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Prover \Verifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

But a coloring of G is too long...
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Completeness: (x, w) € R = P(x, w) convinces V(x).
Soundness: X & L(R) — every efficient P convinces V(x) with small probability €.
Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that convinces V(x) must “know” a witness w s.t. (x, w) € R (up to a small error ).
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Prover \erifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

JT

SNARGs have numerous real-world applications.

SNARGs are powerful, but sometimes more than needed.

Recent work shows for certain applications, a more lightweight primitive called SNRDXs suffices.
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(+) cheaper to construct than SNARGs for some relations R’
)



Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G,, G, Prover s x € L(R)? Verifier

are 3-colorable.

T
| accept your claim as S

long as G is 3-colorable.

Easier relation

Isx’" € L(R")?




Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier

are 3-colorable.

. T
| accept your claim as e

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
W’

SNRDXs have numerous real-world applications.
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
iIncrementally verifiable computation, etc.



Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier

are 3-colorable.

. T
| accept your claim as e

‘ long as G is 3-colorable. .

Easier relation

$ Isx’ € L(R')?
W’

SNRDXs have numerous real-world applications.
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
iIncrementally verifiable computation, etc.

RISC
b




Where do SNARGs/SNRDXs come from?



Where do SNARGs/SNRDXs come from?

A few places.



Where do SNARGs/SNRDXs come from?

A few places. Our focus:



Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs



Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

V Efficient



Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

’ Efficient ’ Public (transparent) setup




Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Public (transparent) setup

Efficient

"/ HEPlausibly post-quantum



Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

- Efficient




Recall: SNARG BCS[IOP, MT]



Recal: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

11,




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

~
Prop(x, w) 44; % (X)




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

-
Prop(x, w) 44; Viop(X)
— .




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

-
Prop(x, w) 44; Viop(X)
— .




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— R
-
Prop(x, w) 44; Viop(X)

11,

<4 =--




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— I,
~

Prop(x, w) 44; % (X)

— T

IOP

=




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— I,
~

Prop(x, w) 44; % (X)

— T

IOP

=

\

bIOP



SNARG BCS[IOF, MT]

Recall:

Ingredient #1: Interactive oracle proof (IOP)

X E L(R)’?




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

sﬁs




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

r n
"
( [

[ ]

° [ ]

° [




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)? | | m




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

-




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)




Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

0/1



Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

7 = ((cmy,...,cmy), ans, path)_

Ol
[



Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

7 = ((cmy,...,cmy), ans, path)_

0/1



Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

0/1



Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

Security holds even against quantum attackers:

0/1



Recall: SNARG BCS[IOP, MT]
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The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

Security holds even against quantum attackers:

[CMSI191]:
) ARAY

the BCS protocol is secure in the | "3 )
quanfum random oracle model ’
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Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25]. x € L(R)?

Secure in the ROM against classical attackers [BMNW25].

OUR QUESTION: .
Are these hash-based SNRDXs [P

secure in the QROM?

9 w' x' € L(R")? x



Why post-quantum security matters
for hash-based SNRDXs?



Why post-quantum security matters
for hash-based SNRDXs?

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),



Why post-quantum security matters
for hash-based SNRDXs?

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

are likely to be an important building block
for post-quantum redesigns of Ethereum.
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Part I

PQSR soundness is
implied by RBR soundness



State-restoration captures the classical FS error
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x, (114, ..., 11})

Soundness:
t-move P°" cannot output x, (I1;, ..., IT,)

s.t. it reduces a no instance x & L(R)
to a yes instance x’ € L(R’), except with error €75 (1)
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State-restoration captures the classical FS error

e;or = the (classical) soundness error of FS[IOR]

Classical adversary

{ classical moves filx, (0, . . ., I1))

x, (114, ..., 11})

Soundness:
t-move P°" cannot output x, (I1;, ..., IT,)

s.t. it reduces a no instance x & L(R)
to a yes instance x’ € L(R’), except with error €75 (1)
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Our PQ state-restoration captures the PQ FS error

G;E)SRr = the PQ soundness error of FS[IOR]

Quantum adversary

Z |g = (x, (AL, ..., 1)) [ y)

t quantum moves Z () |y @ fi(q))

x, (11, ..., 11

Soundness:
t-move P cannot output x, (I1;, ..., IT,)
s.t. it reduces a no instance x & L(R)

to a yes instance x” € L(R’), except with error Gféﬂer(t)

22



Our PQ state-restoration captures the PQ FS error

Quantum adversary

Z |g = (x, (AL, ..., 1)) [ y)
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Our PQ state-restoration captures the PQ FS error

Quantum adversary

P**" has quantum power.
What if it queries multiple oracles at once?
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Our PQ state-restoration captures the PQ FS error

Quantum adversary

x, (114, ..., 11})

P**" has quantum power.
k ag = . .

What if it queries multiple oracles at once?

PQSR is a quantum property (too difficult).
Can we connect it with an easy classical property?
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PQSR soundness is implied by RBR soundness

RBR sound IOR

ror
lThm 2 Thm 3

Part 1
PQSR sound IOR PQ Extractable VC
el (1) = O((t + k)* - €13R) evr = O(1°12°)
— R ‘
Part 2 Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

Putting it together: GI;CS[IOR MT] = O((t + k)* - EfgrR) + O(£3/2°)
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PQSR soundness is implied by RBR soundness

Part 1

RBR sound IOR

rbr
€I0R

A classical property. Standard. Easier to deal with.

lThm 2 ) Thm 3

*.Sr

€I0R

PQSR sound IOR

(1) = O((t + k)* - e12) evr = O(1°/2°)

PQ Extractable VC

Part 2

Putting it together:

—
Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

cesitormr) = O+ K)* - e5) + O(/2%)
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(Definition of RBR soundness ¢[2;

x9H19p19°°°3pi—19Hi

ror

' Each partial transcript is labeled either
“ W.P. €I0R

doomed Almost impossible to make V output x’ € L’ w
not doomed e Al D1, 1L p
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P
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Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
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then P wins = & can find x,I1,, p,, ..., I1. and p; that jumps to not doomed.
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f Deflmhon of RBR soundness erbr . % o
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td d I1 11,
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PN G s PG RN SRR SN § AN U S SO
_ Search problem for
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Part 2: From PQSR IOR
to PQ NRDX



BCS PQ soundness = PQSR soundness + VC PQ error

RBR sound IOR

ror
lThm 2 Thm 3

Part 1
PQSR sound IOR PQ Extractable VC
el (1) = O((t + k)* - €13R) evir = O(t°12°)
Part 2 m Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

Putting it together: GI;CS[IOR MT] = O((t + k)* - EfgrR) + O(£3/2°)
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Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.
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*7) How fo...
\ (/

1. Answer f\,~ queries?
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lllllllllllllllllllllllllllllll
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Construction of P*' Classical case
Step 2: how to answer frq queries?

Instead. ..

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

IT = (I1);,; for some i € []
Vj € [i], Ext(cm;, Dyc) = 11,

But P can query cm; # cm, with the same
underlying message 11;.

Omitted: actual PQSR definition includes salt
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It gives you “Quantum Database” 9y,

but additional care Is required to simulate P* without much disturbance.
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MT has PQ extractability error O(1°/2°)

Part 1

Part 2

RBR sound IOR

rbr
€I0R

lThm 2

€

* . Sr
IOR

PQSR sound IOR

(1) = O((t + k)* - e[,

)

Thm 3

PQ Extractable VC
evir = O(1°12°)

lThm1

BCSIIOR, VC] is PQ sound

* _ *
€BCS[IOR,VC] — O(€e/5n + €ve)-
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Our solution: Consider the extraction For this talk, let’s consider Ug,,
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and show the results dog

We want some unitary that reads s and do extraction coherently on those cm
to almost commute with a VC quantum query !

50

= )

1,



Prior commutator bounds

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Q‘j)

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ....

51

°))

°)



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ... 'z

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ....

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ....

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

D & P withsmallprob

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ....

" —

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

D & P withsmallprob

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ....

" —

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

D & P withsmallprob

with small prob

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

S — ! Instablllty Iemma -4 Quantum query & U P ® I + P ® X j.'

D’=D+[x1—>y] -
| — almost commute
with small prob D' &P

D'=D+[xr y] |

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

Flip the second register if D & P

D¢ P _ withsmallprob | Der
D’:D+[x|—>y]
with small prob D &P
R —" D= D+ [t ¥ :.

' Instablllty lemma | ' Quantum query & U P ® I + P ® X '
E—— almost commute '

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D¢ P _wihsmalpob | — per
S © D'=D+[xm 7] )
with small prob D' &P
— e y] :.

- Instablllty Iemma ' Quantum query & U P ® I + P ® X '
E— almost commute '

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D % P ~ with small prob D' e P
, " D'=D+[xw 7] )
with small prob D' &P
EE— IS

]  Instabilty lemma ’ Quantum query & U p ® I + P ® X |
—1 almost commute
Conditionedon|D| <7 |

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D % P ~ with small prob D' e P
, " D'=D+[xw 7] )
with small prob D' &P
EE— IS

]  Instabilty lemma ’ Quantum query & U p ® I + P ® X |
—1 almost commute
Conditionedon|D| <t ]

A classical quantity that is usually easy to analyze

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ... K‘?J

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D gé P ~ with smallprob D e P
o Y D=D+[x+— o]
with small prob D' &P
% ey :.

]  Instabilty lemma ’ Quantum query & U p ® I + P ® X |
| almost commute
Conditionedon|D| <7 |

: : : It does not work for Ug,;. ~
A classical quantity that is usually easy to analyze U.... does not form a binary partition \
xt - |

51



Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of K‘?J
[CMS19]: The commutator between a database proras “'\que‘- ywunded by a classical quantity.
ch

For database property P, corsis e d 3 “e\N te
We “e Projector on the databases in P

After an additio
D' =D

Flip the second register if D & P

| D % P with small prob

D'=D+[x y] ! lnstablllty lemma Quantum query & U P ® I + P ® X |
e almost commute "

DeP_ \\ D &P { ~ Conditionedon|D| <1 o

: : : It does not work for Ug,. A D\
A classical quantity that is usually easy to analyze Uk, does not form a binary partition K\?/
xt "

51




Our generalized instability lemma

52



Our generalized instability lemma

For any partition { P;},

52



Our generalized instability lemma

For any partition { P;},

i Forall i,

with small prob

) Dep;, _ W

D'¢P, |

After an additional classical query,

D'=D+|x— Y]

52



Our generalized instability lemma

For any partition { P;},

: | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52



Our generalized instability lemma

For any partition { P;},

Add 1 to the second register if D € P,

: | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52



Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

, | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52



Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query,

D'=D+|x— Y]

52



Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

52



Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

This in particular includes Ug,, for MT! b

52



Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,
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: { Quantum query & U = Z P.®X" |
/ J  rrememsmenmmc s — e —— : ‘
D g P l '; "

with small prob

DepP, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

00/*‘N
) )’

This in particular includes Ug,, for MT!

And this also includes the unitary that
reads Y5 and does the extraction!

0"*‘S
) )’
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PQSR KS IOR
. -'I'
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D 1D1a)y)

LDy ef@)

Algorithm A ™

54



More technical details

55



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

55



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

55



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —

55



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —
PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary P,
J < {0,1}* = {0,1}°)
~ N Df
Pr|(X,w)€ER A(x,w) € R o w) < P <K

¥« VI(x, #)
w <« E(x,7,x',w', D)

55



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —
PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary P,
J < {0,1}* = {0,1}°)
~ N Df
Pr|(X,w)€ER A(x,w) € R o w) < P <K

x' « VI(x, %)
w <« E(x,7,x',w', D)

008 R T R sty P cannot run £, and E might destroy & arbitrarily.

55




More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

56



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

56



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

56



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

seguential composition

56



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

So VC adversary should be strengthened as well... sequential composition

56



More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

So VC adversary should be strengthened as well... sequential composition

56



Succinct non-interactive arguments (SNARGs)

Prover \Verifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

But a coloring of G is too long...

JT

Completeness:V (x,w) € R, Pr [1 «— V(x, 7 ‘ <« P(x, w)] = 1.
Soundness: For every efficient adversary P, Pr [x & L(R) A1 « V(x, ) | (x, T) < P] <eE.

Succinctness: | 7| < |w].

Knowledge soundness: 3&, V efficient adversary P, Pr [(x, w) & RA1 « V(x, 7) | (x,7) « P,w <« &(x, 7%')] <eE.
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Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L

Completeness:V (x,w) € R, Pr [(x’, w)€eR | (m,w) « P(x,w),x < V(x, 71')] = 1.

Soundness: For every efficient adversary P, Pr [(x,w’) € R’ A x & L(R) | (x, 7, W) « P,x" <« V(x, 7%')] <e.

Succinctness: | 7| < |w].
- (x, 7, w") < P,
Knowledge soundness: 3&, V efficient adversary P, Pr | (X, w') € R'A (x,w) & R ‘ Ceven | <e.
w— &Ex,T,w,x")
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Our PQ state-restoration captures the PQ FS error

G;E)SRr = the PQ soundness error of FS[IOR]

Quantum adversary

x, (114, ..., 11})

Soundness:
V t-move quantum adversary P*-",

Vi, f < ({0,1}* > {0,1}°)

Pr|x@LAX €L | @l ..Tlp,....p) « (P, GameViethl) | < e 2 (1),

X« Vloéle[k](x Pl -« Pr)
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