒟
PQ knowledge soundness (first attempt): There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, 𝒟)

≤ κ

Problem: no sequential composition. cannot run , and might destroy arbitrarily.P̃ E E 𝒟

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

YES!

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

PQ knowledge soundness: There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

PQ knowledge soundness: There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

sequential composition

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

PQ knowledge soundness: There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

So VC adversary should be strengthened as well… sequential composition

More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

PQ knowledge soundness: There exists an extractor such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

So VC adversary should be strengthened as well…

And more…

sequential composition

57

Completeness: , .∀ (x, w) ∈ R Pr [1 ← V(x, π) π ← P(x, w)] = 1

Soundness: For every efficient adversary , .P̃ Pr [x ∉ L(R) ∧ 1 ← V(x, π̃) (x, π̃) ← P̃] ≤ ϵ

Knowledge soundness: , efficient adversary , .∃ℰ ∀ P̃ Pr [(x, w) ∉ R ∧ 1 ← V(x, π̃) (x, π̃) ← P̃, w ← ℰ(x, π̃)] ≤ ϵ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph is 3-colorable.G

Prove that!

But a coloring of is too long…G

Succinct non-interactive arguments (SNARGs)

Succinctness: .|π | ≪ |w |

58

Completeness: , .∀ (x, w) ∈ R Pr [(x′￼, w′￼) ∈ R′￼ (π, w′￼) ← P(x, w), x′￼← V(x, π)] = 1

Soundness: For every efficient adversary , .P̃ Pr [(x′￼, w′￼) ∈ R′￼∧ x ∉ L(R) (x, π̃, w′￼) ← P̃, x′￼← V(x, π̃)] ≤ ϵ

Knowledge soundness: , efficient adversary , .∃ℰ ∀ P̃ Pr [(x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
(x, π̃, w′￼) ← P̃,
x′￼← V(x, π̃),

w ← ℰ(x, π̃, w′￼, x′￼)] ≤ ϵ

The graphs
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as
long as is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

Succinctness: .|π | ≪ |w |

59

Our PQ state-restoration captures the PQ FS error

P̃⋆,𝗌𝗋

⋮f1 f2 fk

Quantum adversary

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

the PQ soundness error of ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 = 𝖥𝖲[𝖨𝖮𝖱]

Soundness:

 -move quantum adversary ,

.

∀ t P̃⋆,𝗌𝗋

Pr x ∉ L ∧ x′￼∈ L′￼

∀ i, fi ← ({0,1}* → {0,1}σ)

(x, Π1, …, Πk, ρ1, …, ρk) ← ⟨P̃⋆,𝗌𝗋, 𝖦𝖺𝗆𝖾(fi)i∈[k]⟩

x′￼← V (Πi)i∈[k]
𝖨𝖮𝖱 (x; ρ1, …, ρk)

≤ ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t)

x, (Π1, …, Πk)

∑ |q⟩ |y ⊕ fi(q)⟩

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest

