

How to Prove Post-Quantum Security for Succinct Non-Interactive Reductions

Alessandro Chiesa, Zijing Di, Zihan Hu, Yuxi Zheng

EPFL

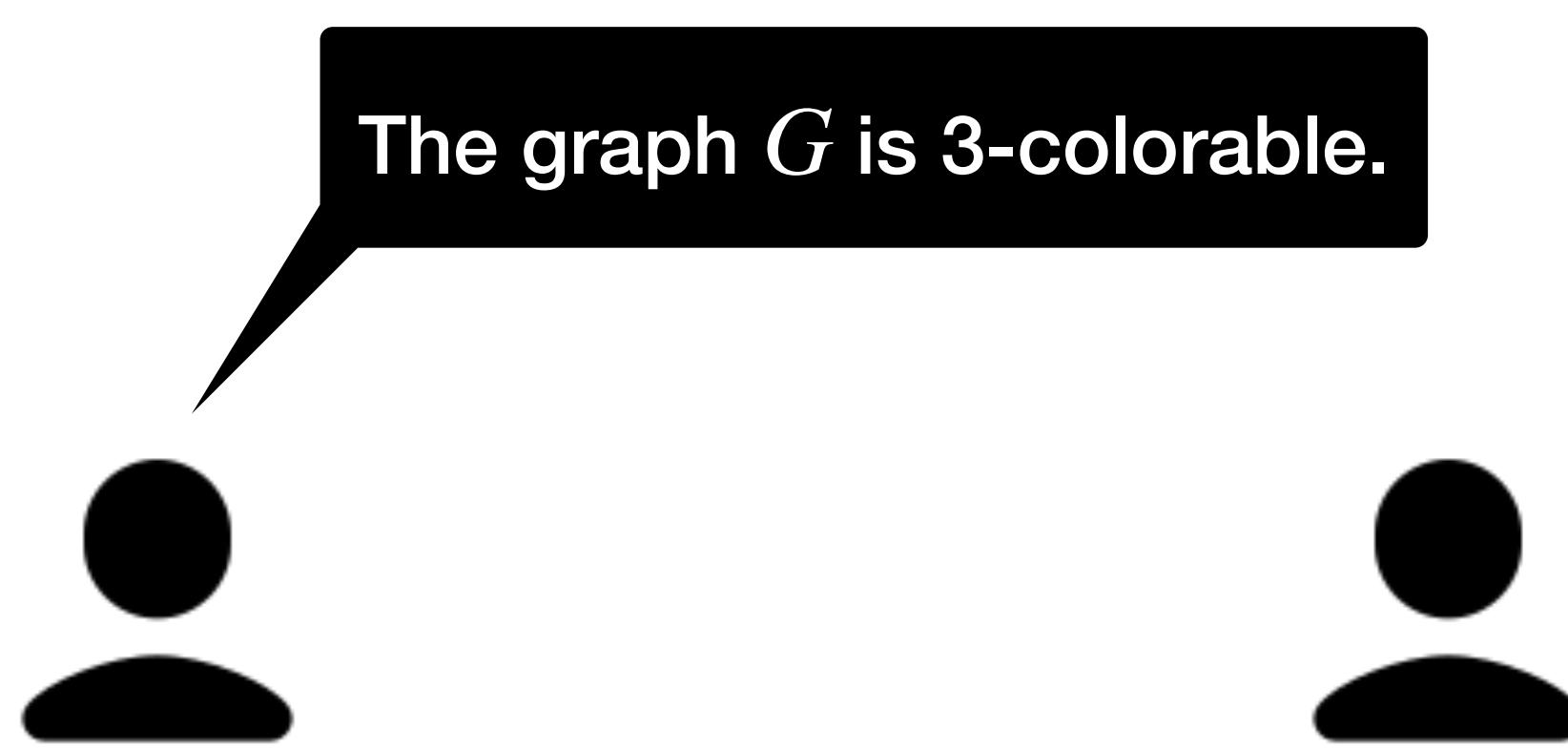
To appear in Eurocrypt 2026

What are
succinct non-interactive reductions?

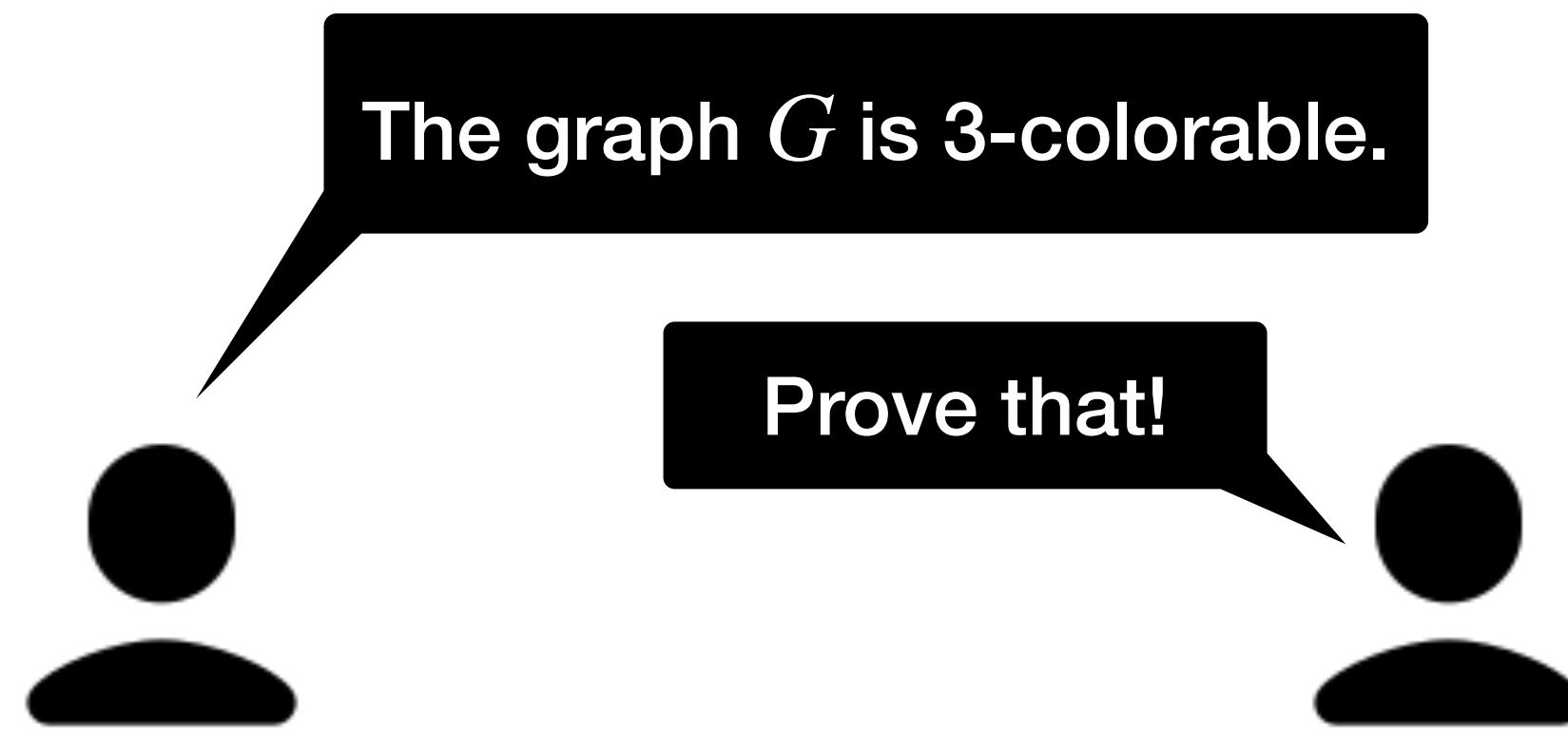
Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)

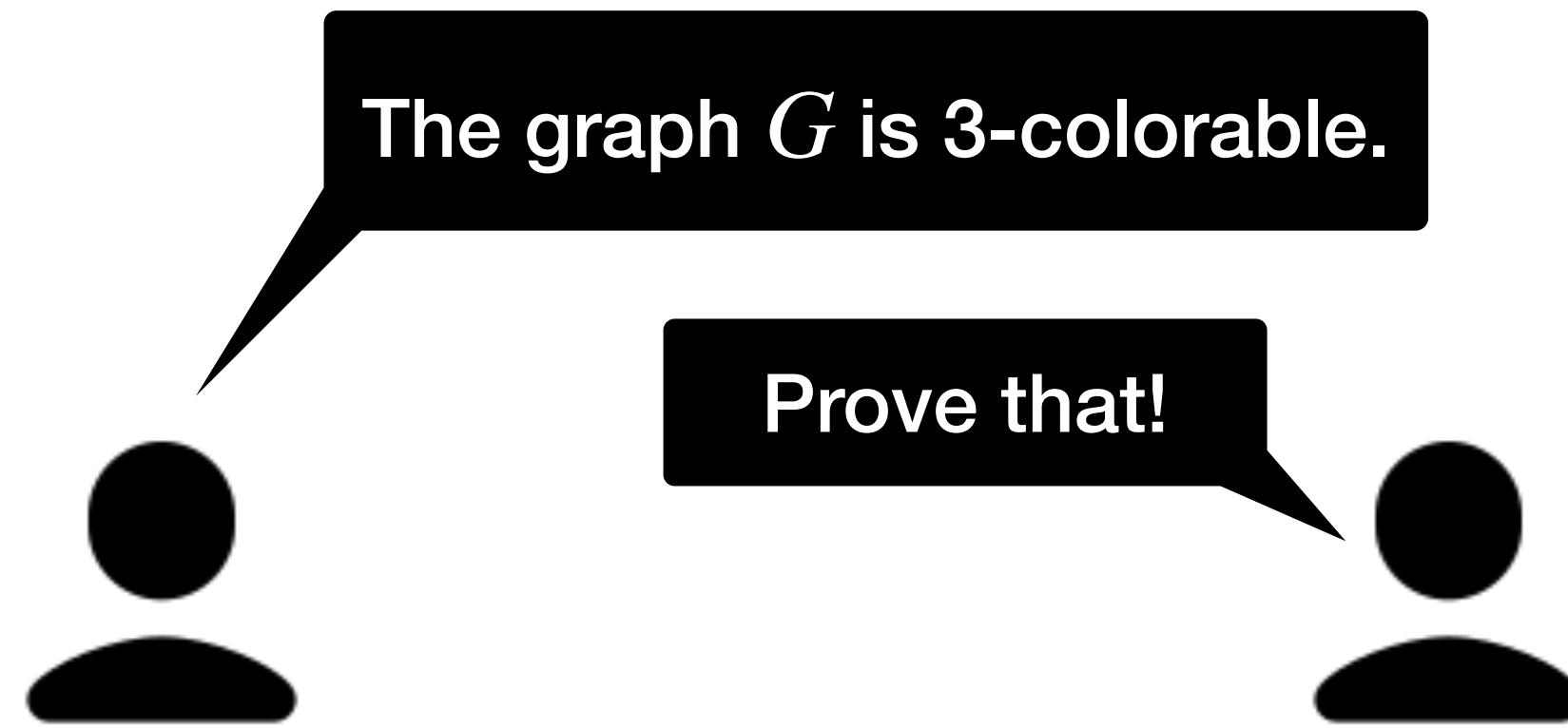
Succinct non-interactive arguments (SNARGs)



Succinct non-interactive arguments (SNARGs)

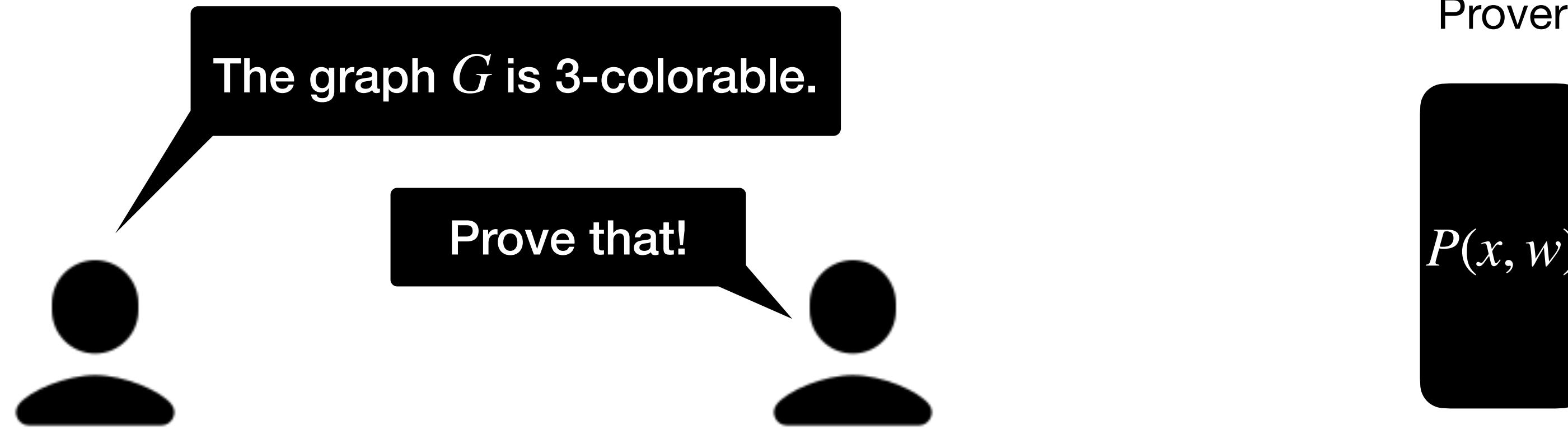


Succinct non-interactive arguments (SNARGs)



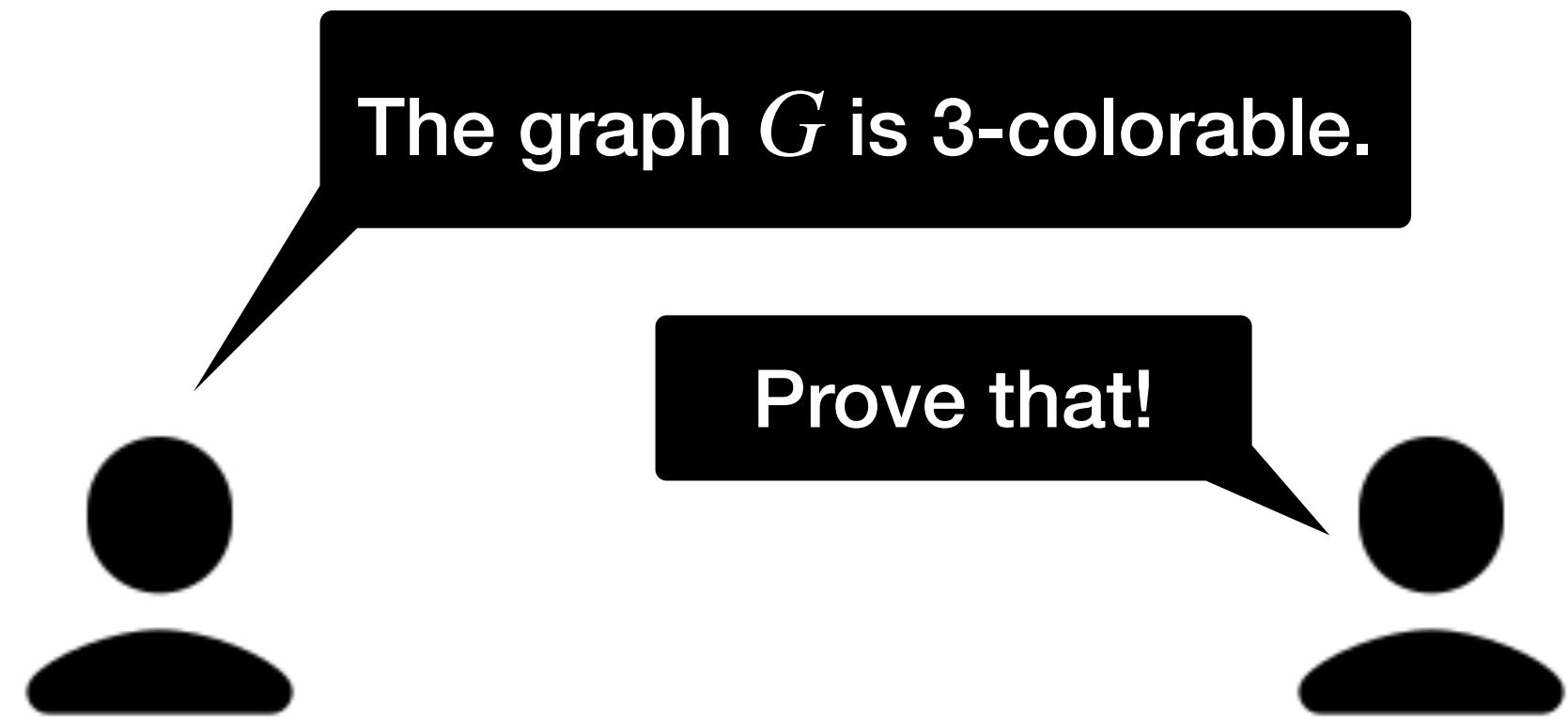
But a coloring of G is **too long**...

Succinct non-interactive arguments (SNARGs)

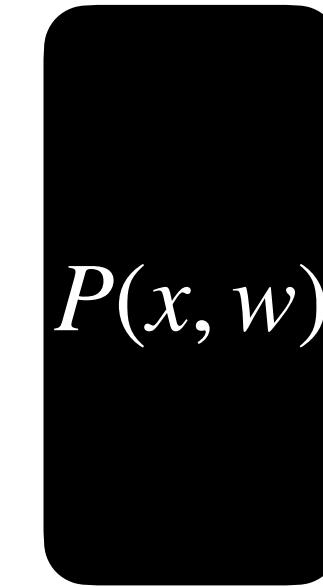


But a coloring of G is **too long...**

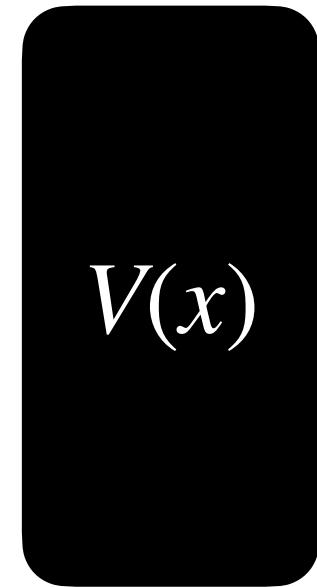
Succinct non-interactive arguments (SNARGs)



Prover

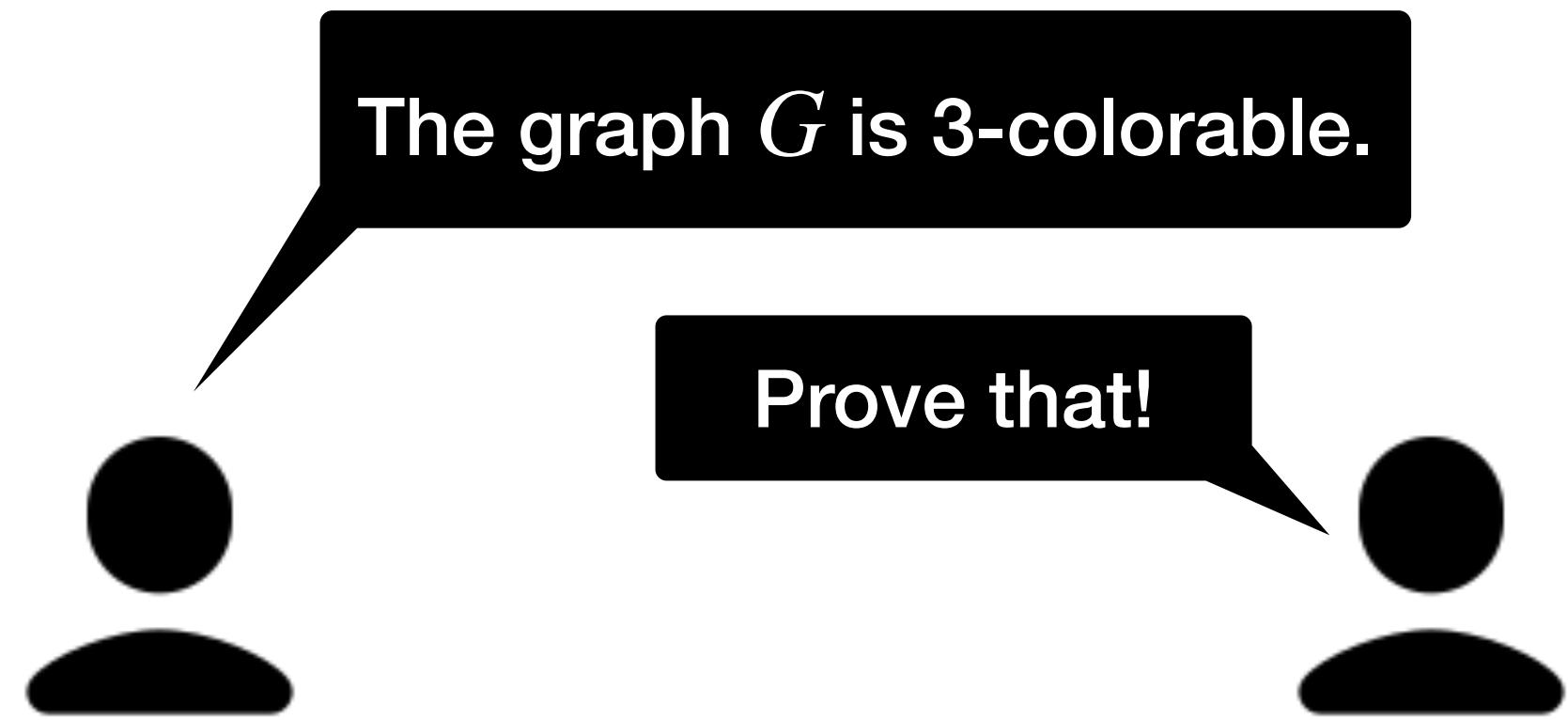


Verifier



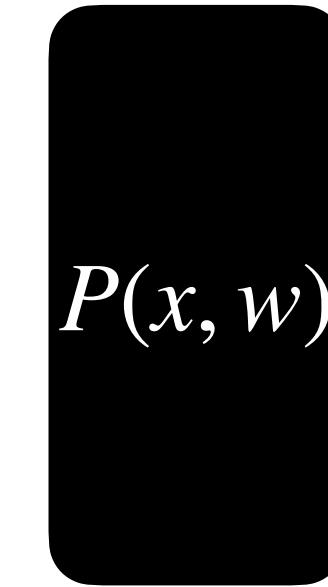
But a coloring of G is **too long...**

Succinct non-interactive arguments (SNARGs)



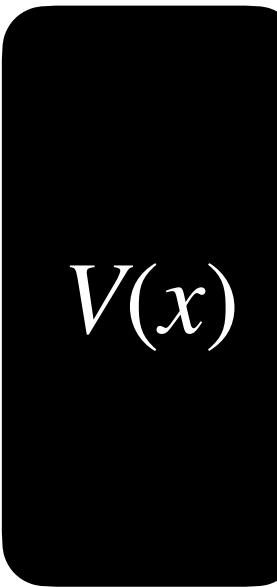
But a coloring of G is **too long...**

Prover

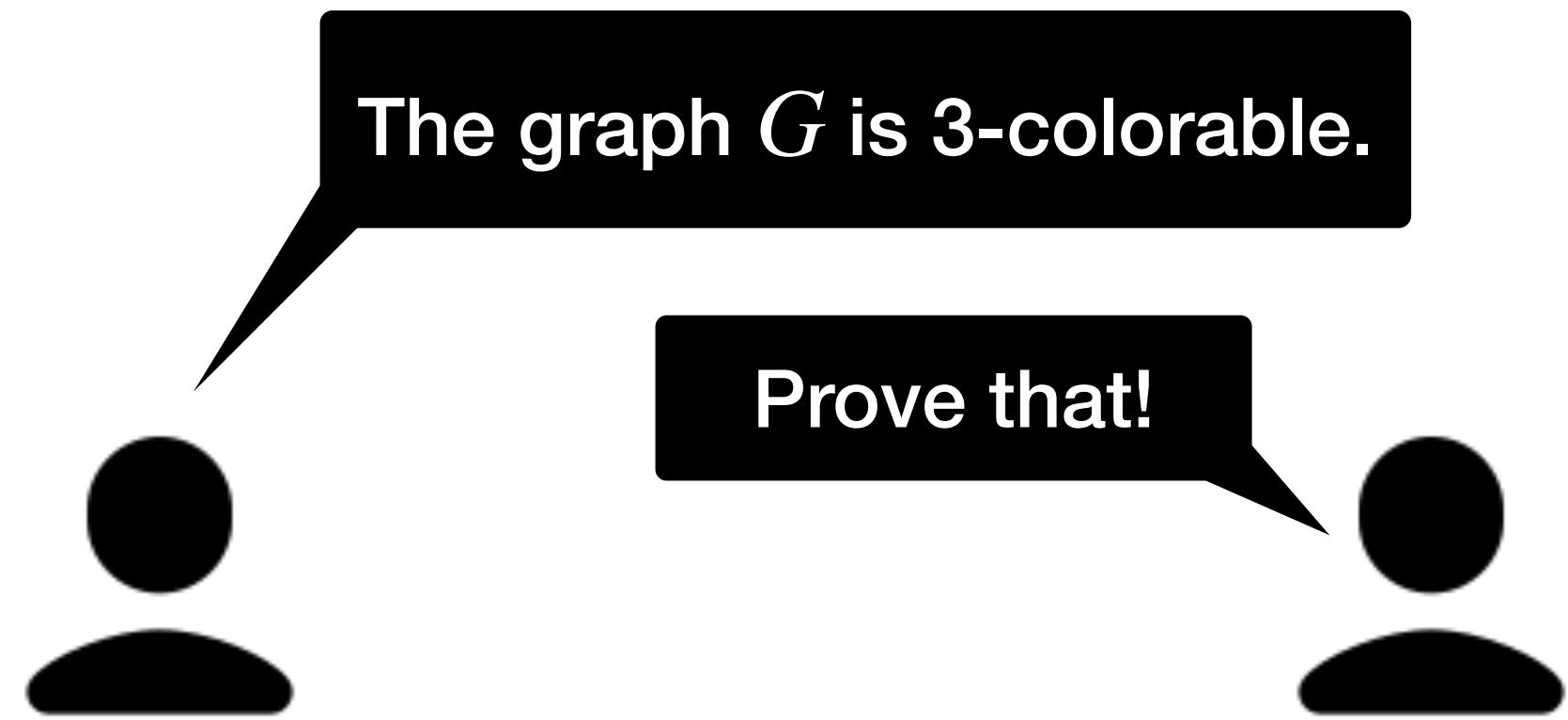


Is $x \in L(R)$?

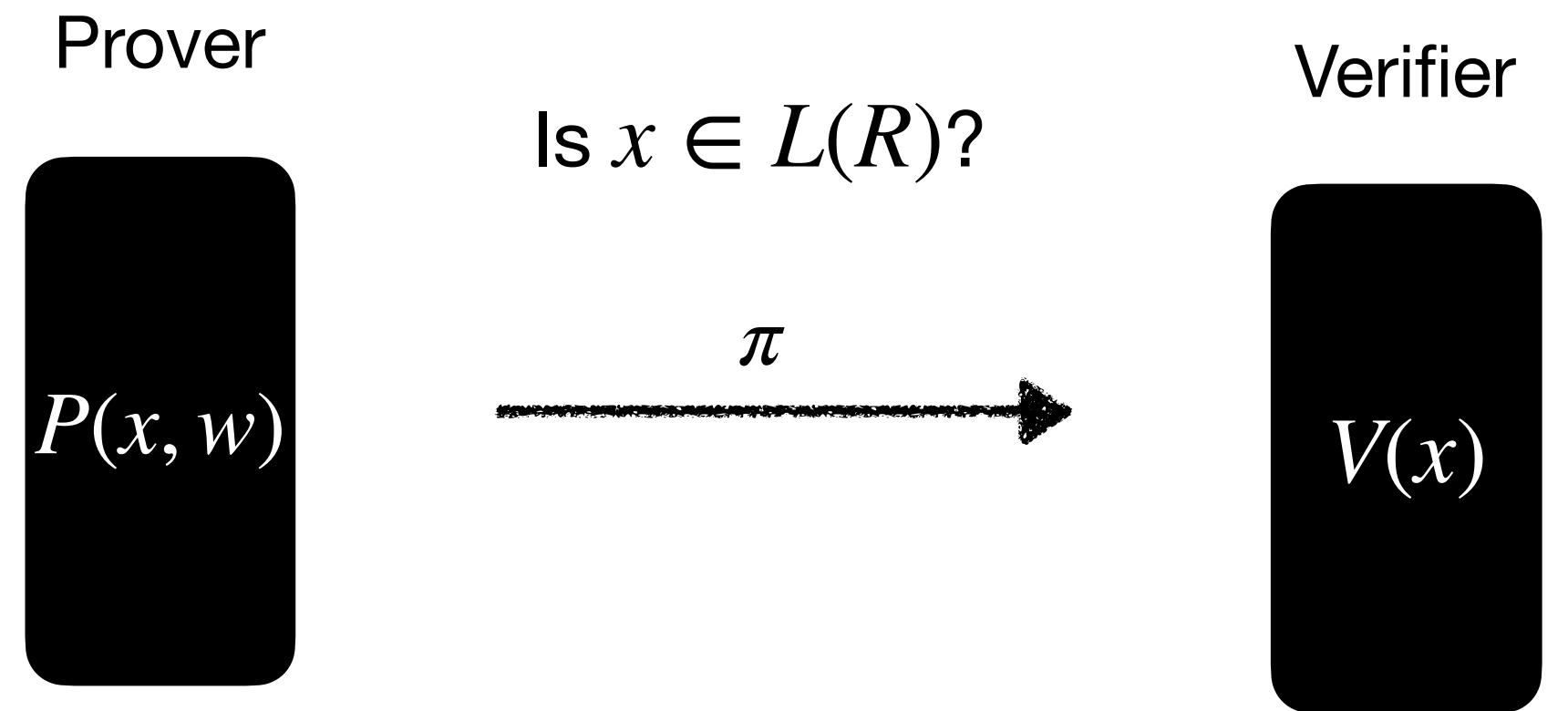
Verifier



Succinct non-interactive arguments (SNARGs)

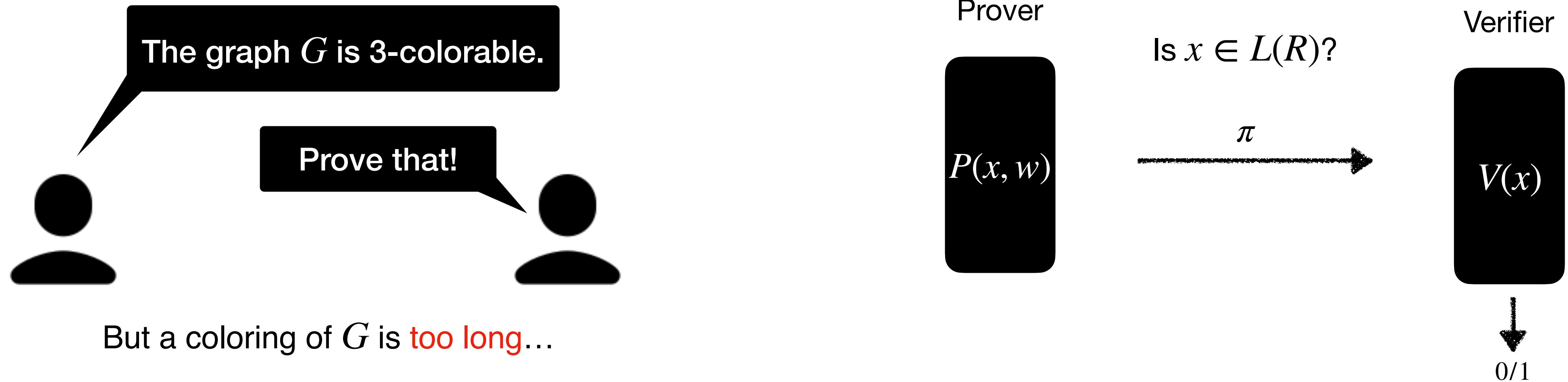


But a coloring of G is **too long...**



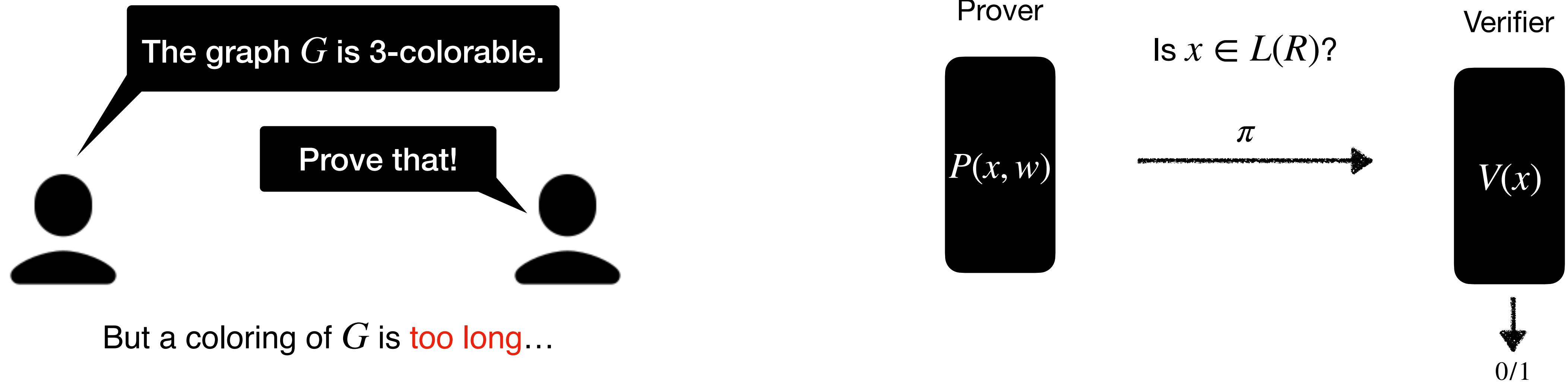
Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)



Completeness: $(x, w) \in R \rightarrow P(x, w)$ convinces $V(x)$.

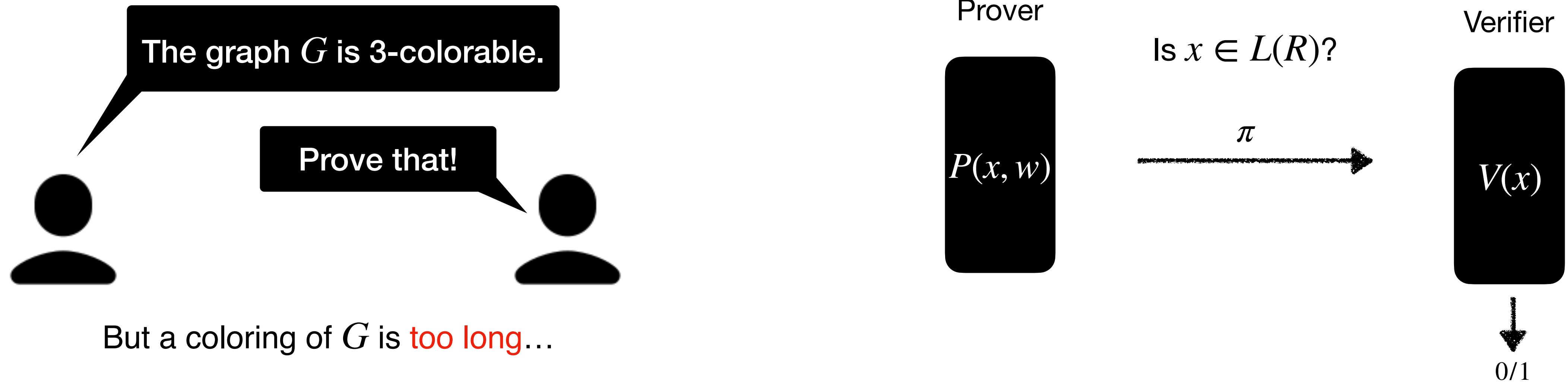
Succinct non-interactive arguments (SNARGs)



Completeness: $(x, w) \in R \rightarrow P(x, w)$ convinces $V(x)$.

Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} convinces $V(x)$ with small probability ϵ .

Succinct non-interactive arguments (SNARGs)

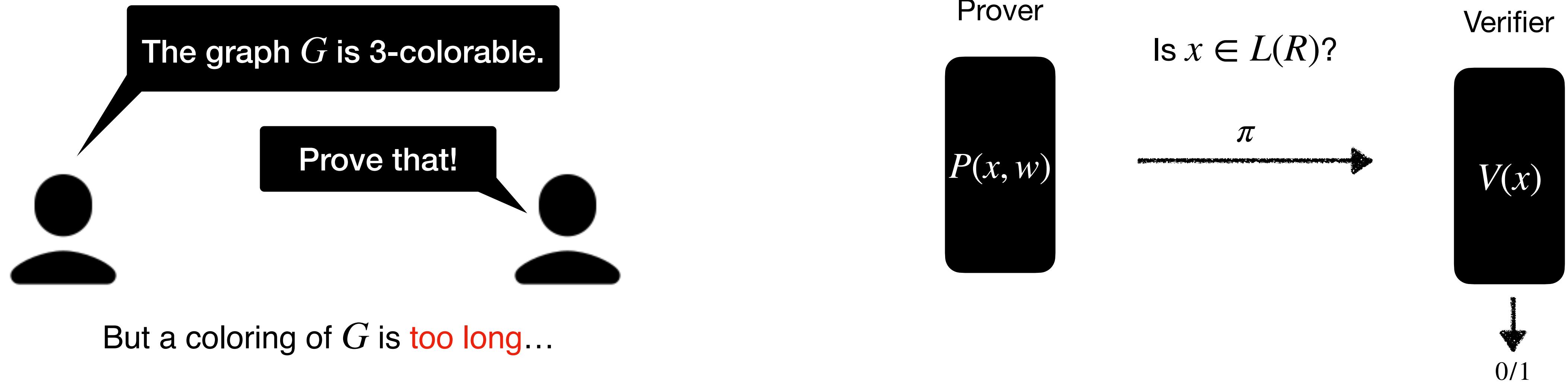


Completeness: $(x, w) \in R \rightarrow P(x, w)$ convinces $V(x)$.

Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} convinces $V(x)$ with small probability ϵ .

Succinctness: $|\pi| \ll |w|$.

Succinct non-interactive arguments (SNARGs)



Completeness: $(x, w) \in R \rightarrow P(x, w)$ convinces $V(x)$.

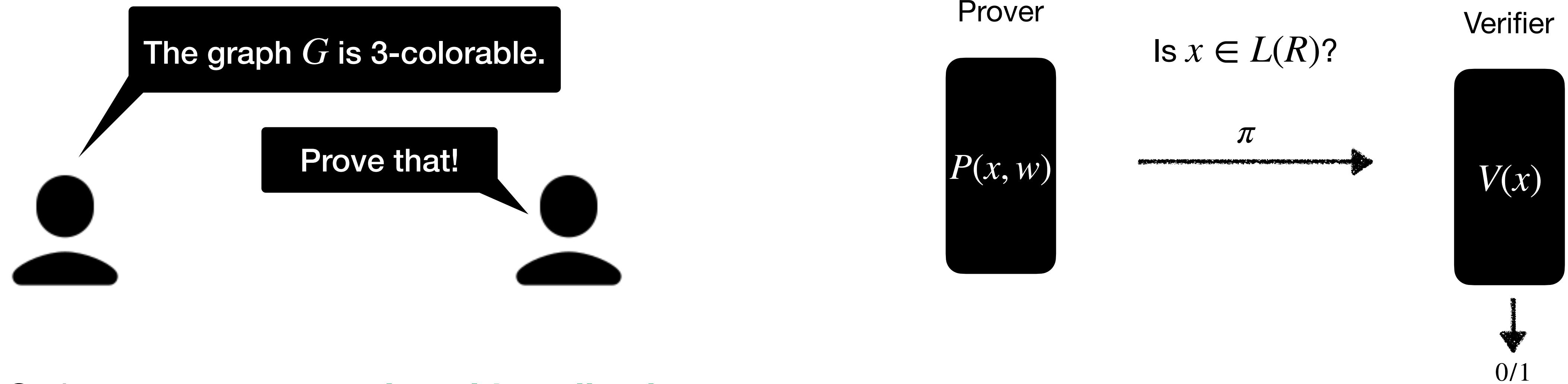
Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} convinces $V(x)$ with small probability ϵ .

Succinctness: $|\pi| \ll |w|$.

Knowledge soundness: every **efficient** \tilde{P} that convinces $V(x)$ must “know” a witness w s.t. $(x, w) \in R$ (up to a small error κ).

Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)



SNARGs have **numerous real-world applications**.

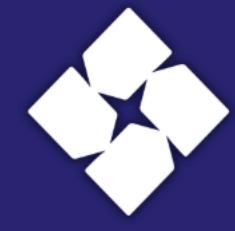
 Succinct

 RISC ZERO

 Aztec

 VALIDA

Irreducible

 **STARKWARE**

 **polygon**

 NEXUS

 Ligero

 MatterLabs

...

Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)



SNARGs have **numerous real-world applications**.

SNARGs are powerful, but sometimes more than needed.

Succinct non-interactive arguments (SNARGs)

SNARGs have **numerous real-world applications**.

SNARGs are powerful, but sometimes more than needed.

Recent work shows for certain applications, a **more lightweight** primitive called **SNRD_Xs** suffices.

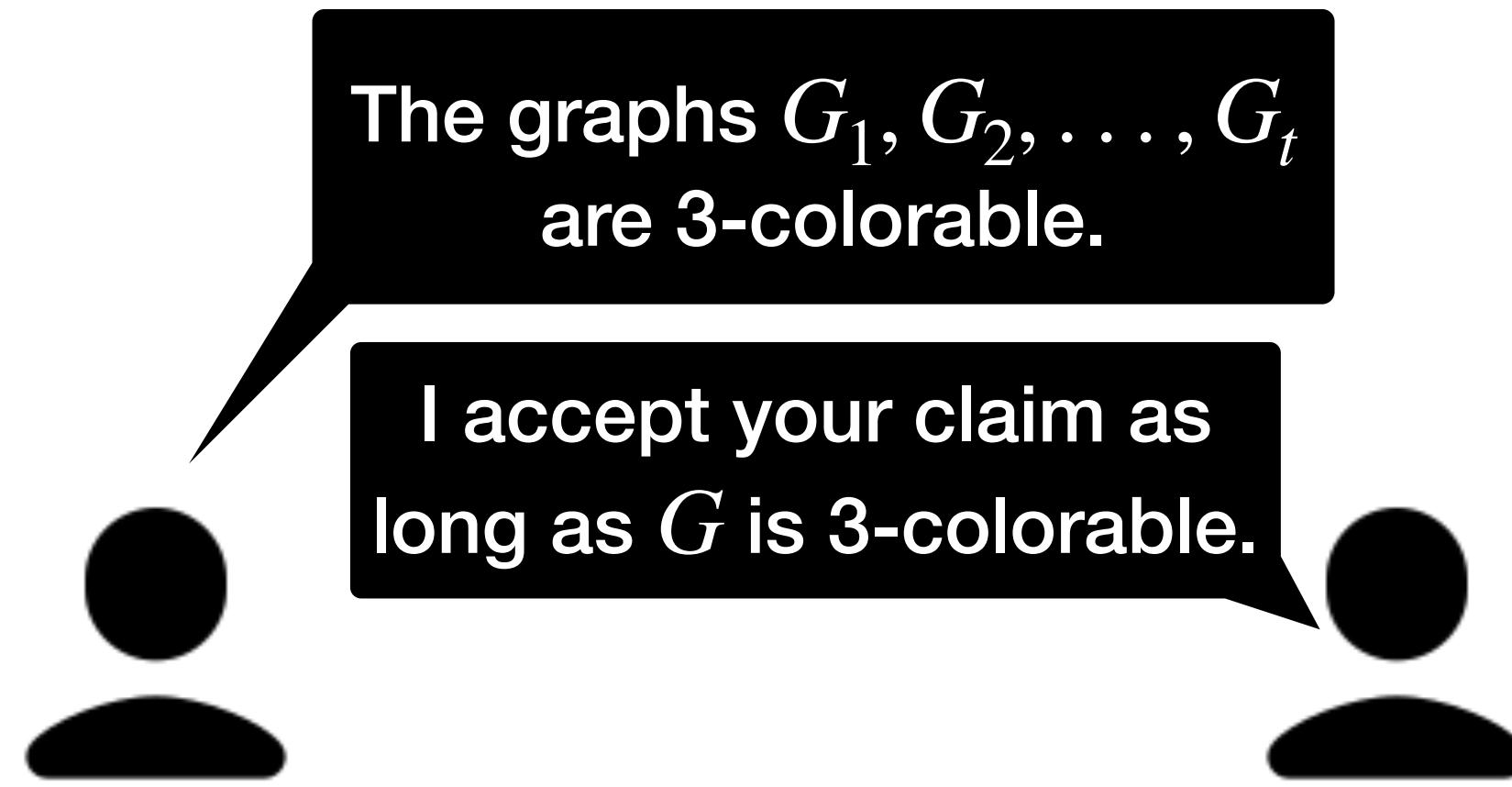
Succinct non-interactive reductions (**SNRDXs**)

Succinct non-interactive reductions (**SNRDXs**)

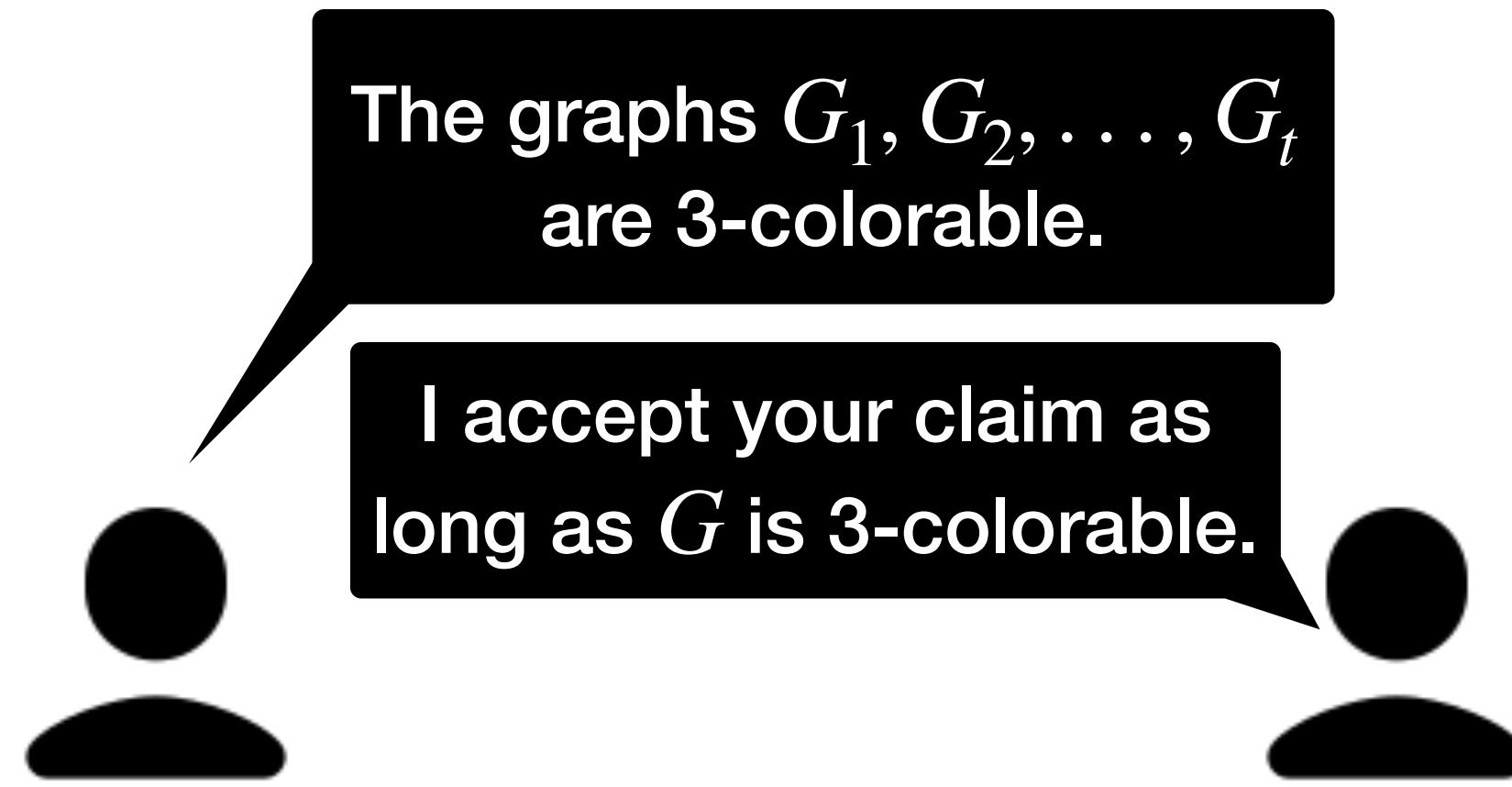
Succinct non-interactive reductions (SNRDXs)

The graphs G_1, G_2, \dots, G_t
are 3-colorable.

Succinct non-interactive reductions (**SNRDXs**)

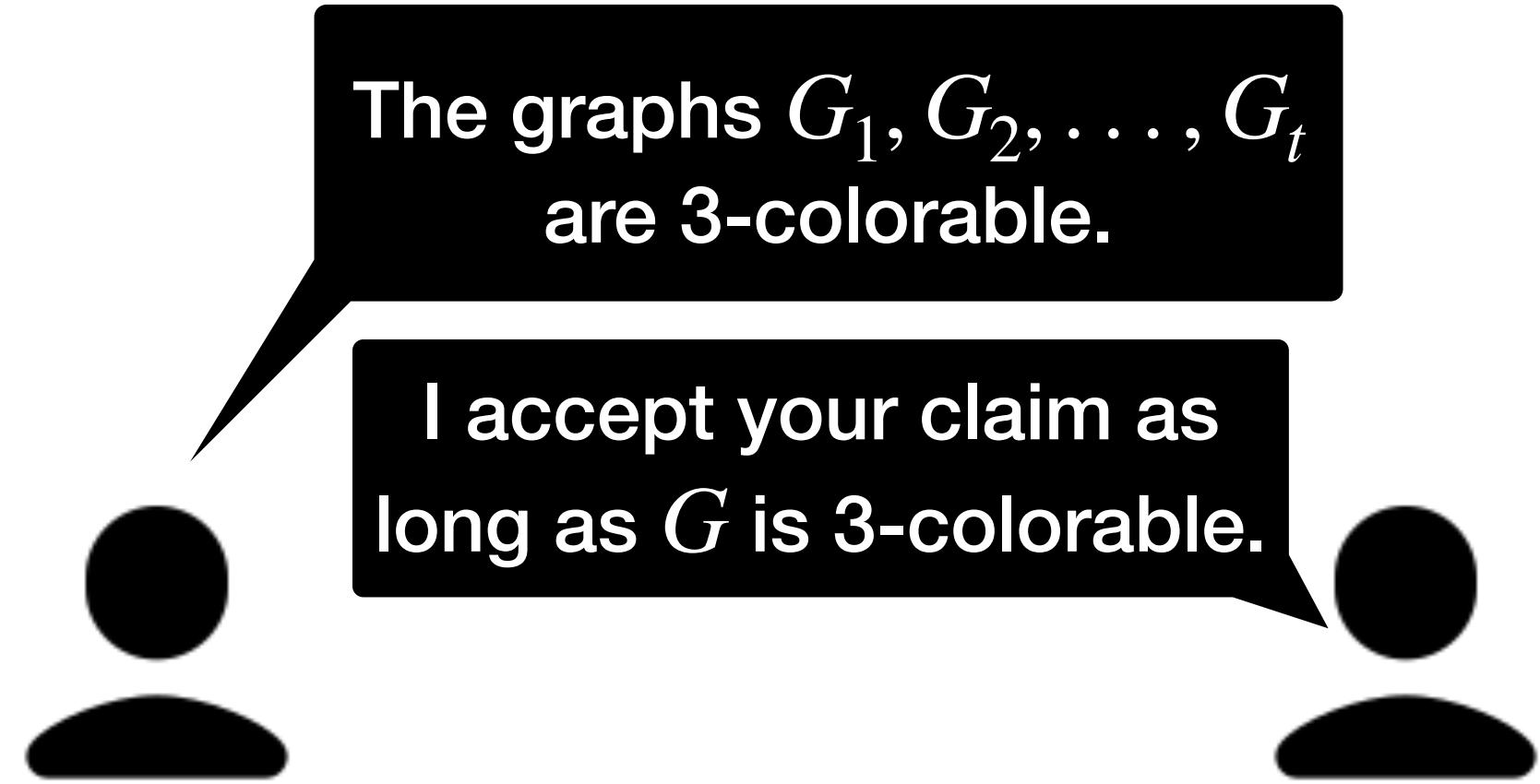


Succinct non-interactive reductions (SNRDXs)



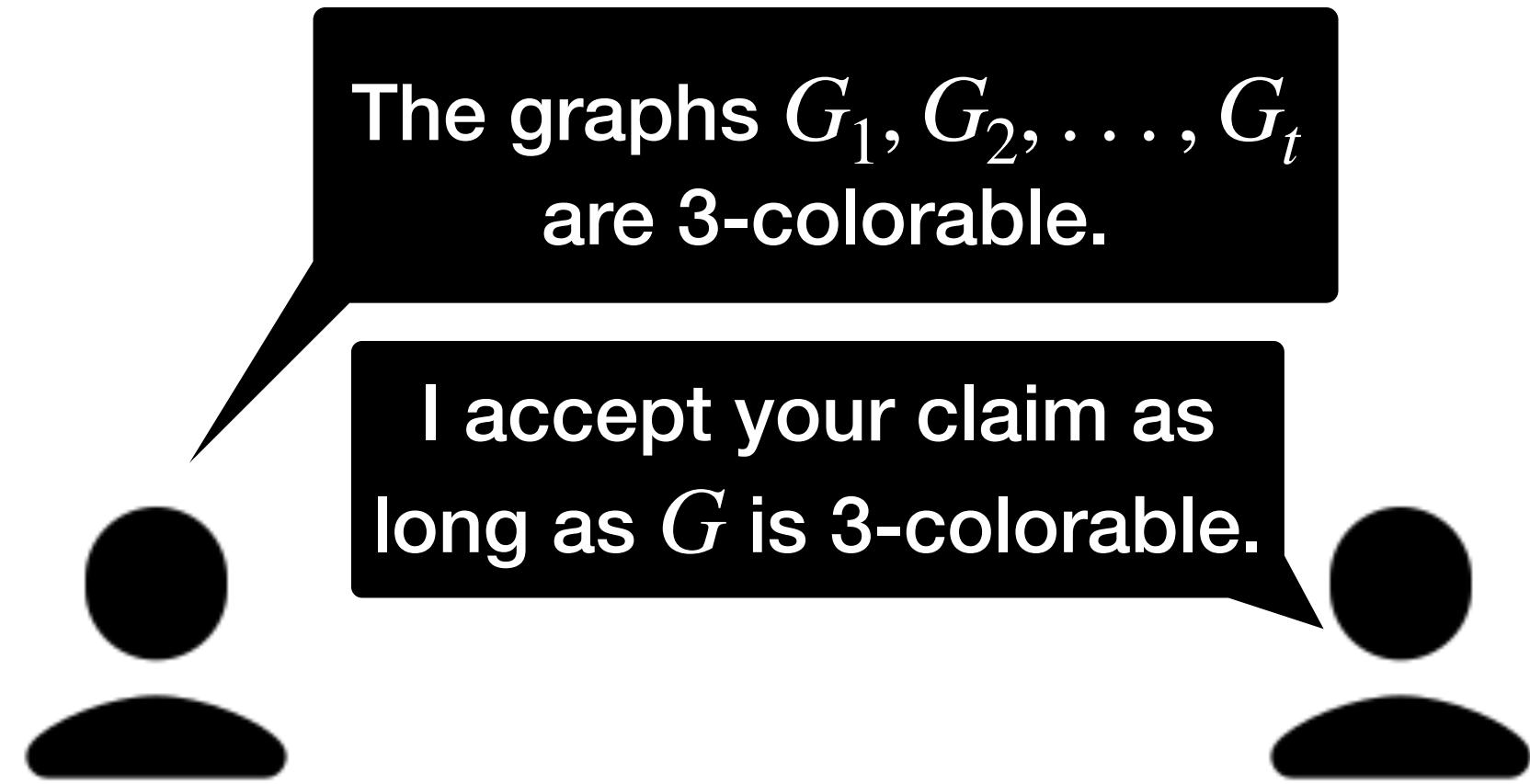
Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)



Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)



Prover

$P(x, w)$

π

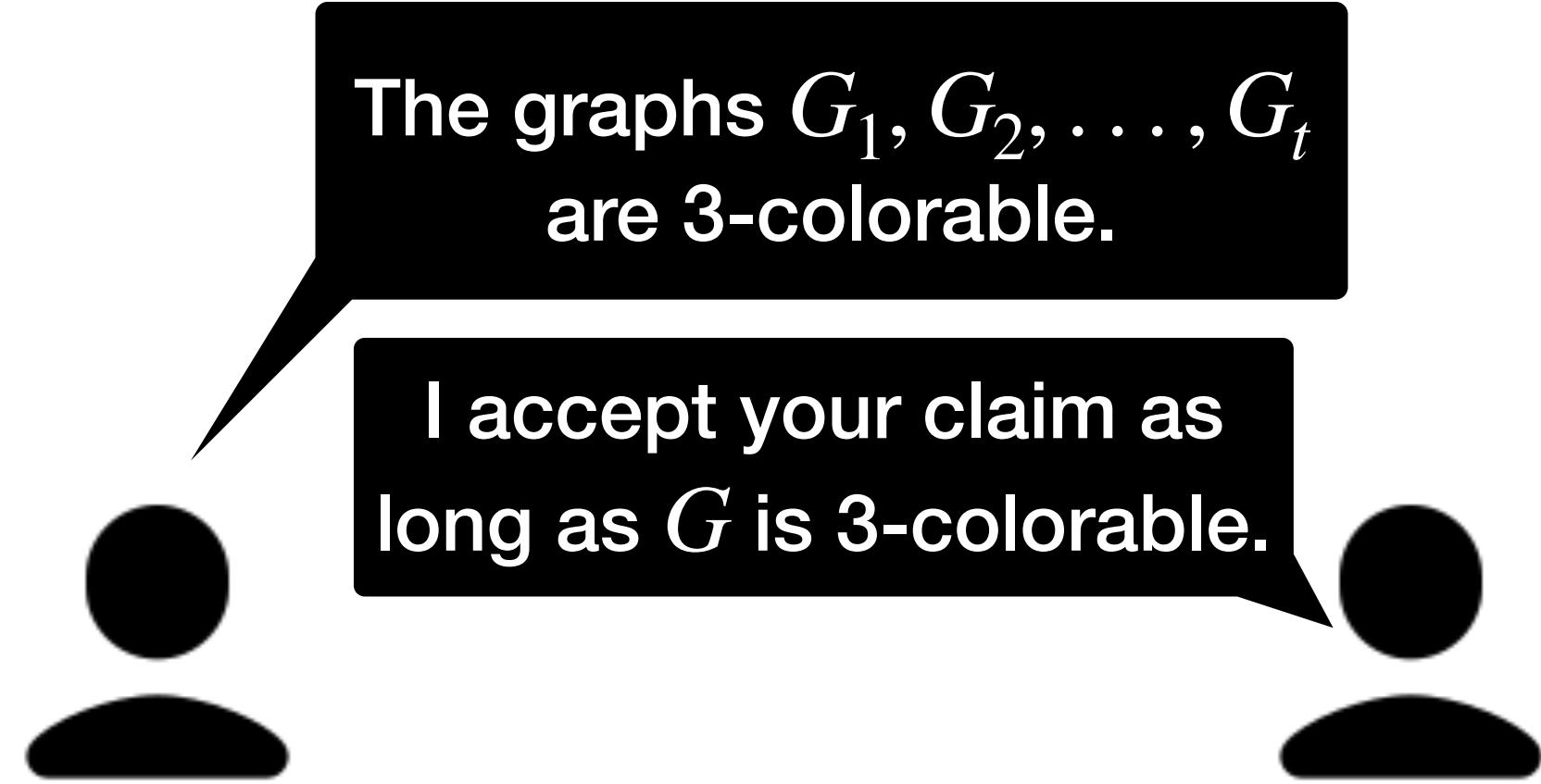
Is $x \in L(R)$?

Verifier

$V(x)$

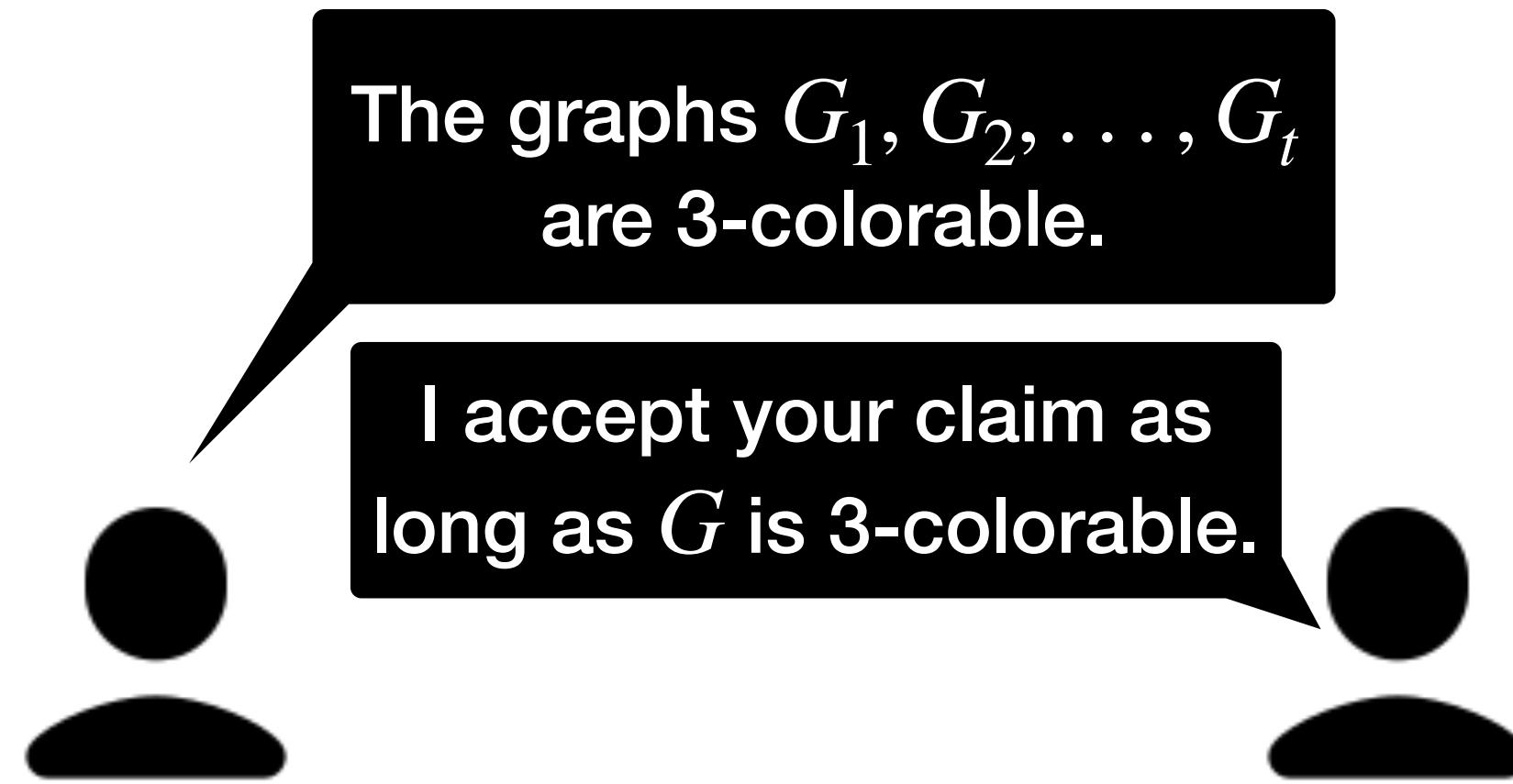
Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

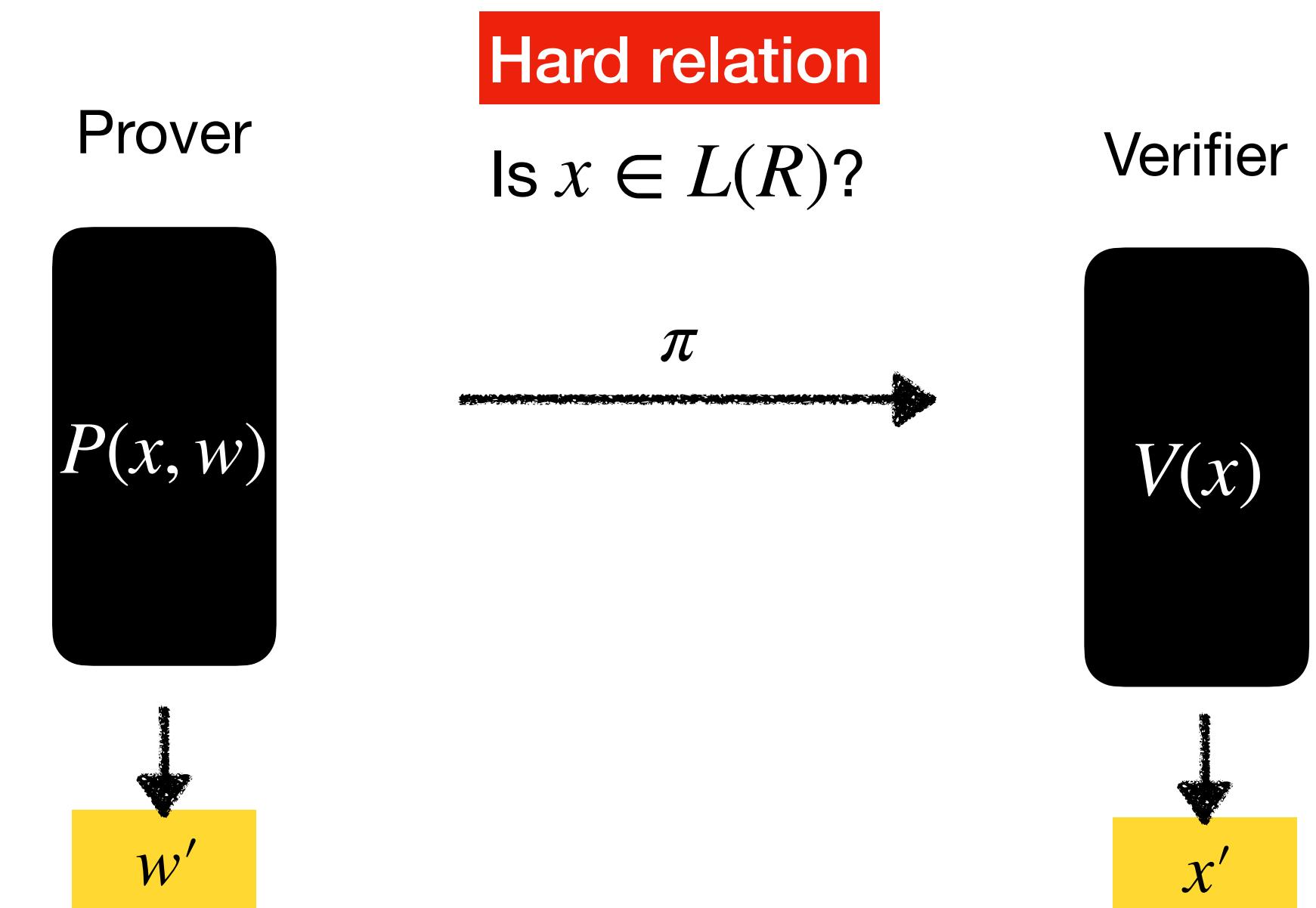


Then G is checked via other protocols

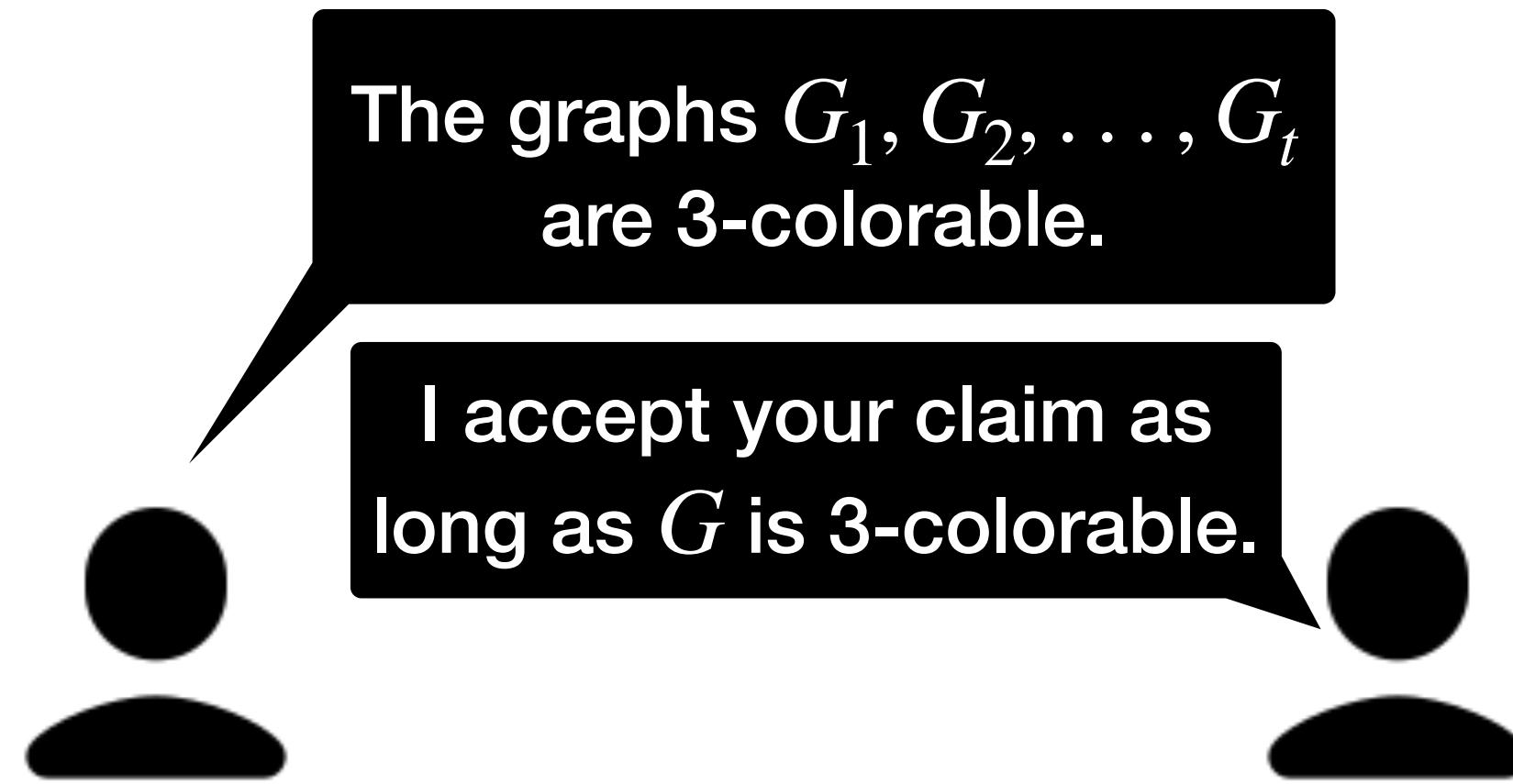
Succinct non-interactive reductions (SNRDXs)



Then G is checked via other protocols

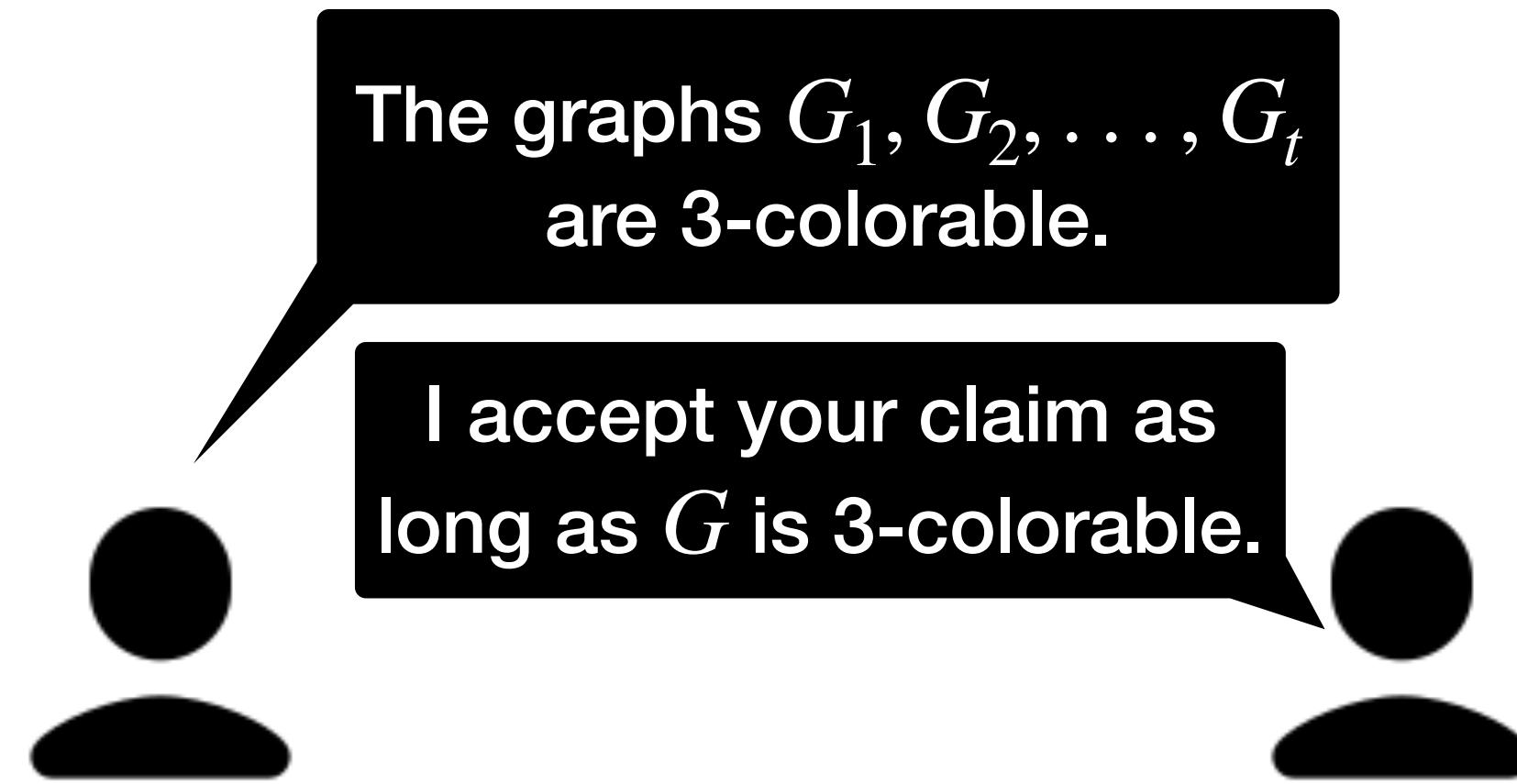


Succinct non-interactive reductions (SNRDXs)

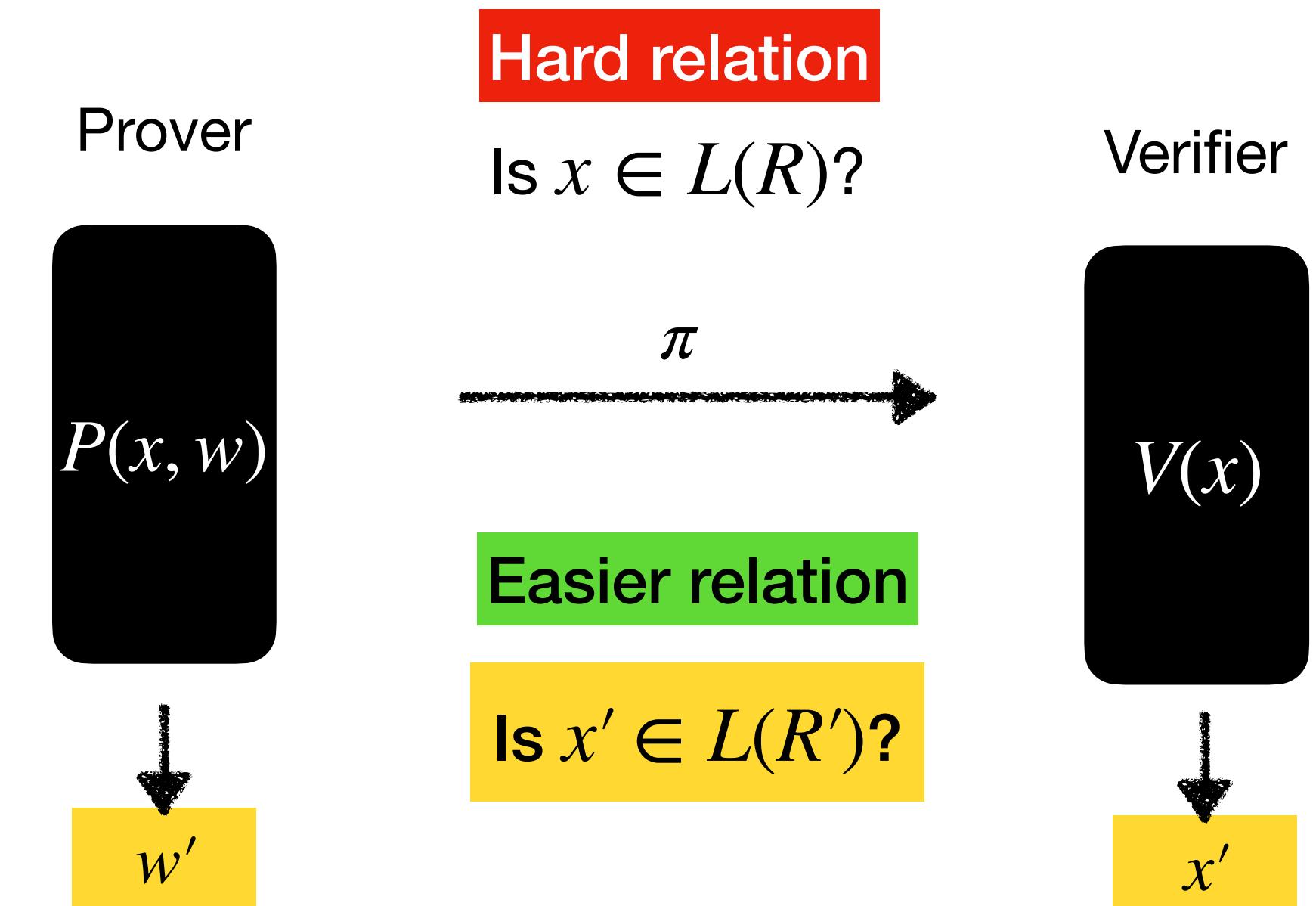


Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

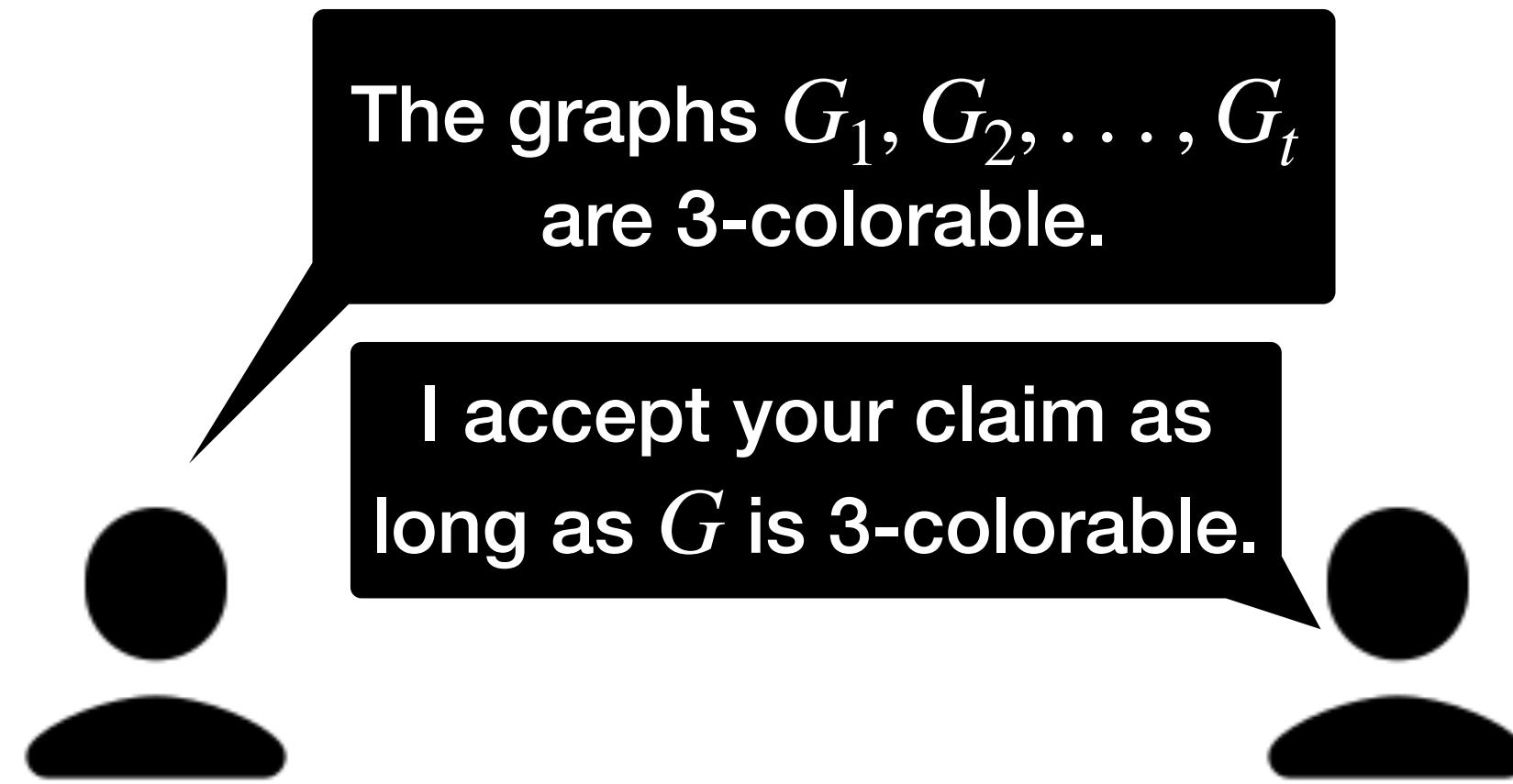


Then G is checked via other protocols

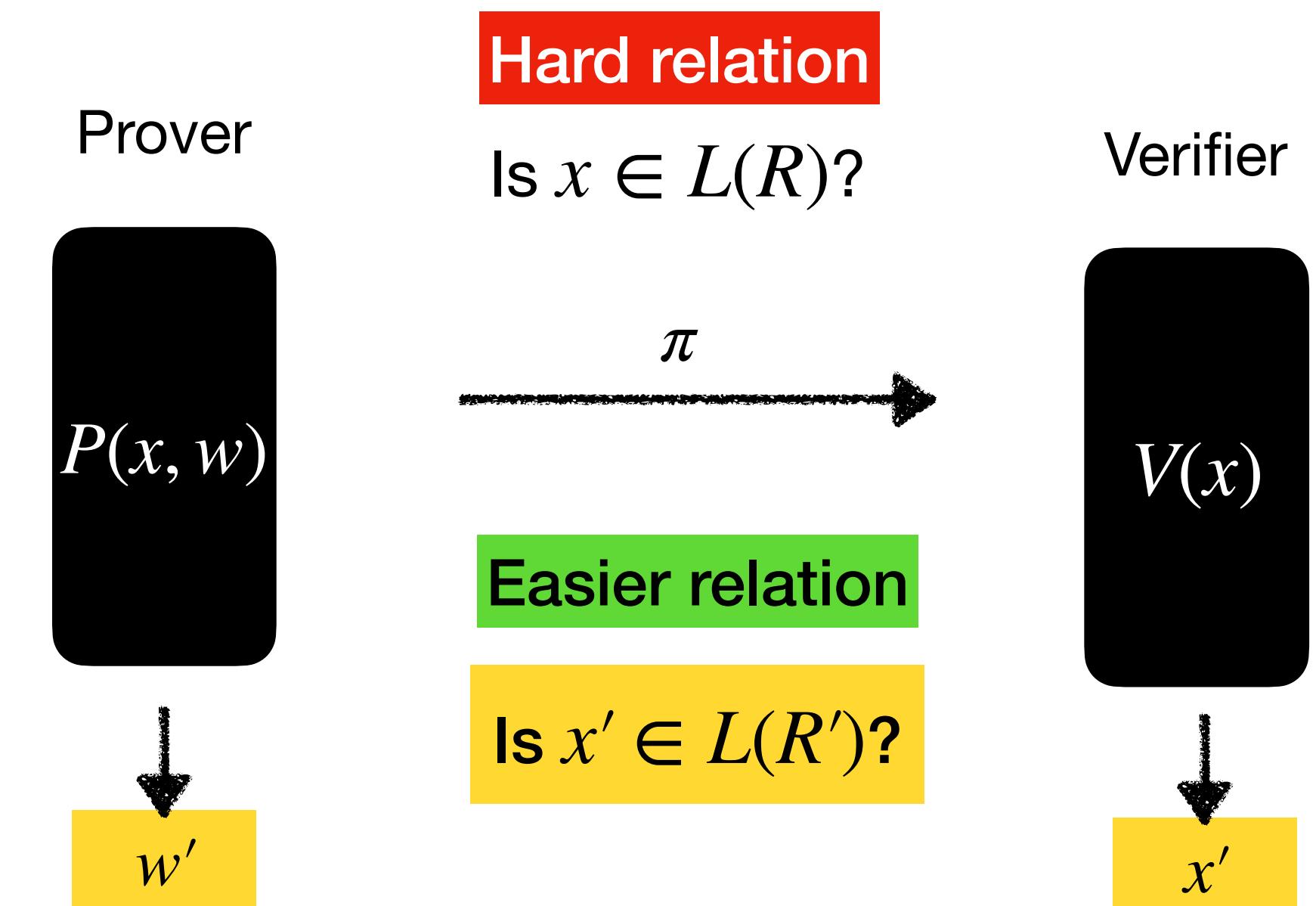


Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

Succinct non-interactive reductions (SNRDXs)



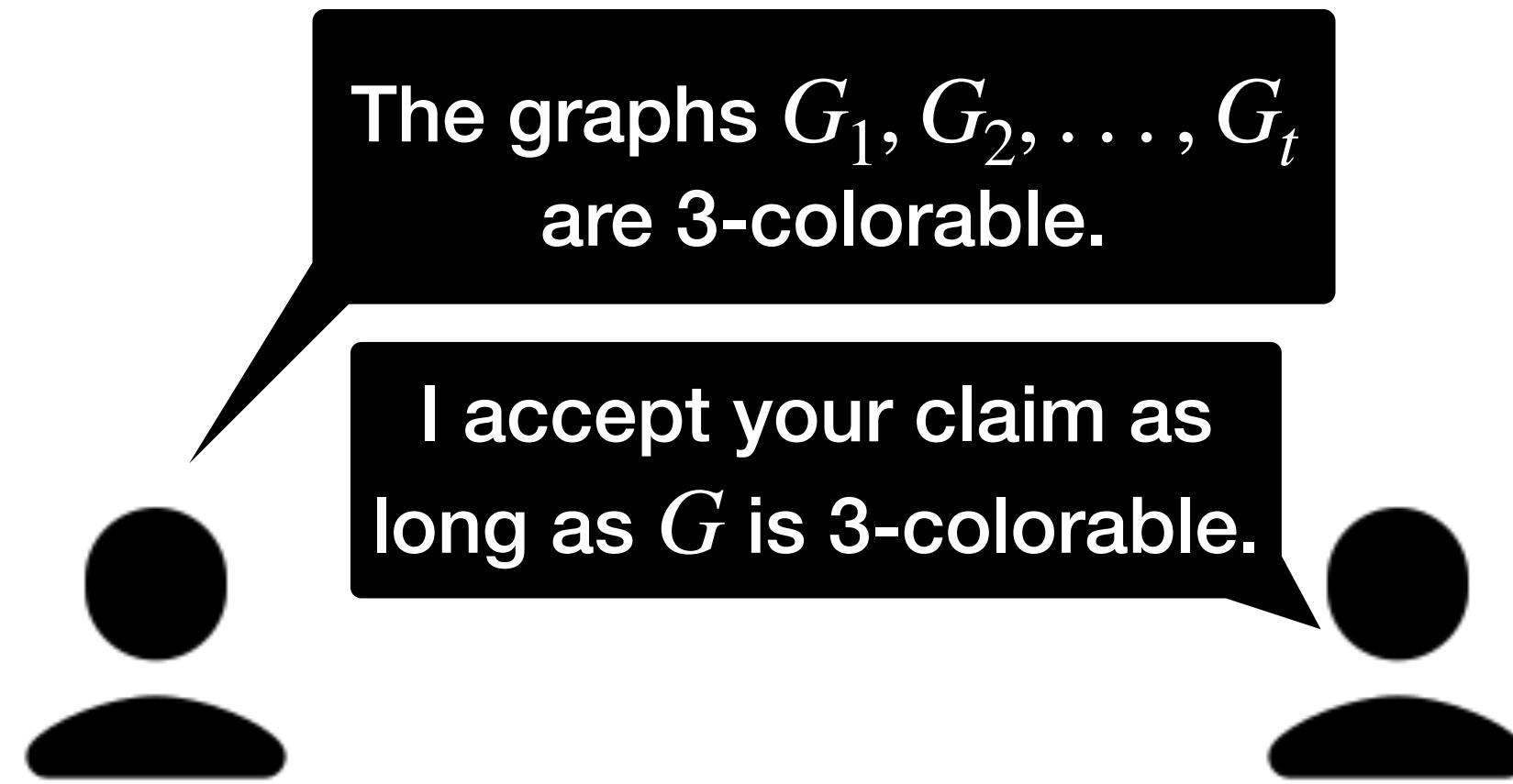
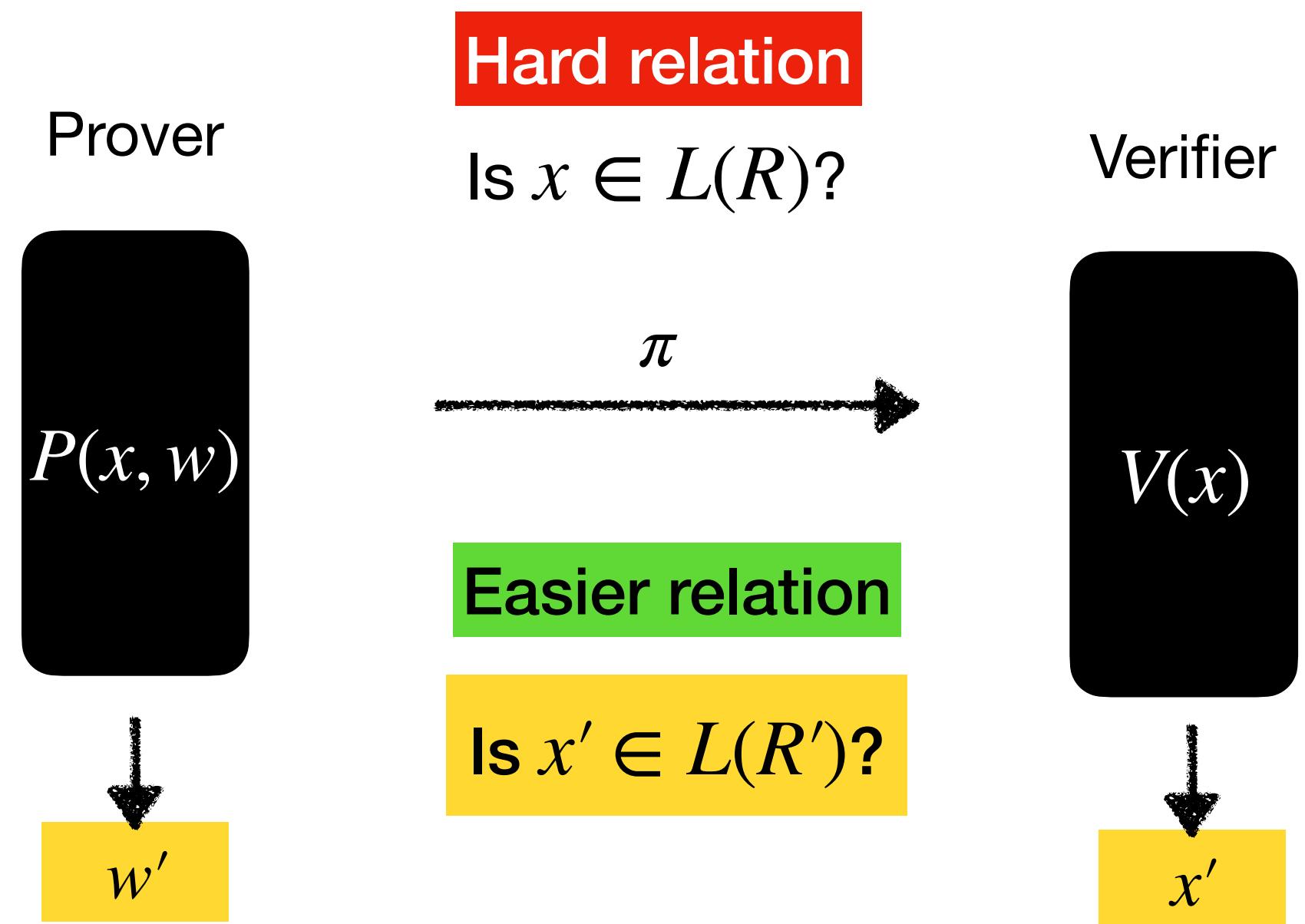
Then G is checked via other protocols



Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

Succinct non-interactive reductions (SNRDXs)

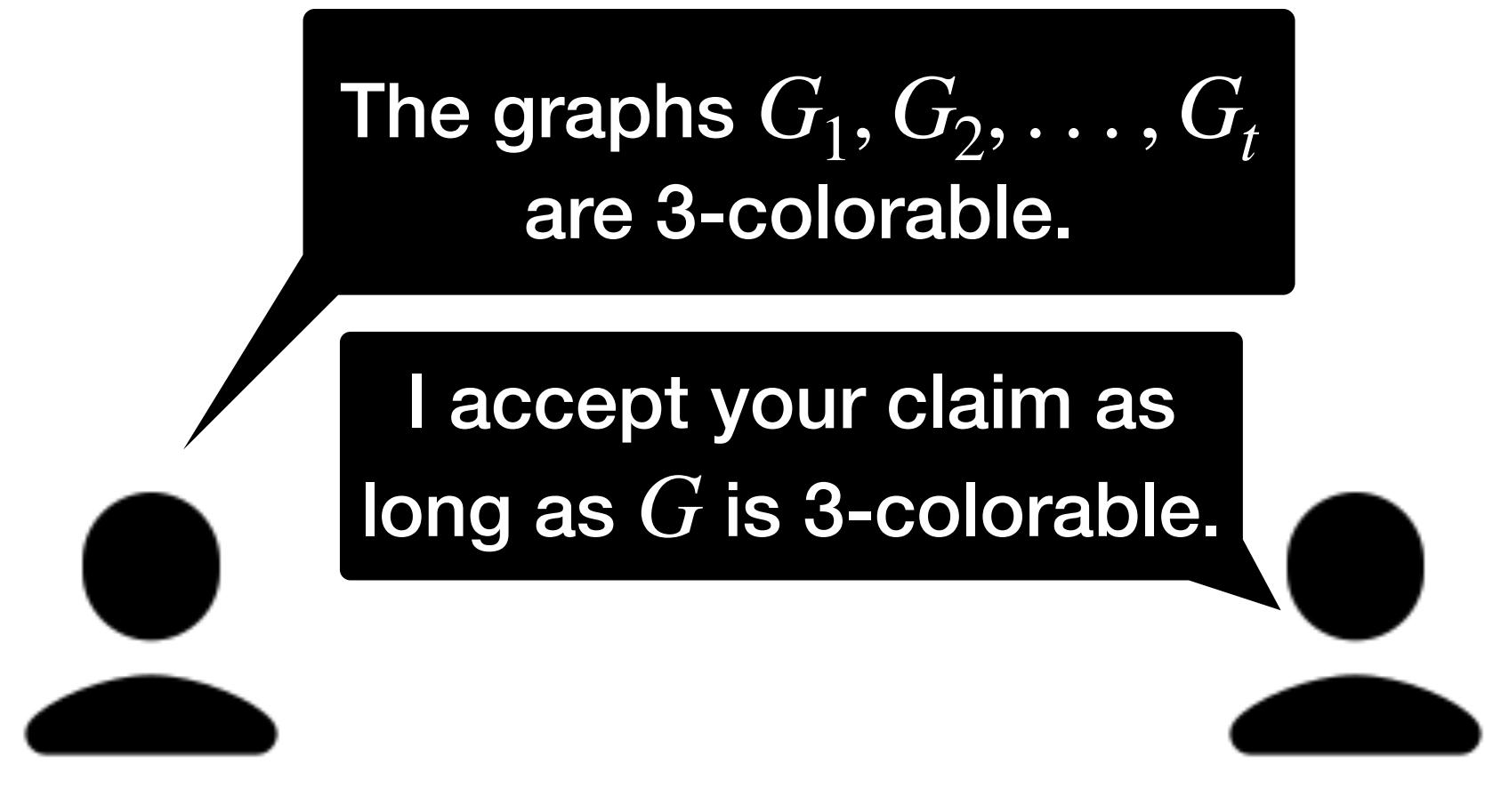


Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

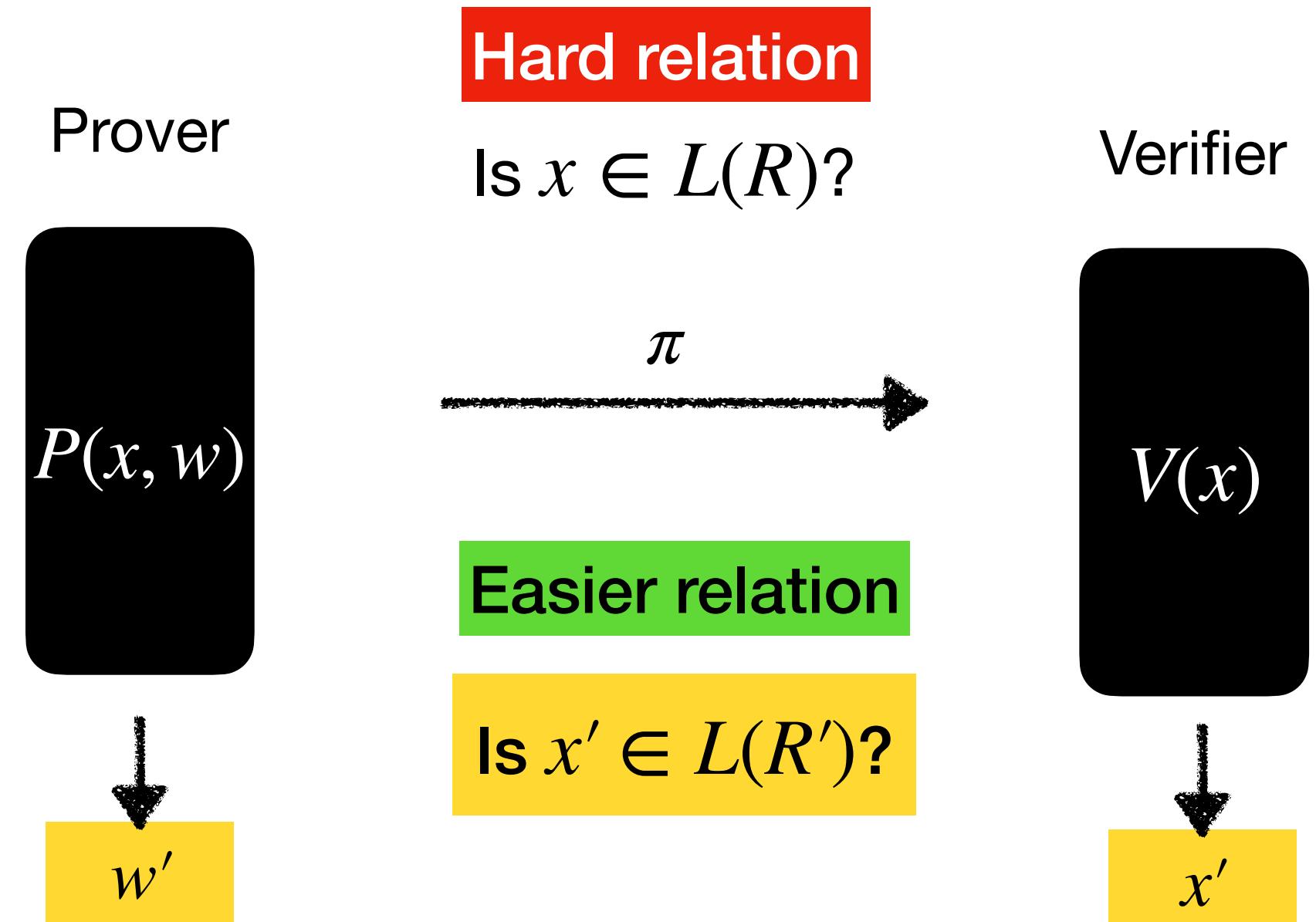
Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

Succinctness: $|\pi| \ll |w|$.

Succinct non-interactive reductions (SNRDXs)



Then G is checked via other protocols



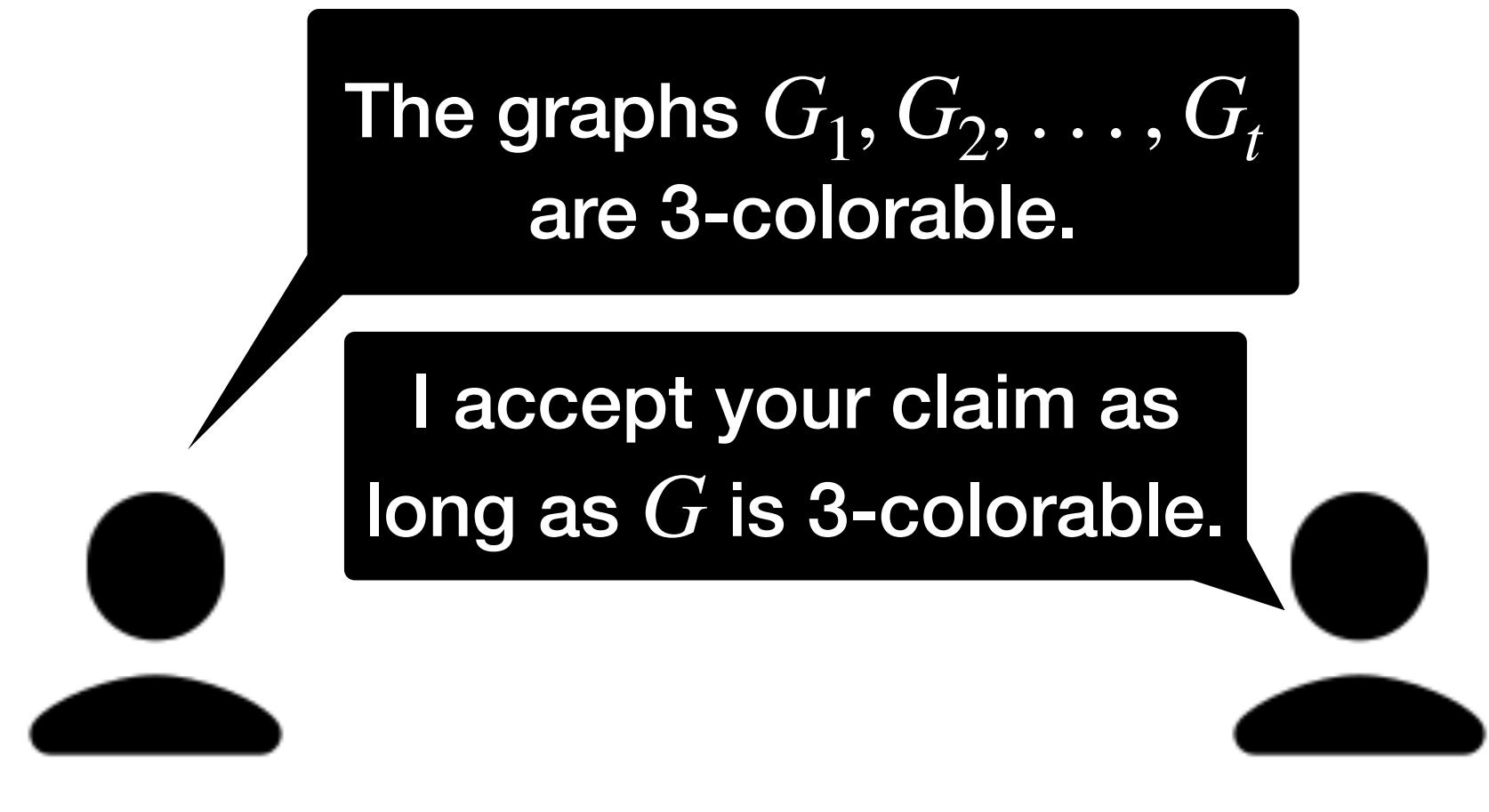
Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

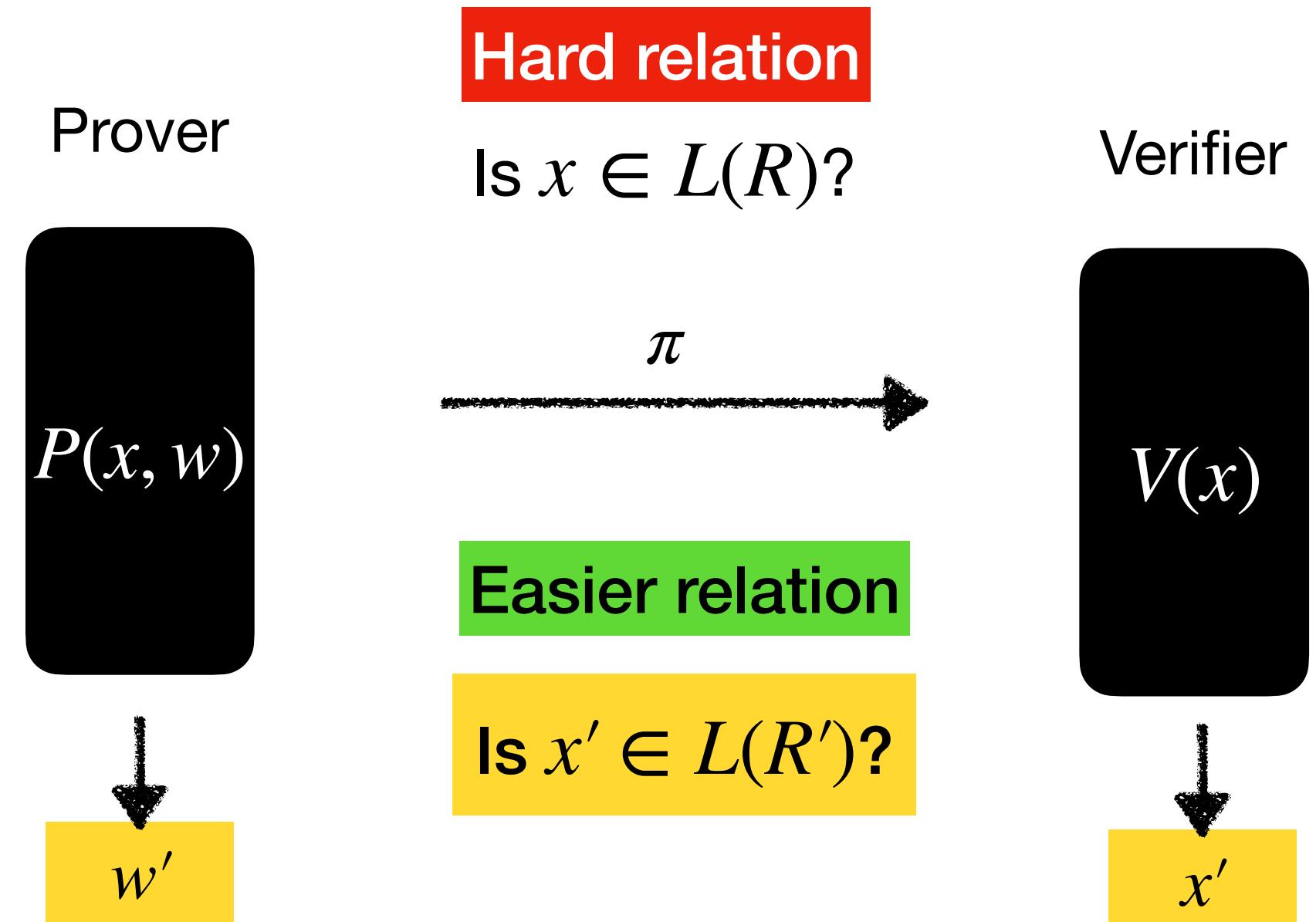
Succinctness: $|\pi| \ll |w|$.

Knowledge soundness: every **efficient** \tilde{P} that outputs a witness w' s.t. $(x', w') \in R'$, must “know” w s.t. $(x, w) \in R$ (up to a small error κ).

Succinct non-interactive reductions (SNRDXs)



Then G is checked via other protocols



Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

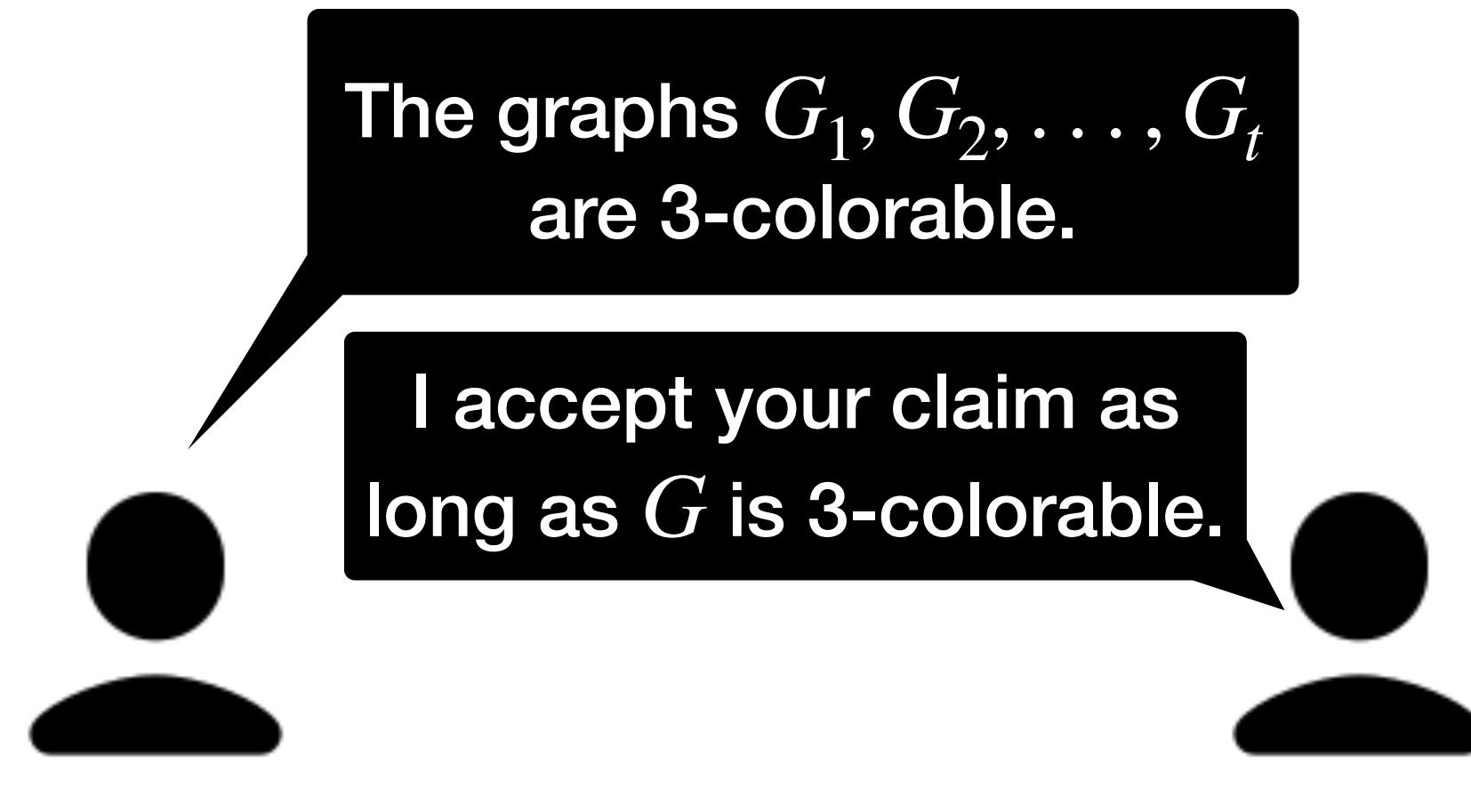
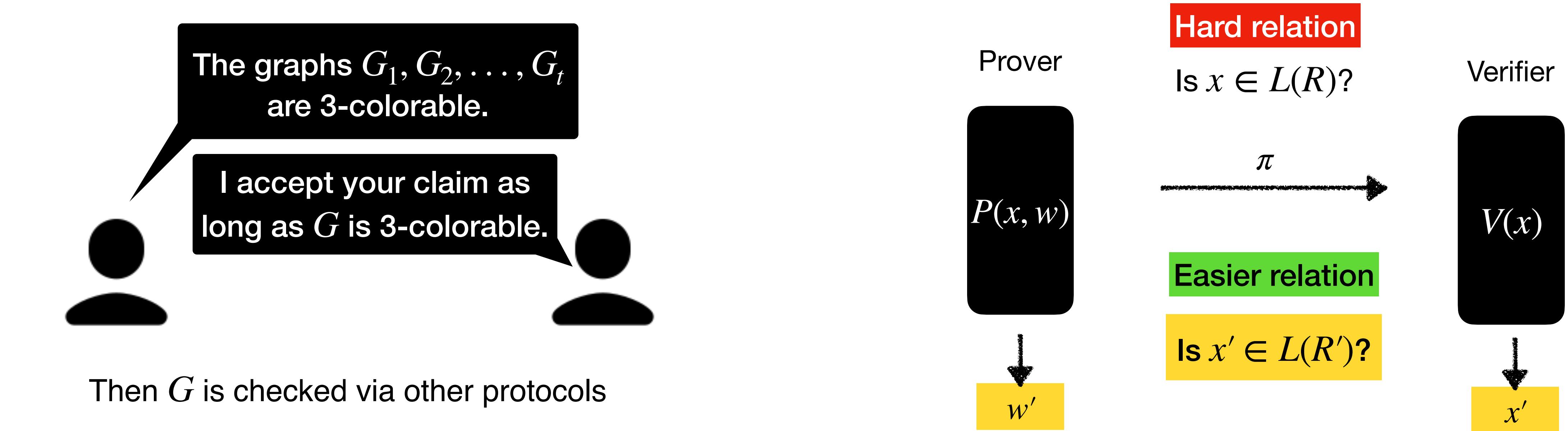
Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

Succinctness: $|\pi| \ll |w|$.

Knowledge soundness: every **efficient** \tilde{P} that outputs a witness w' s.t. $(x', w') \in R'$, must “know” w s.t. $(x, w) \in R$ (up to a small error κ).

Why are SNRDXs useful?

Succinct non-interactive reductions (SNRDXs)



Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

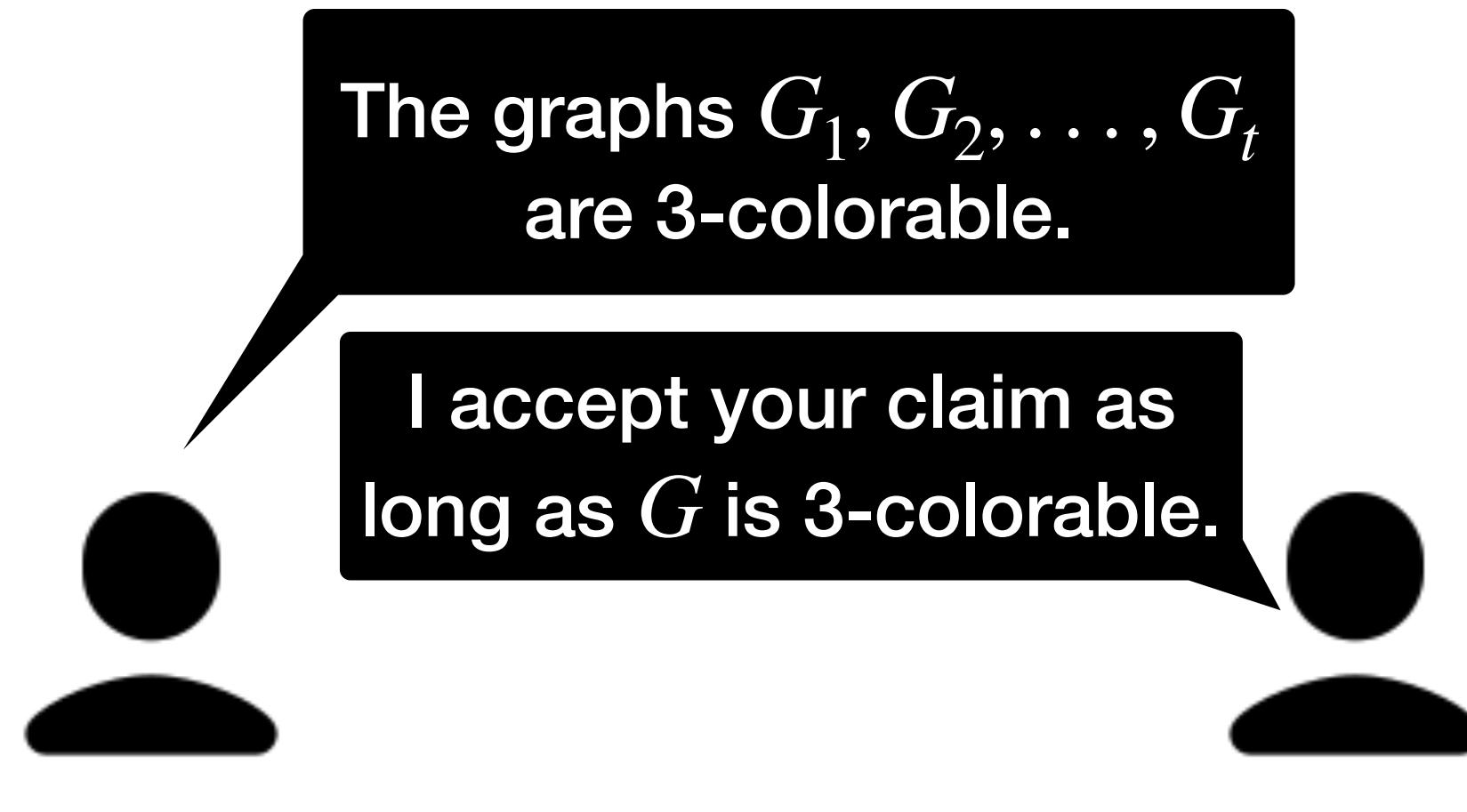
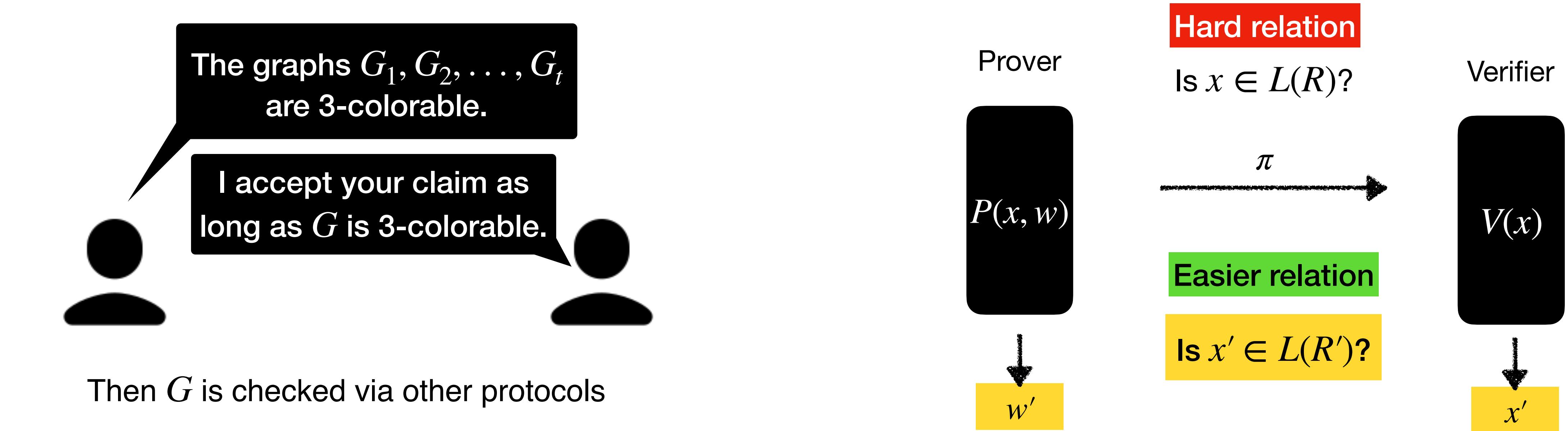
Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

Succinctness: $|\pi| \ll |w|$.

Knowledge soundness: every **efficient** \tilde{P} that outputs a witness w' s.t. $(x', w') \in R'$, must “know” w s.t. $(x, w) \in R$ (up to a small error κ).

Why are SNRDXs useful? (+) **generalization of SNARGs:** SNARG for R = SNRDX from R to trivial relation $R' = \{(x', w') : x' = 1\}$.

Succinct non-interactive reductions (SNRDXs)



Completeness: $(x, w) \in R \rightarrow P(x, w)$ outputs (π, w') and $V(x, \pi)$ outputs x' such that $(x', w') \in R'$.

Soundness: $x \notin L(R) \rightarrow$ every **efficient** \tilde{P} makes $V(x)$ output x' s.t. $x' \notin L(R')$ (up to a small error ϵ).

Succinctness: $|\pi| \ll |w|$.

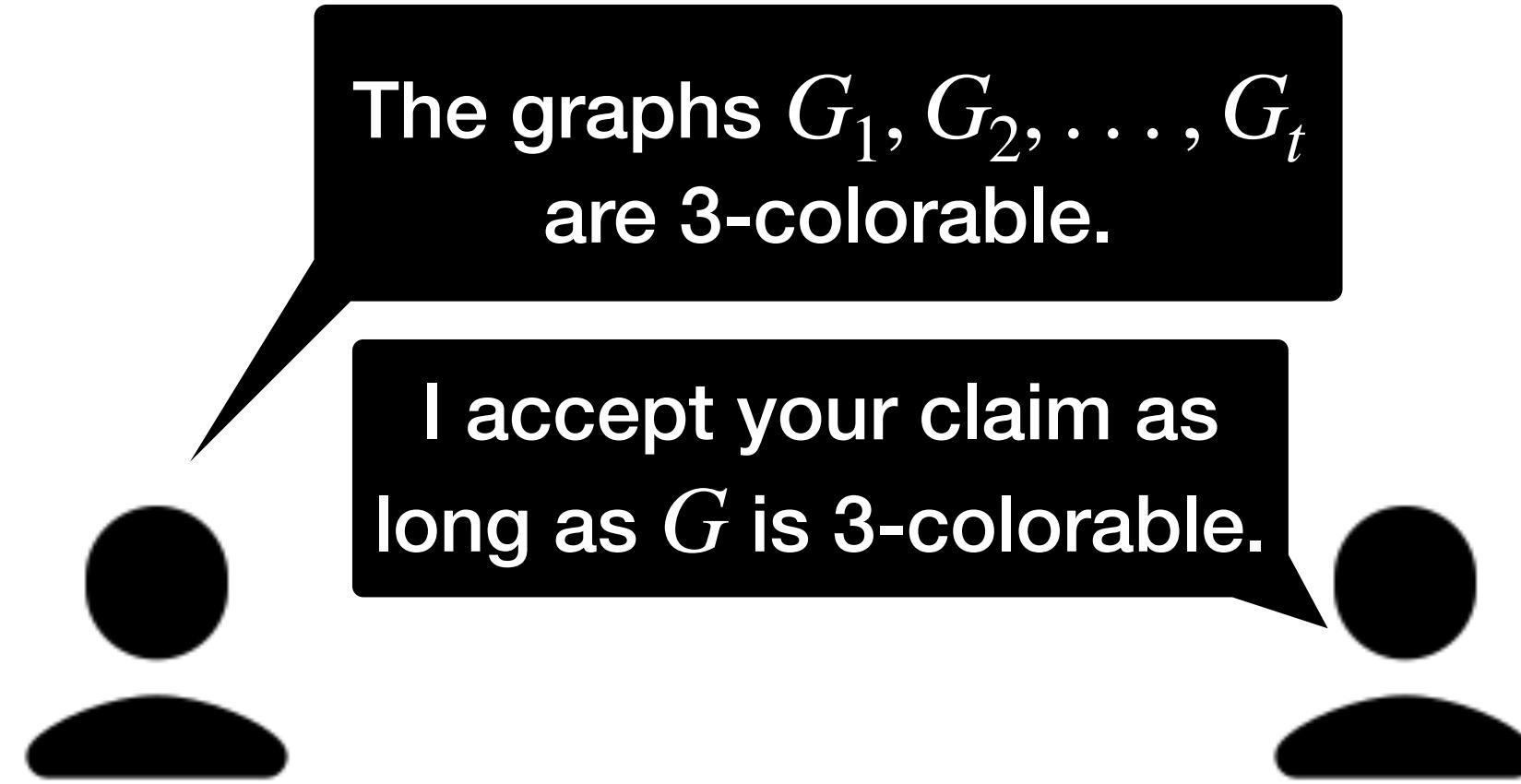
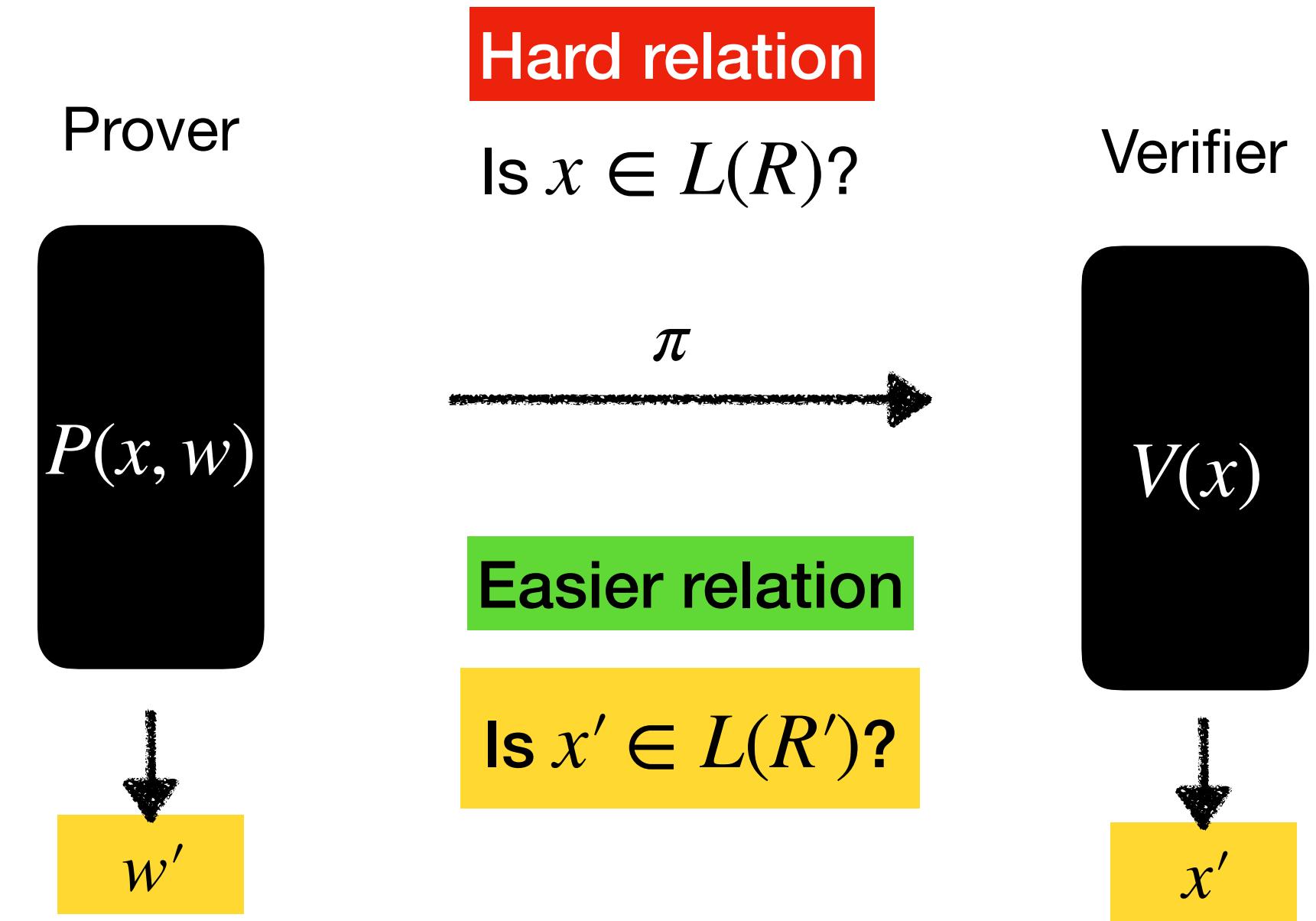
Knowledge soundness: every **efficient** \tilde{P} that outputs a witness w' s.t. $(x', w') \in R'$, must “know” w s.t. $(x, w) \in R$ (up to a small error κ).

Why are SNRDXs useful?

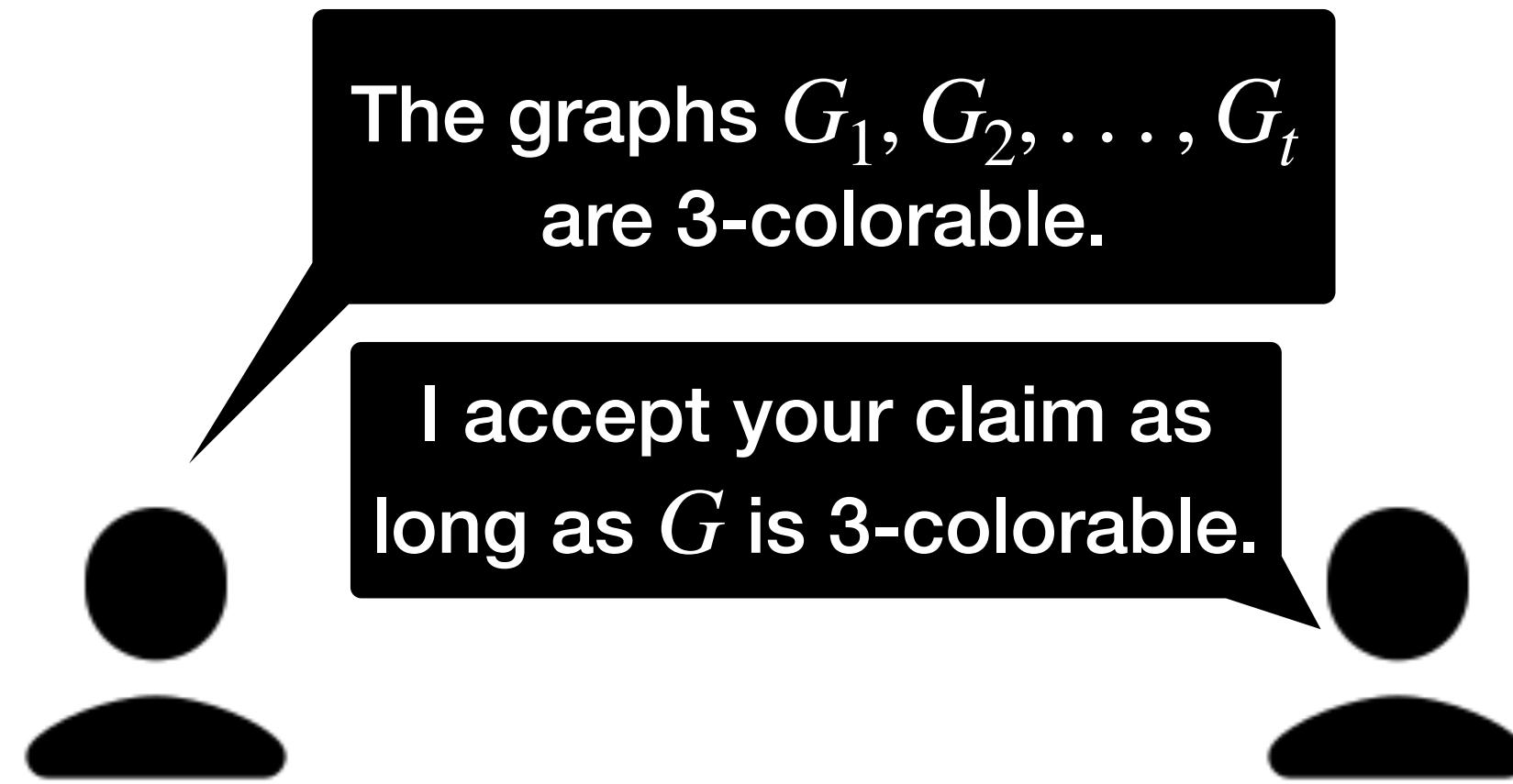
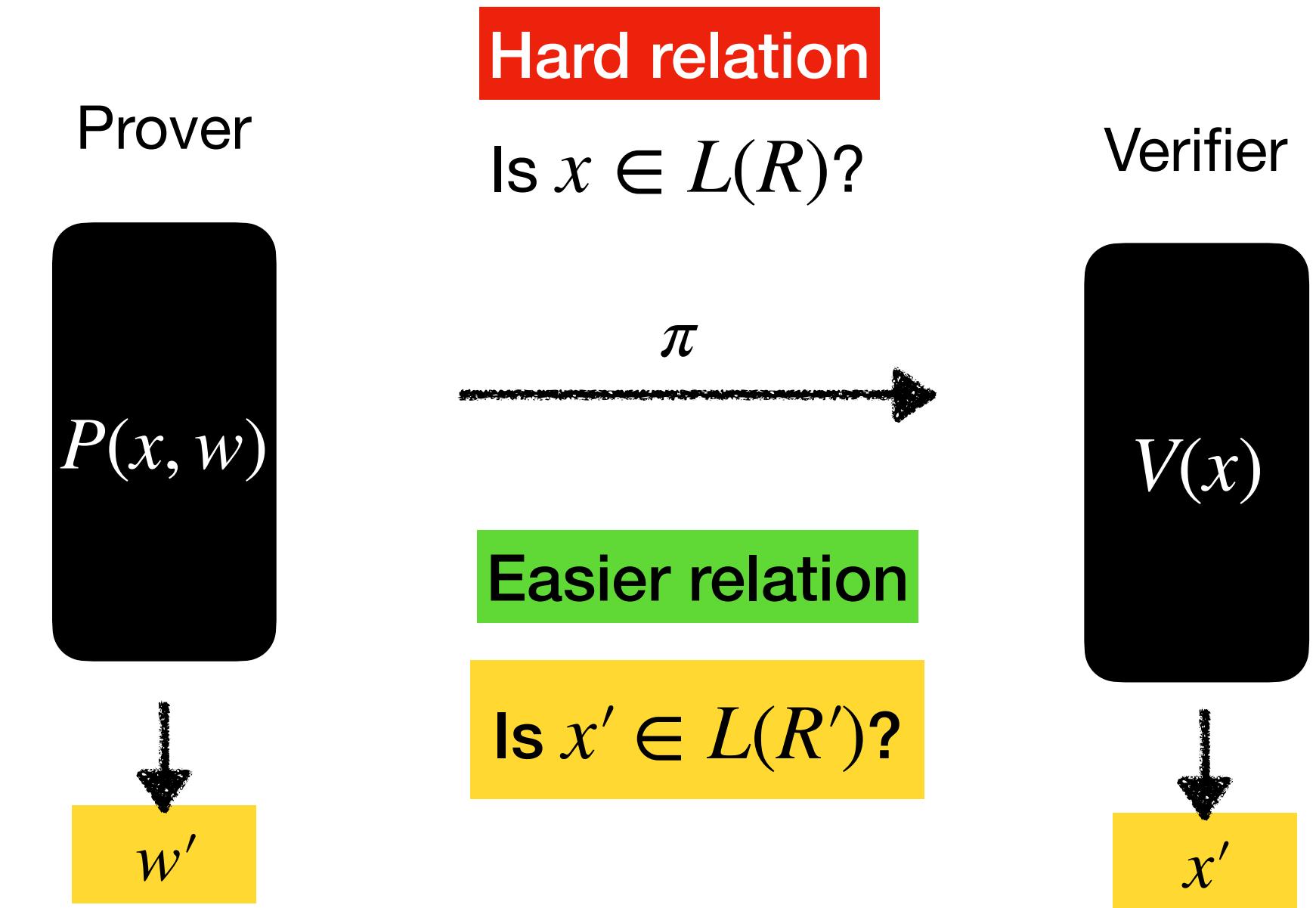
(+) **generalization of SNARGs:** SNARG for R = SNRDX from R to trivial relation $R' = \{(x', w') : x' = 1\}$.

(+) **cheaper to construct than SNARGs for some relations R' .**

Succinct non-interactive reductions (SNRDXs)



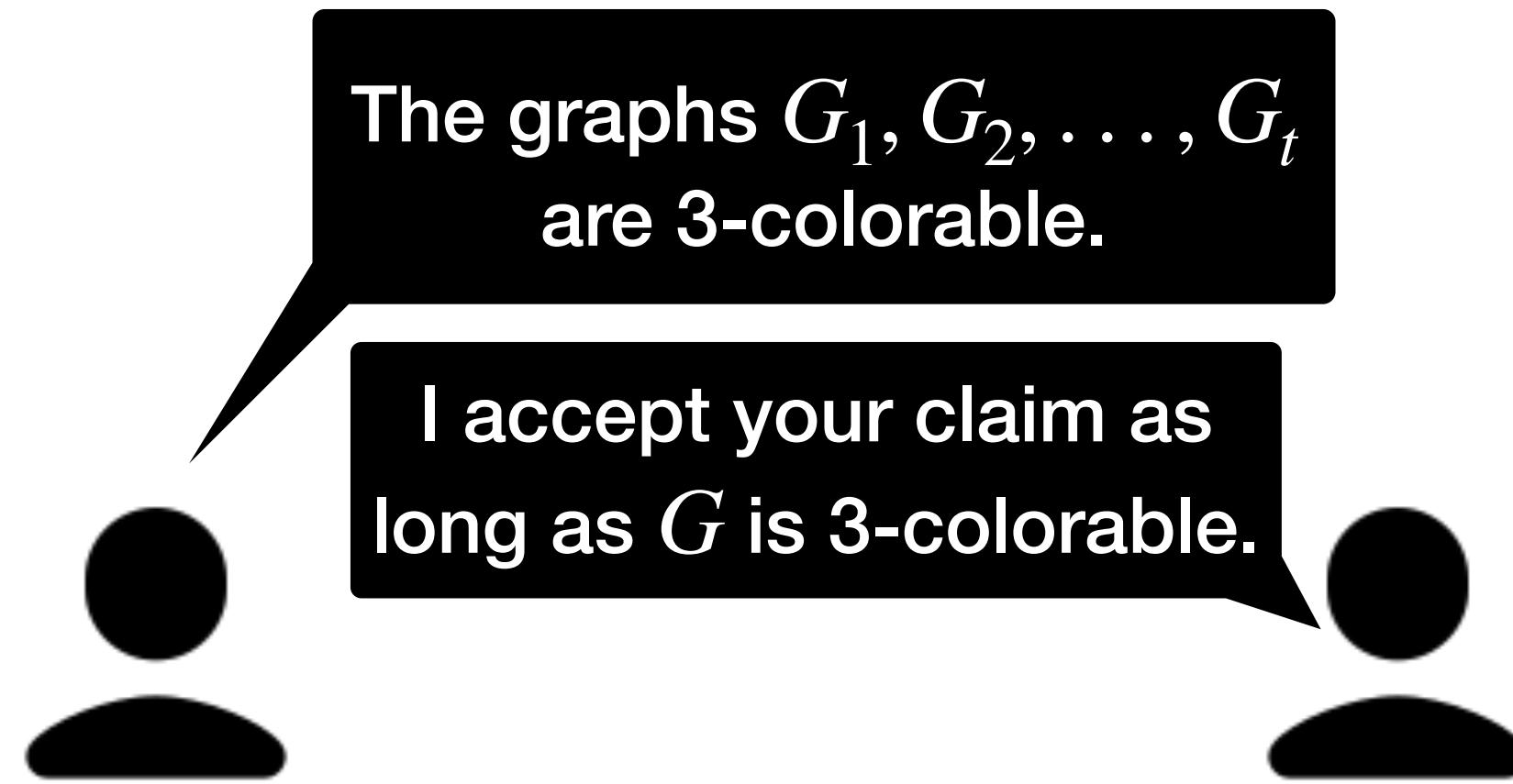
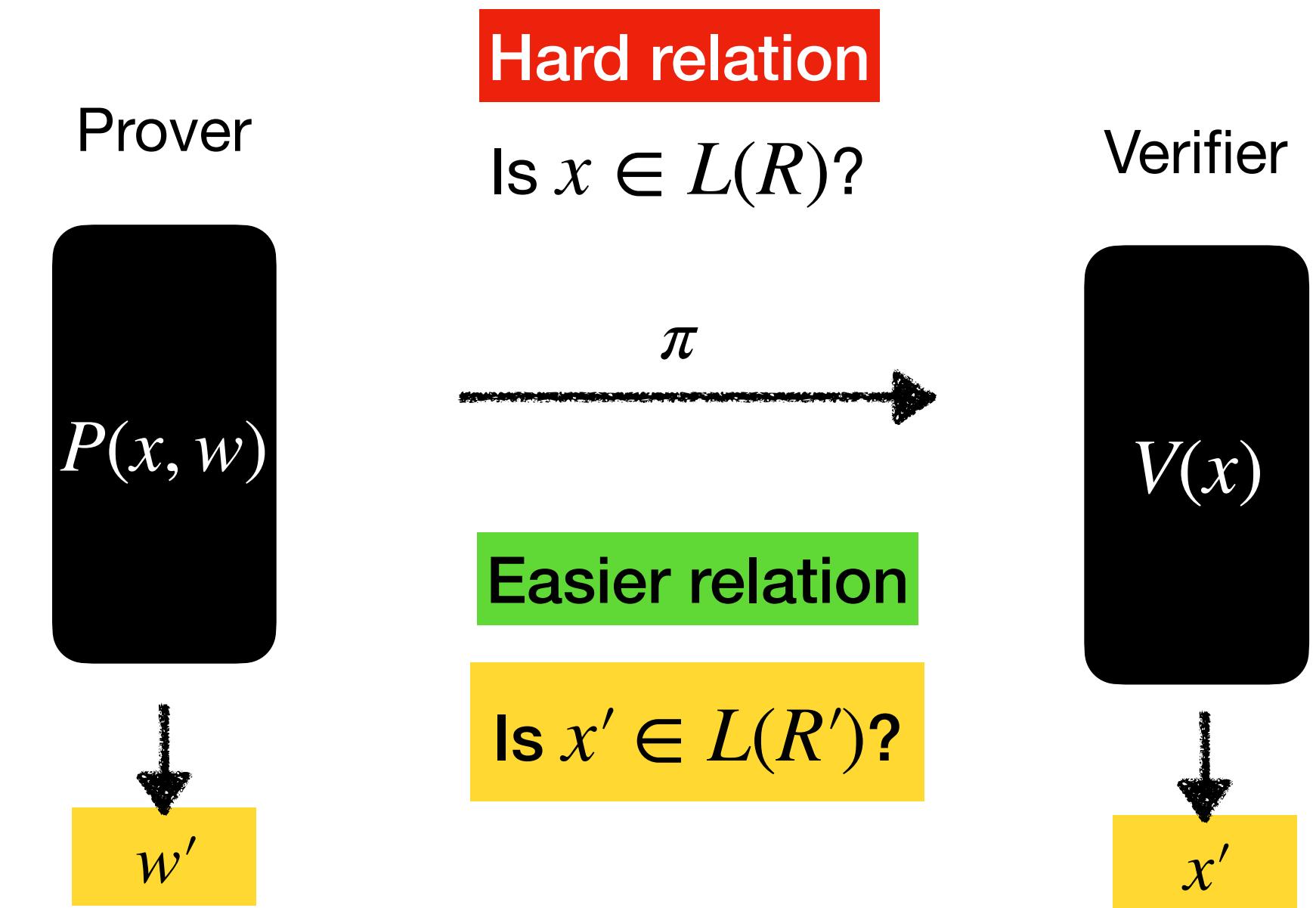
Succinct non-interactive reductions (SNRDXs)



SNRDXs have **numerous real-world applications**.

SNRDXs (packaged as accumulation schemes or folding schemes) yield **proof-carrying data**, **incrementally verifiable computation**, etc.

Succinct non-interactive reductions (SNRDXs)



SNRDXs have **numerous real-world applications**.

SNRDXs (packaged as accumulation schemes or folding schemes) yield **proof-carrying data**, **incrementally verifiable computation**, etc.

...

Where do SNARGs/SNRDXs come from?

Where do SNARGs/SNRDXs come from?

A few places.

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Where do SNARGs/SNRD_Xs come from?

A few places. Our focus:

Hash-based SNARGs/SNRD_Xs

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Efficient

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Efficient

Public (transparent) setup

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Efficient

Public (transparent) setup

Plausibly post-quantum

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Efficient

Public (transparent) setup

Plausibly post-quantum

today

Recall: SNARG BCS[IOP, MT]

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

$x \in L(R) ?$

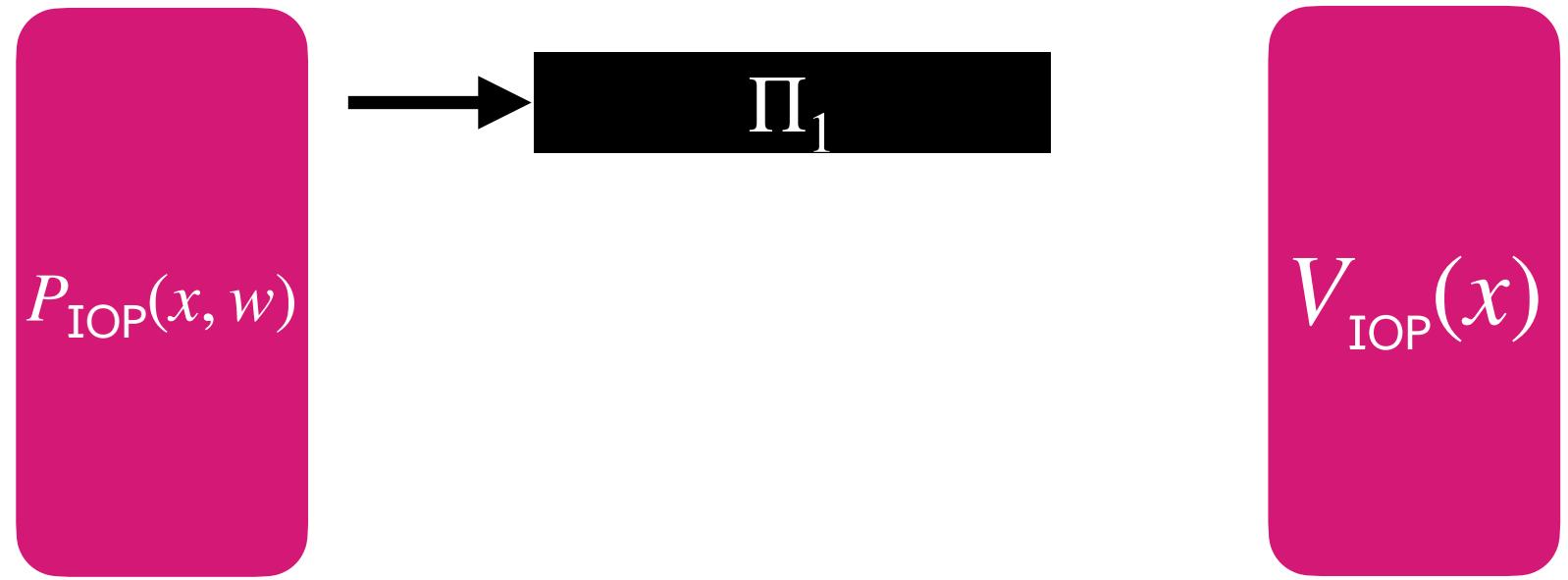
$P_{\text{IOP}}(x, w)$

$V_{\text{IOP}}(x)$

Recall: SNARG BCS[IOP, MT]

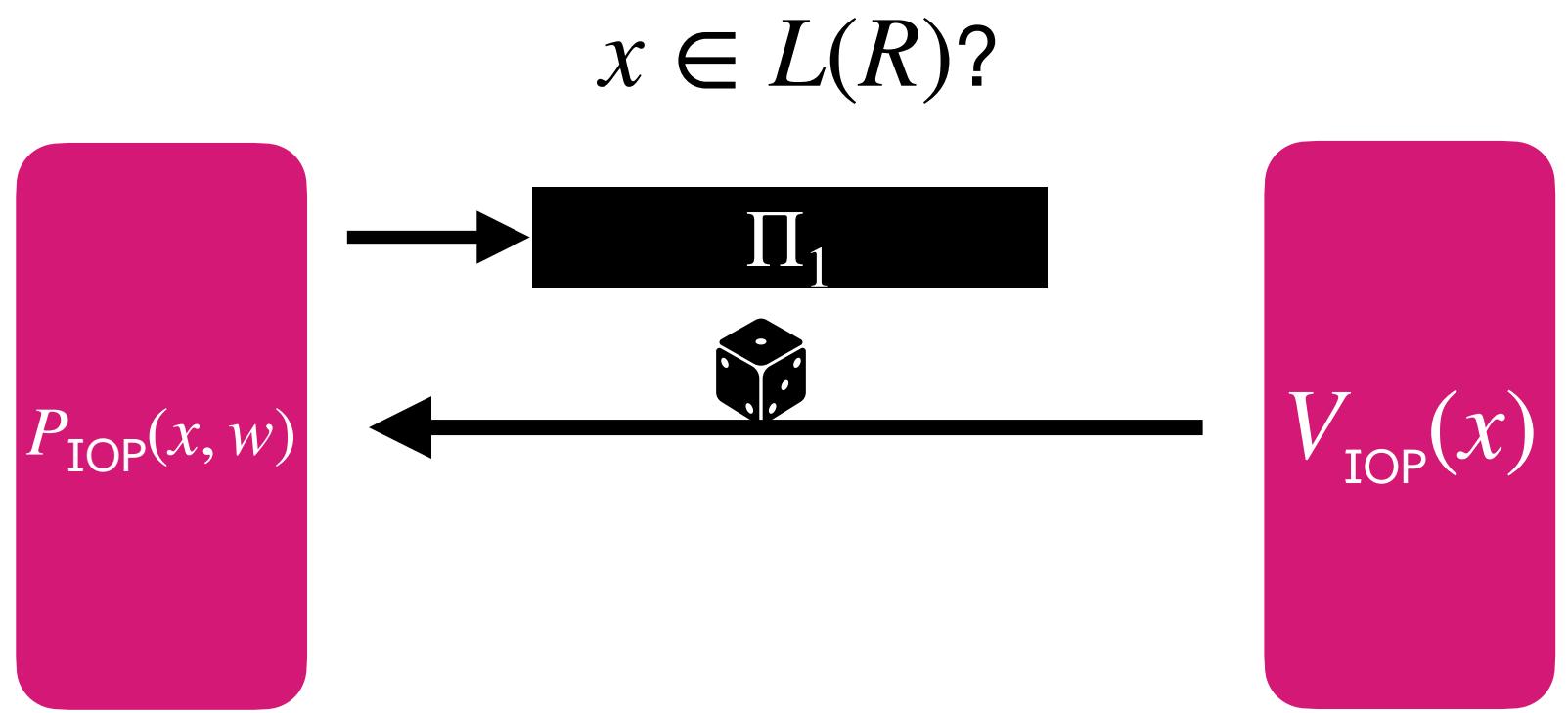
Ingredient #1: Interactive oracle proof (IOP)

$x \in L(R) ?$



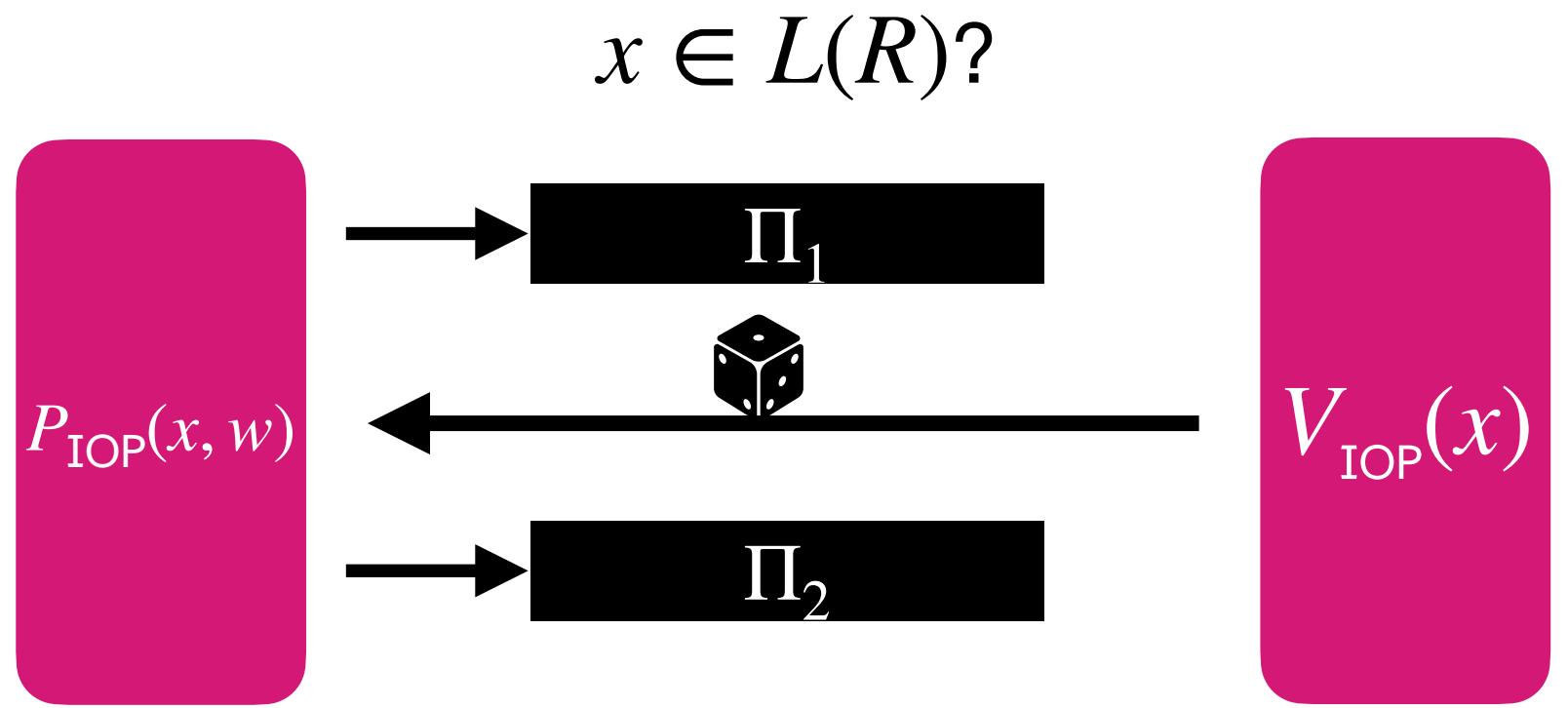
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



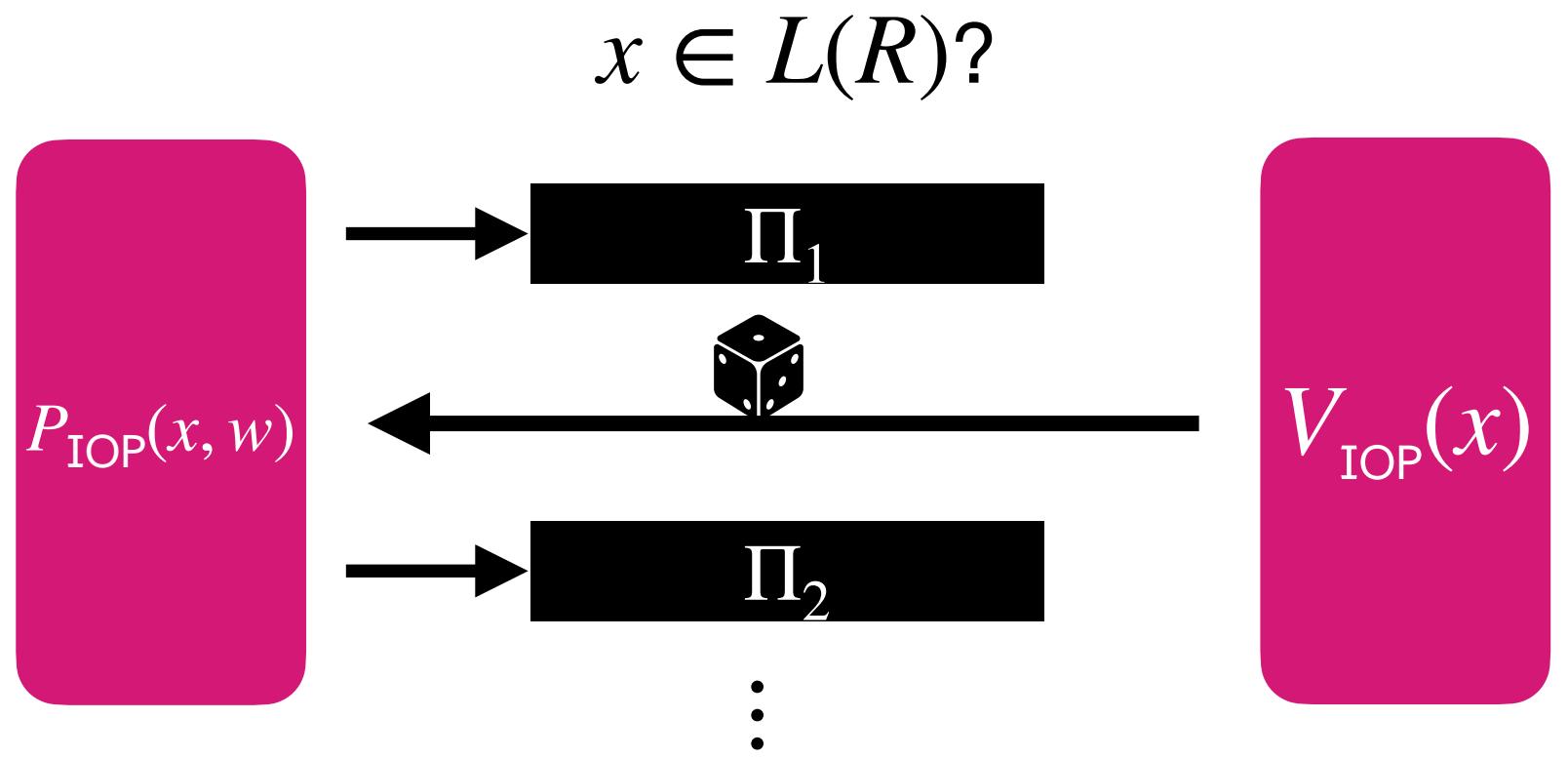
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



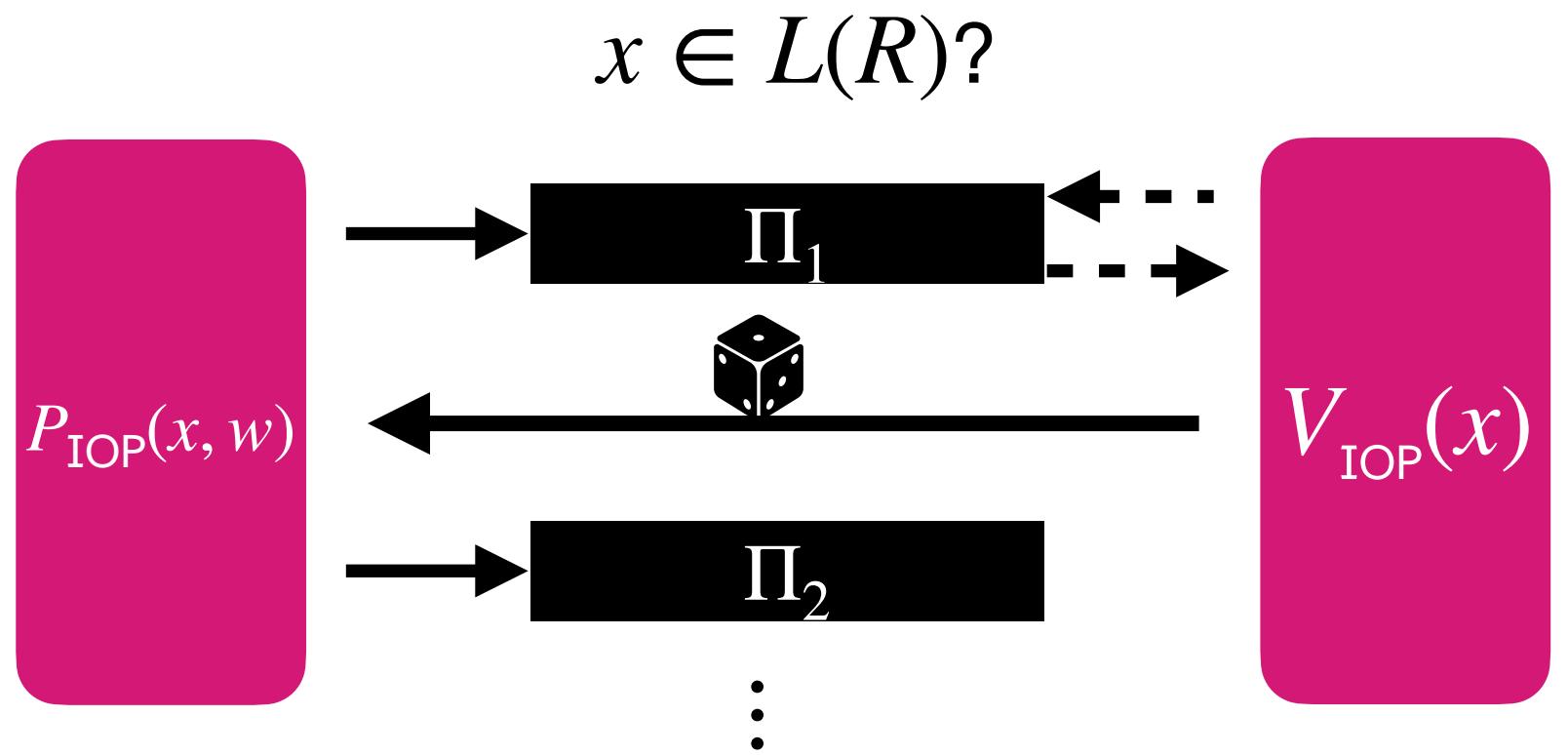
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



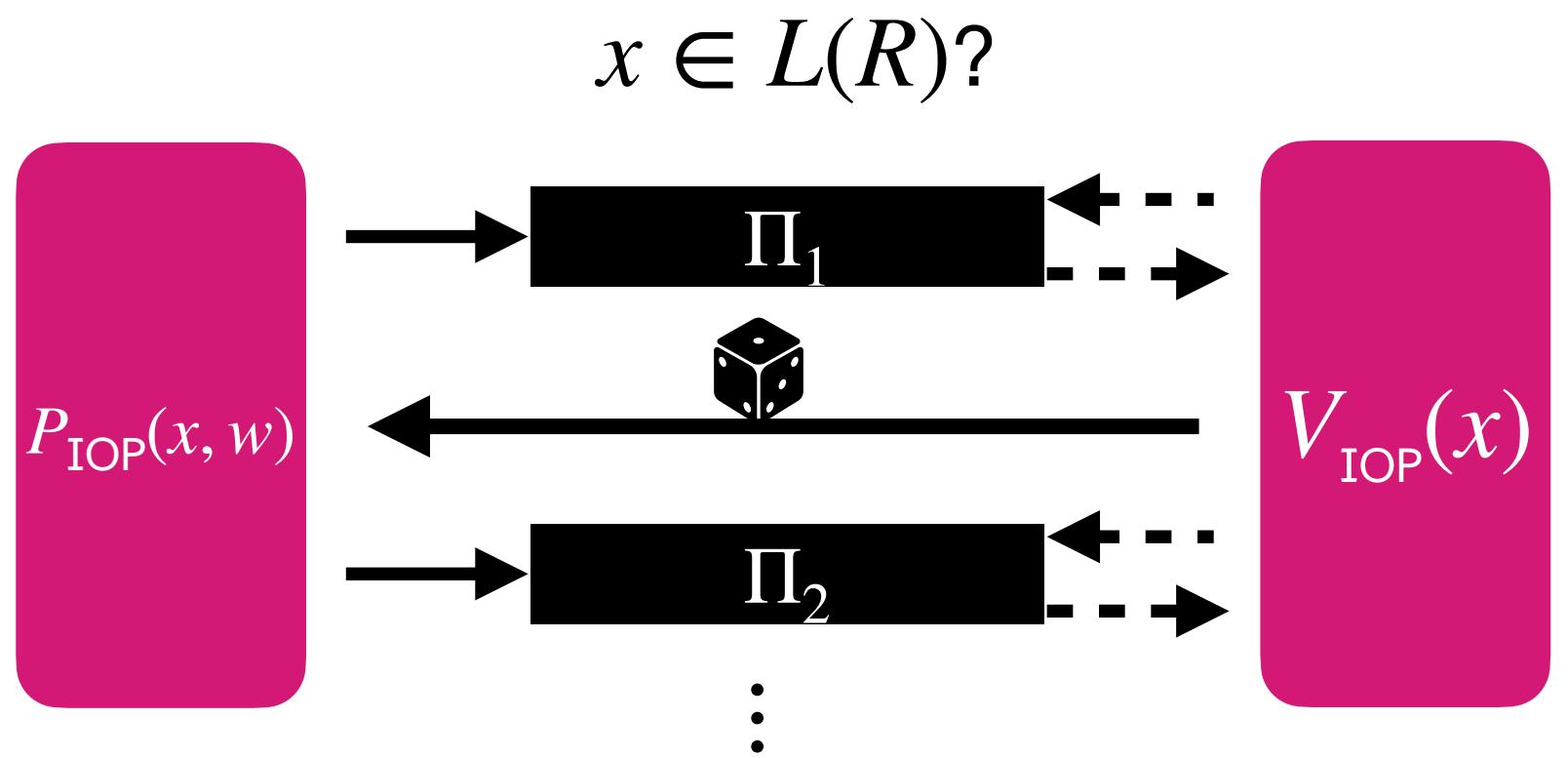
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



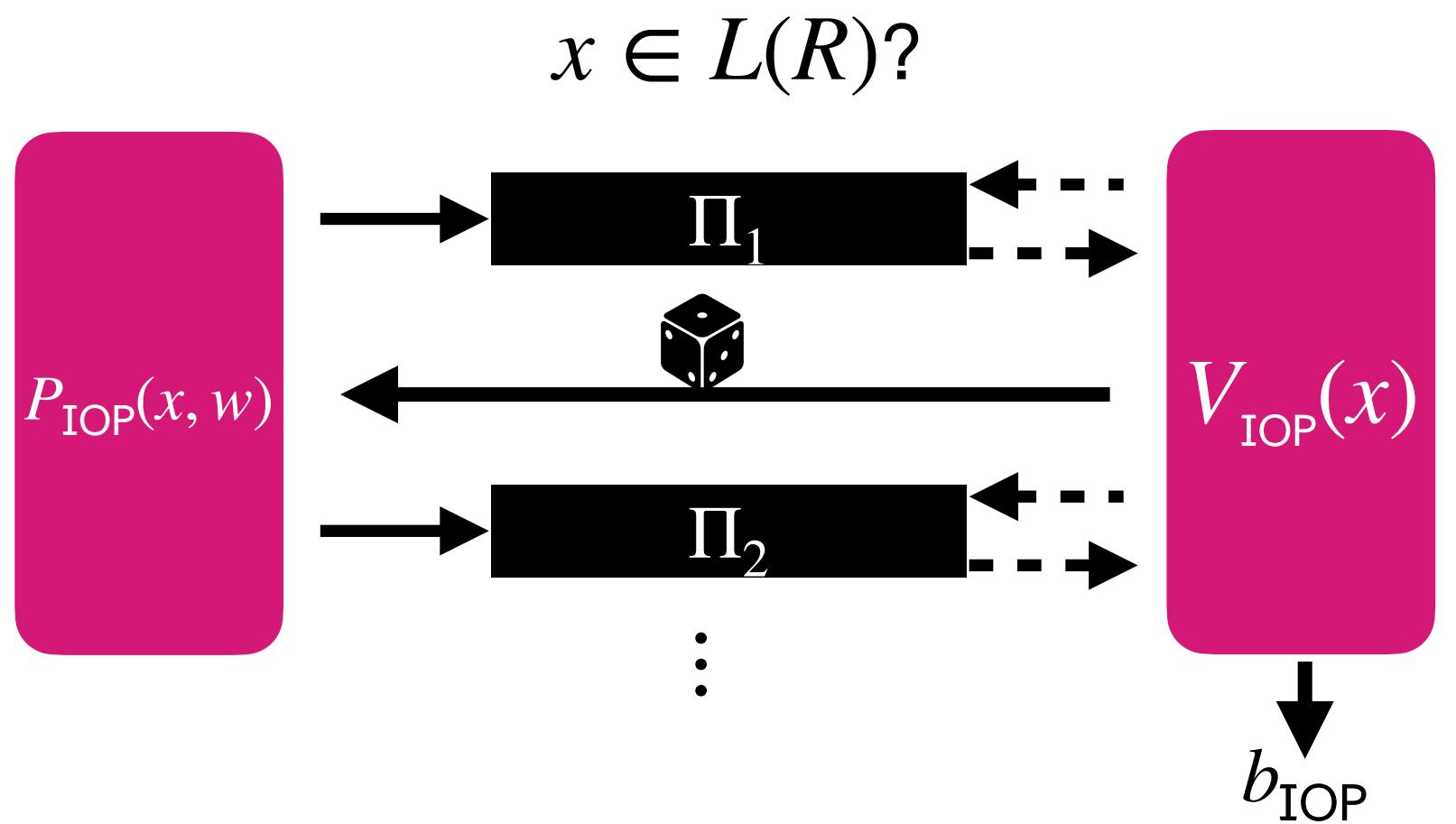
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



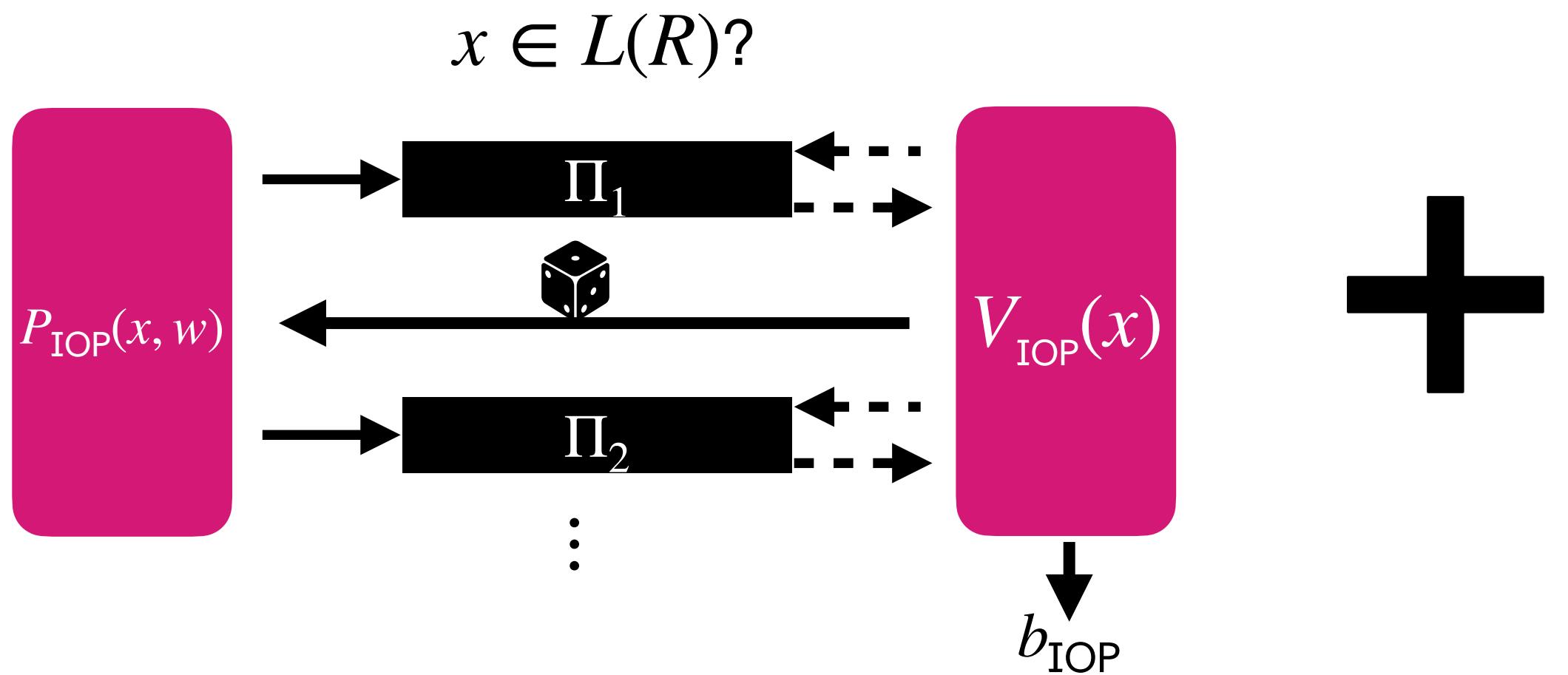
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



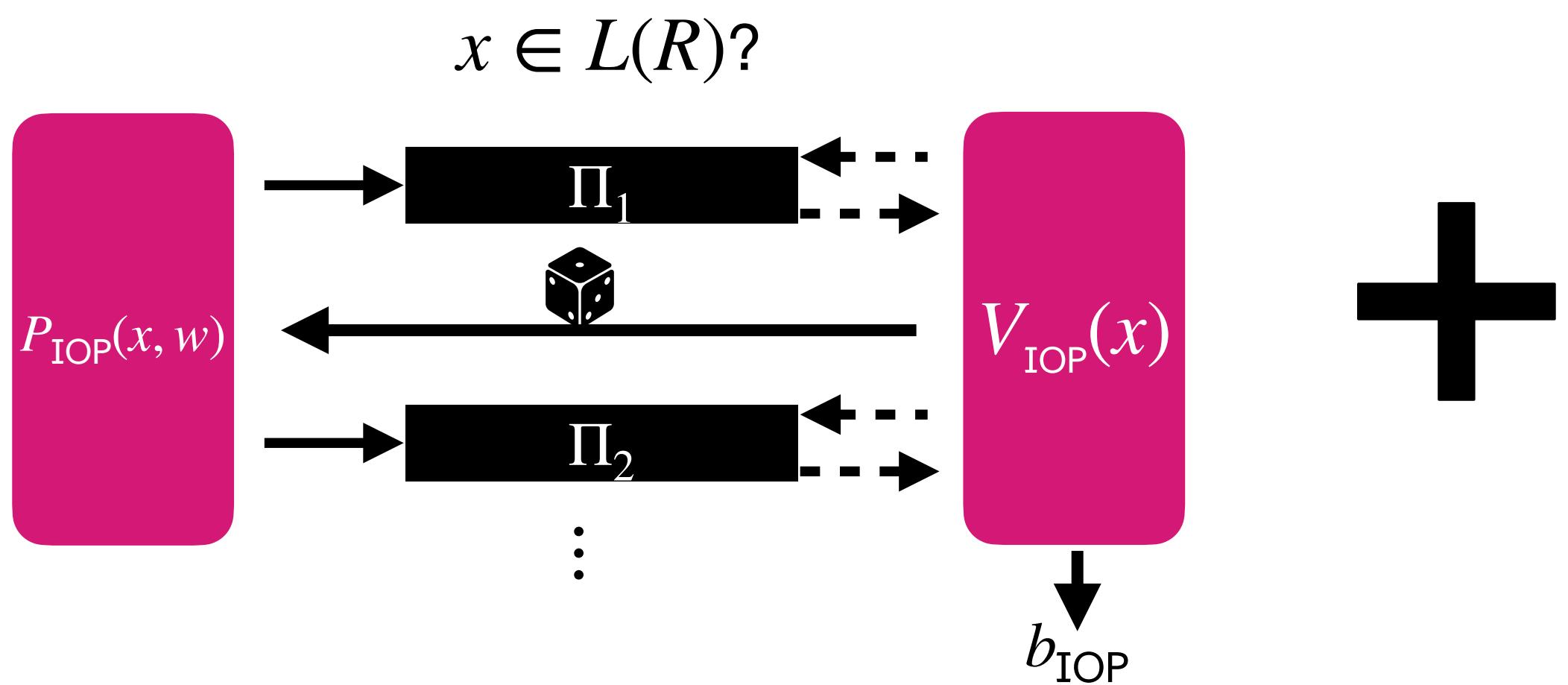
Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



Recall: SNARG BCS[IOP, MT]

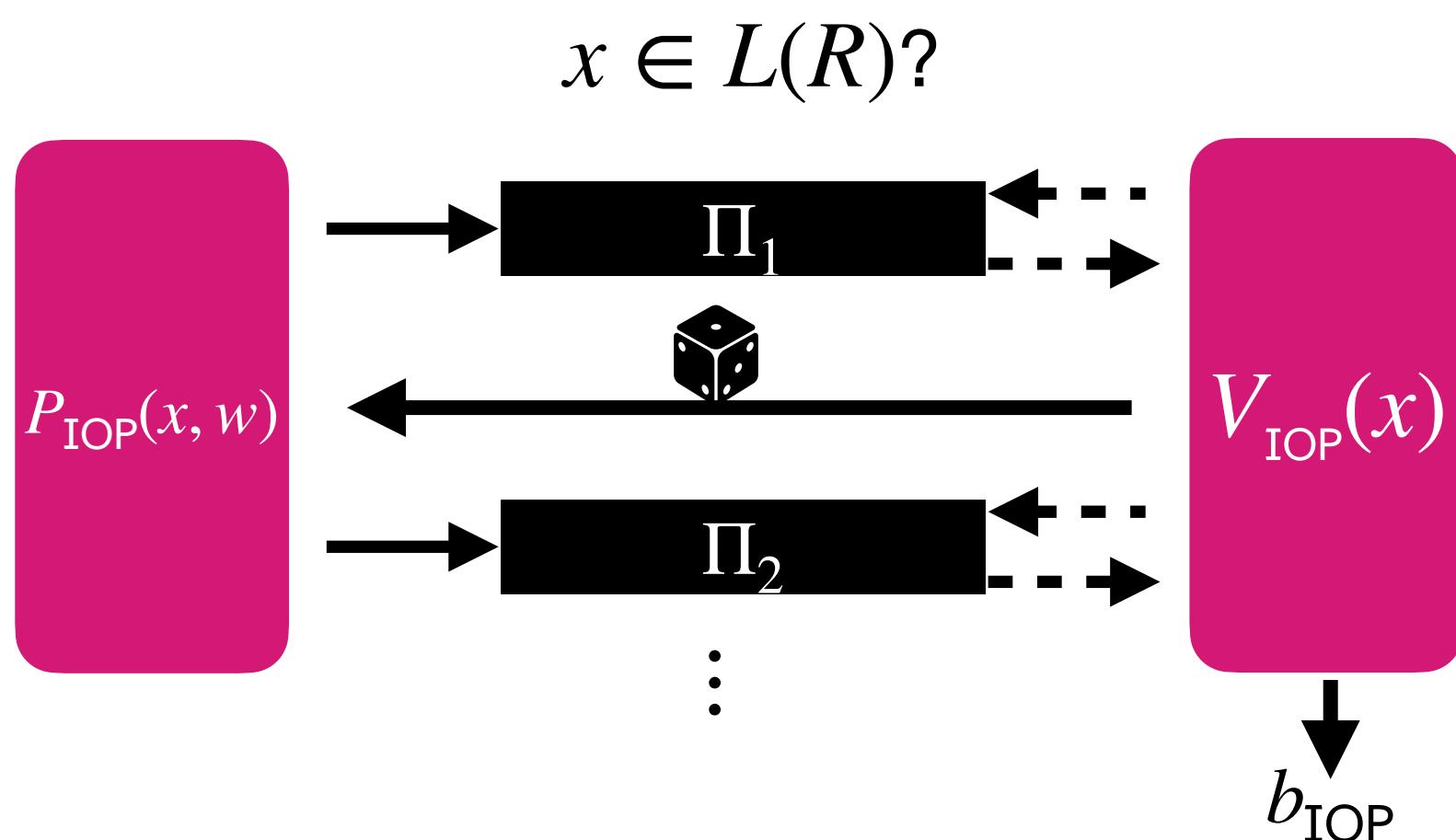
Ingredient #1: Interactive oracle proof (IOP)



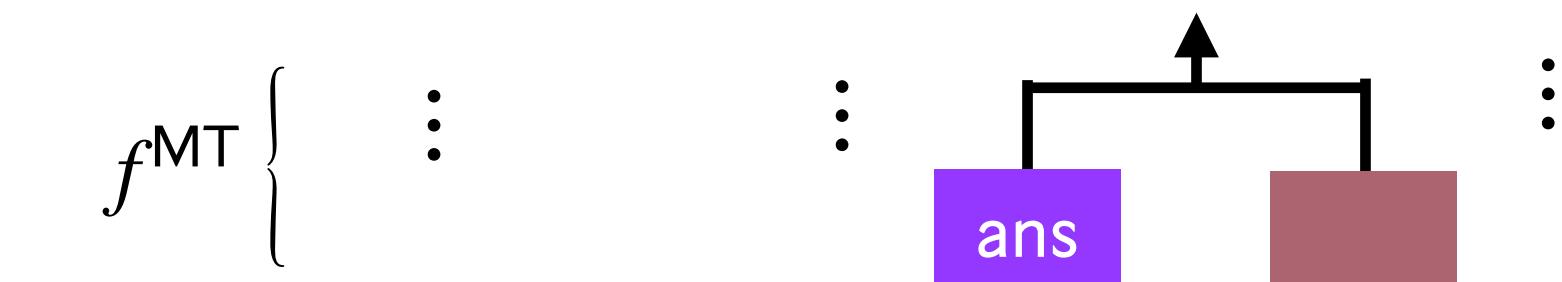
Ingredient #2: Merkle commitment scheme (MT)

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

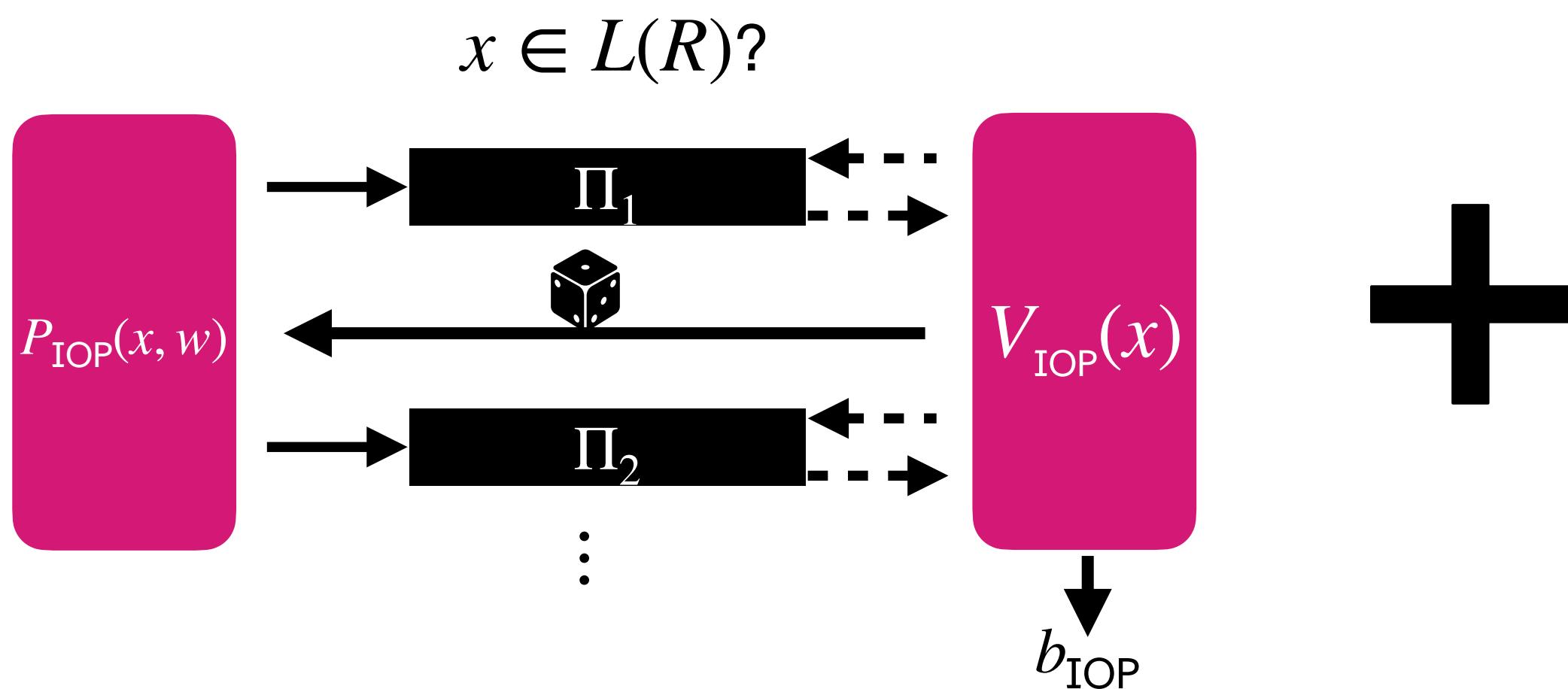


Ingredient #2: Merkle commitment scheme (MT)

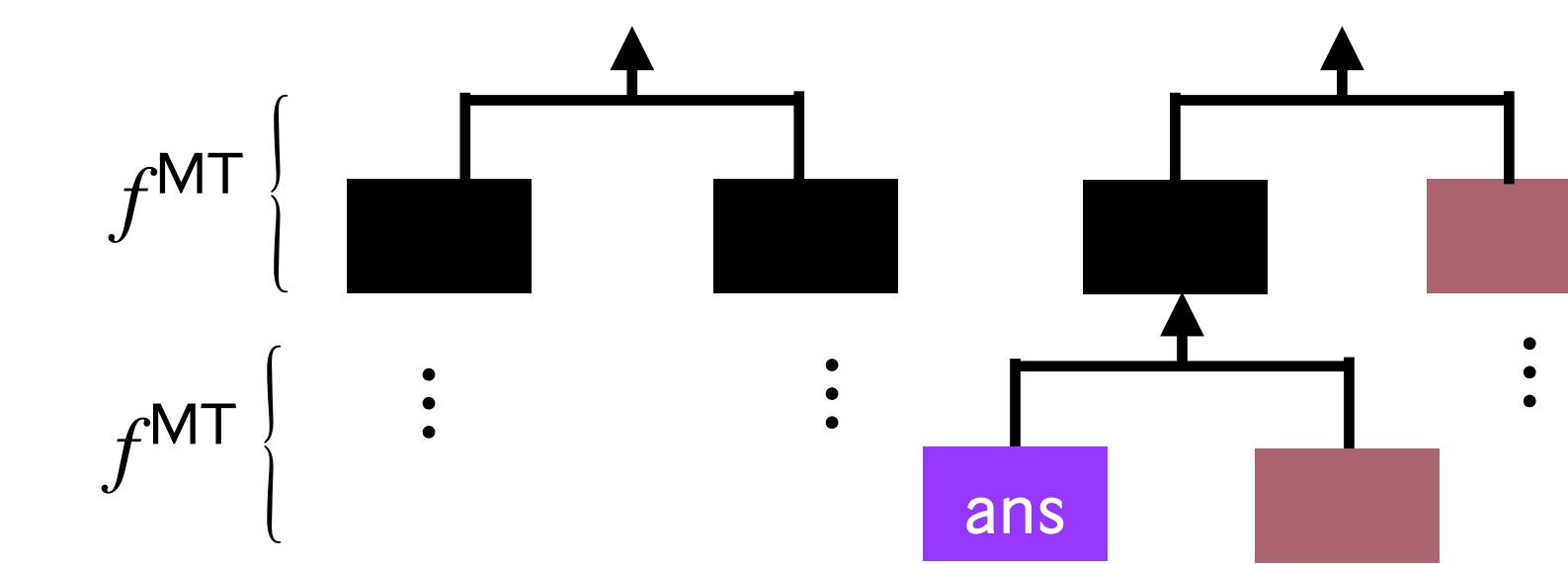


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

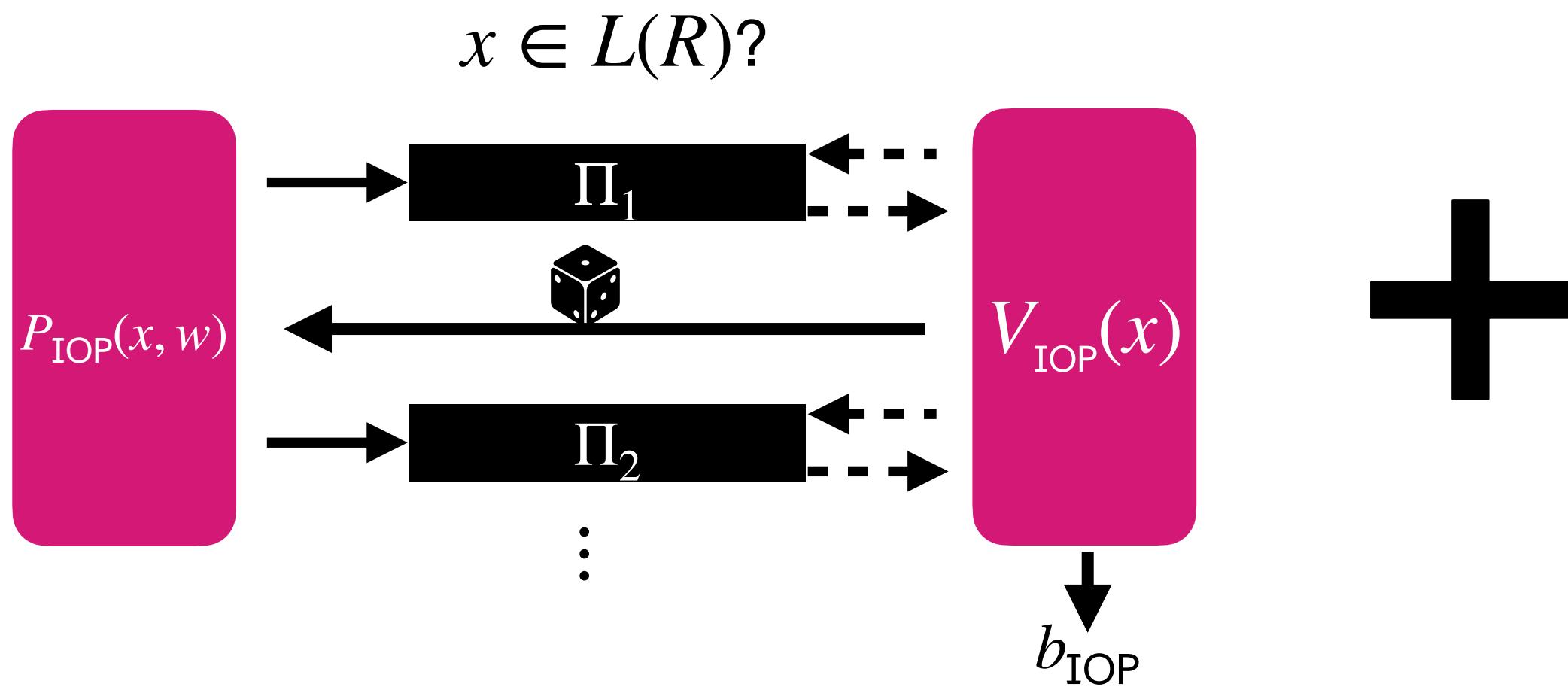


Ingredient #2: Merkle commitment scheme (MT)

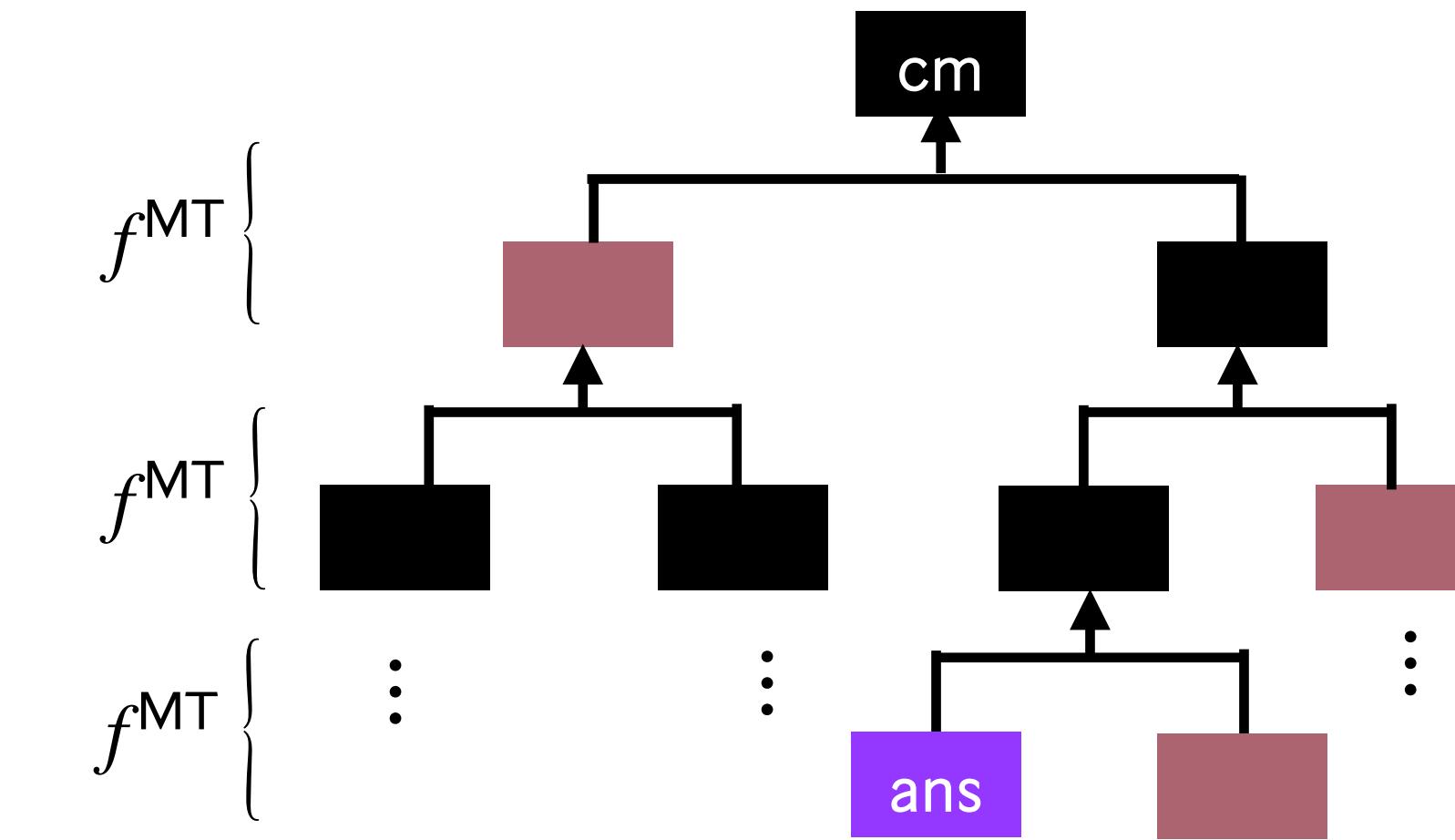


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

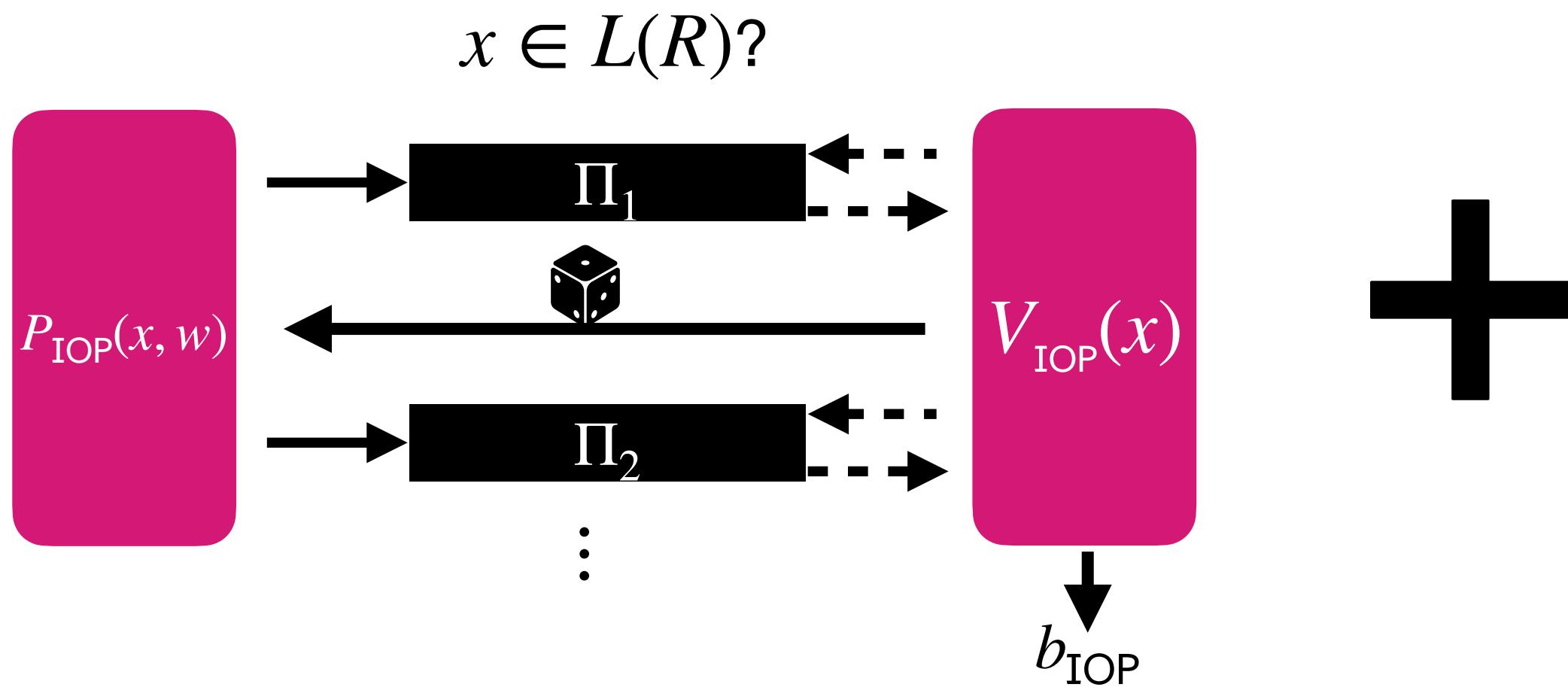


Ingredient #2: Merkle commitment scheme (MT)

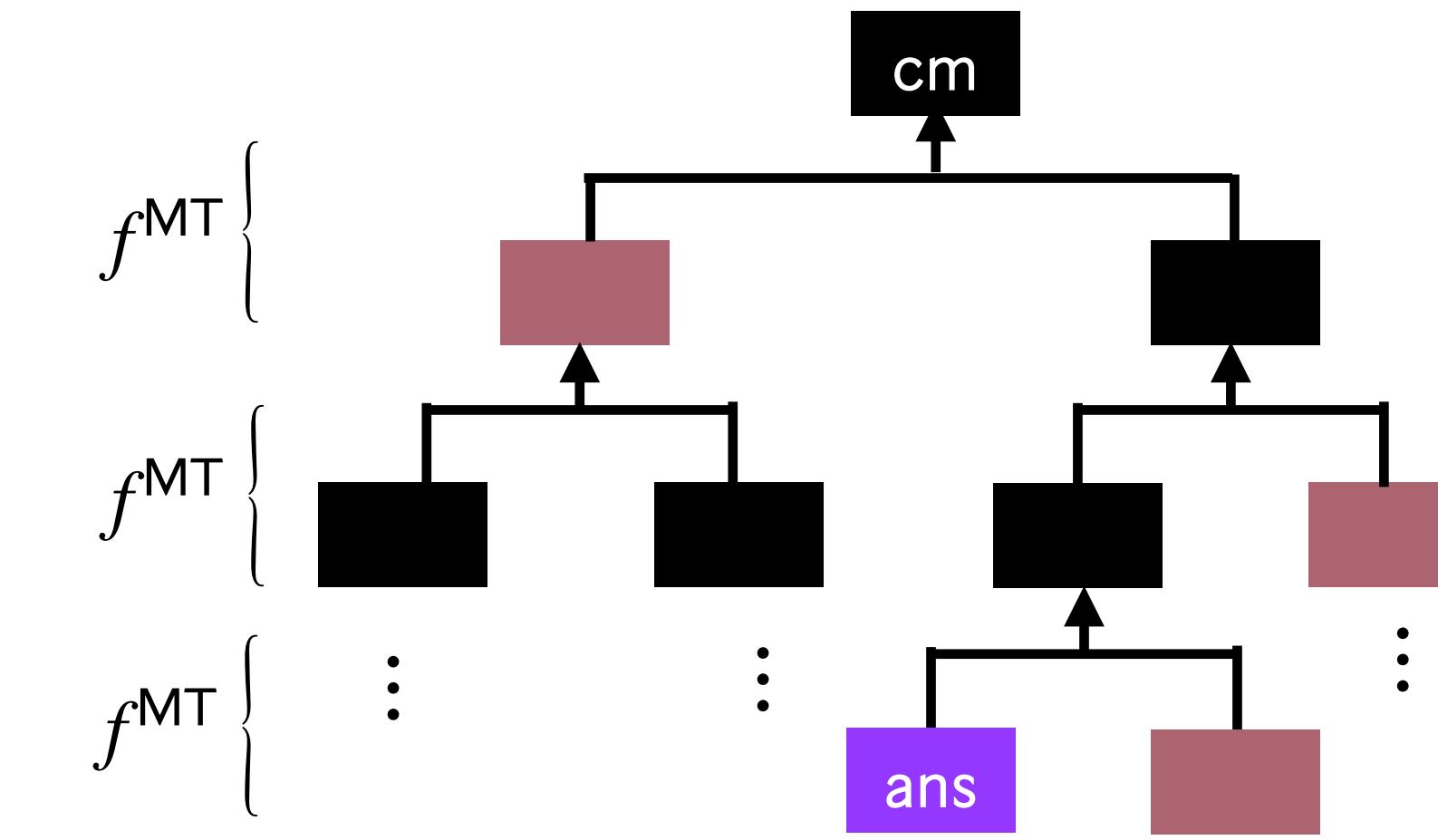


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

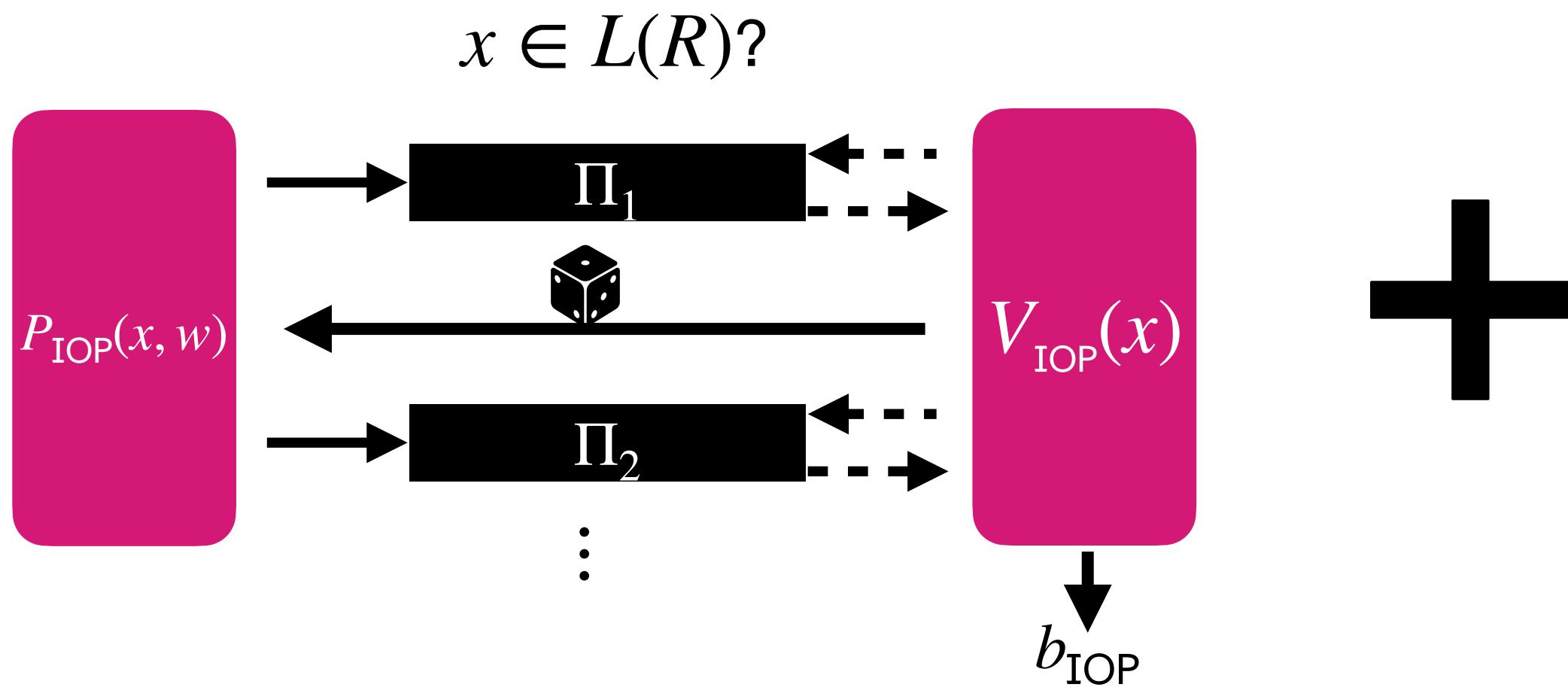


Ingredient #2: Merkle commitment scheme (MT)

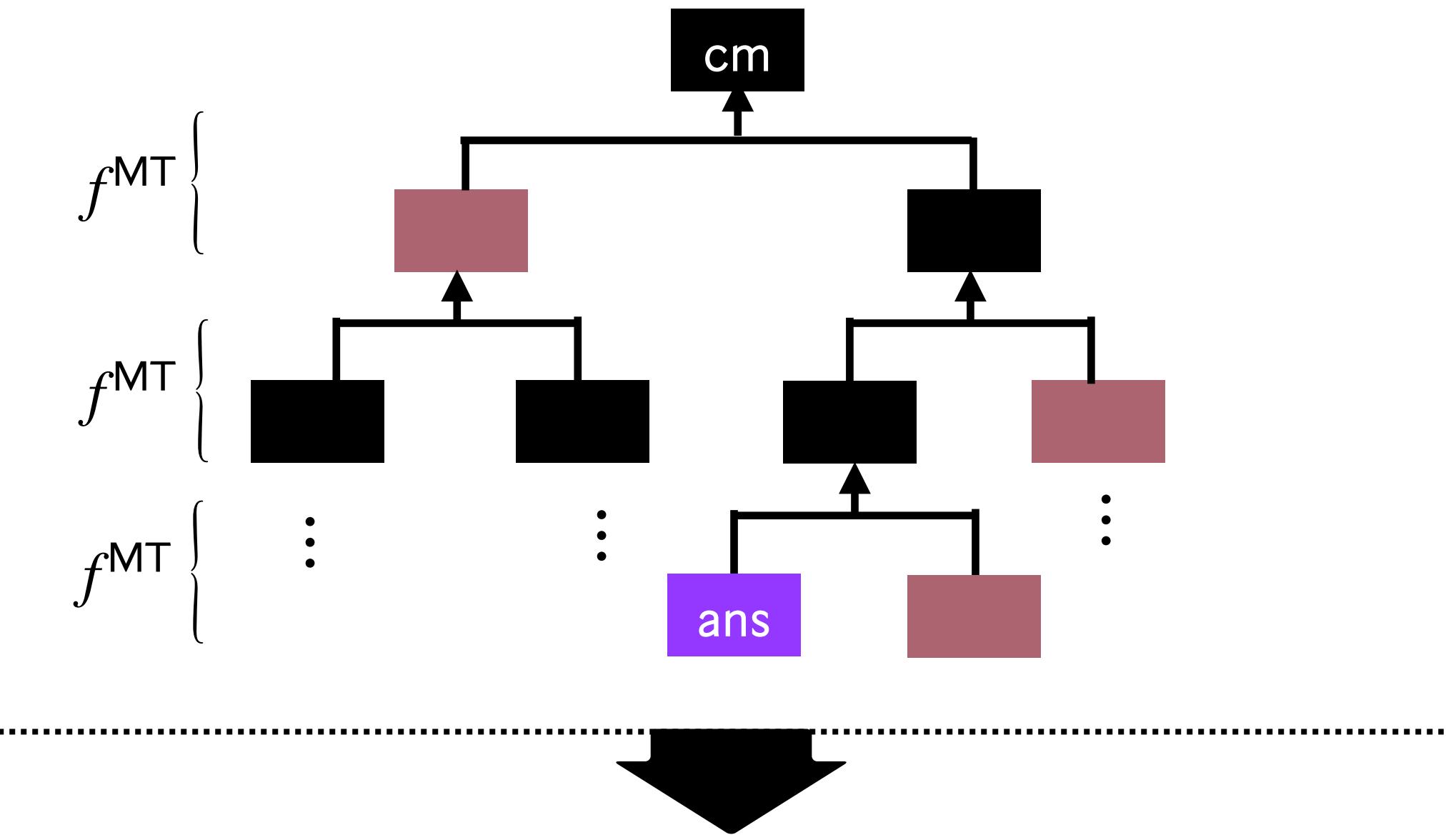


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

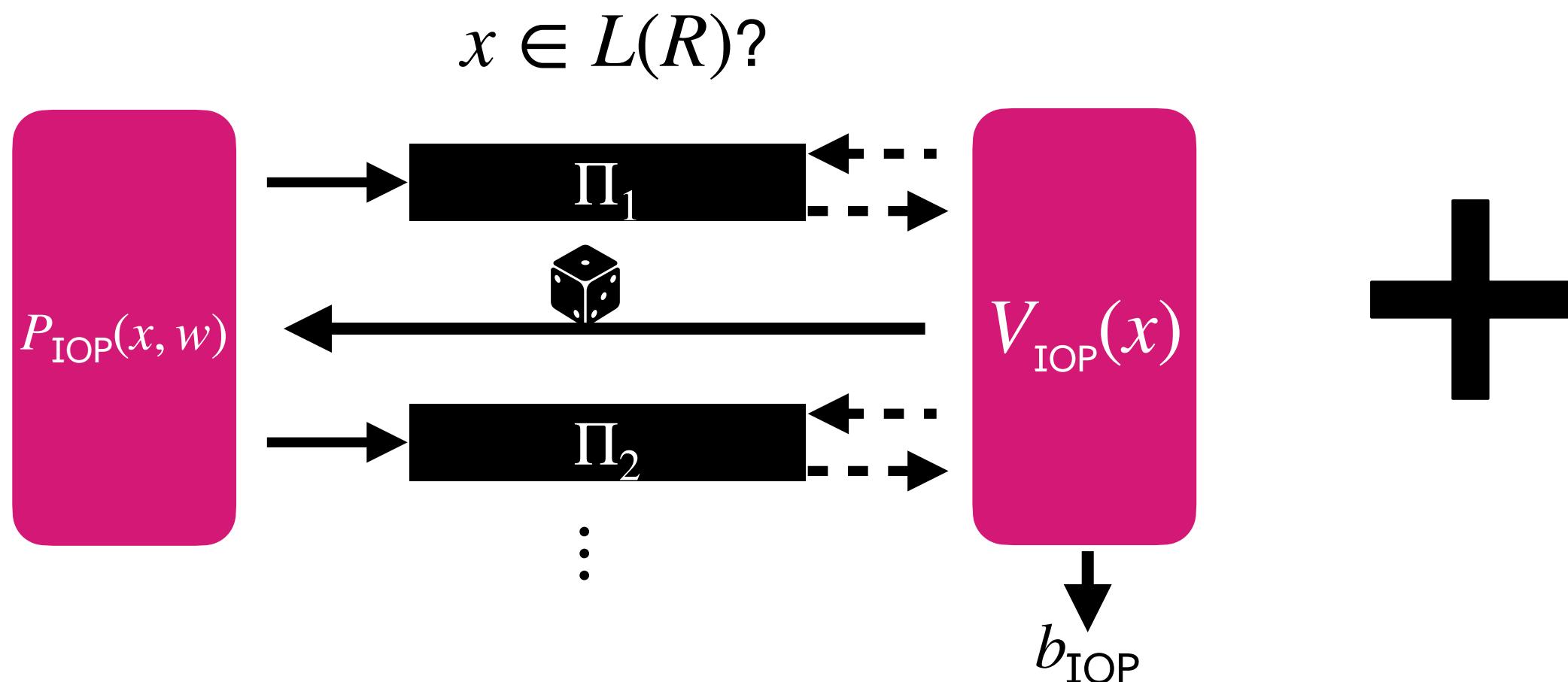


Ingredient #2: Merkle commitment scheme (MT)

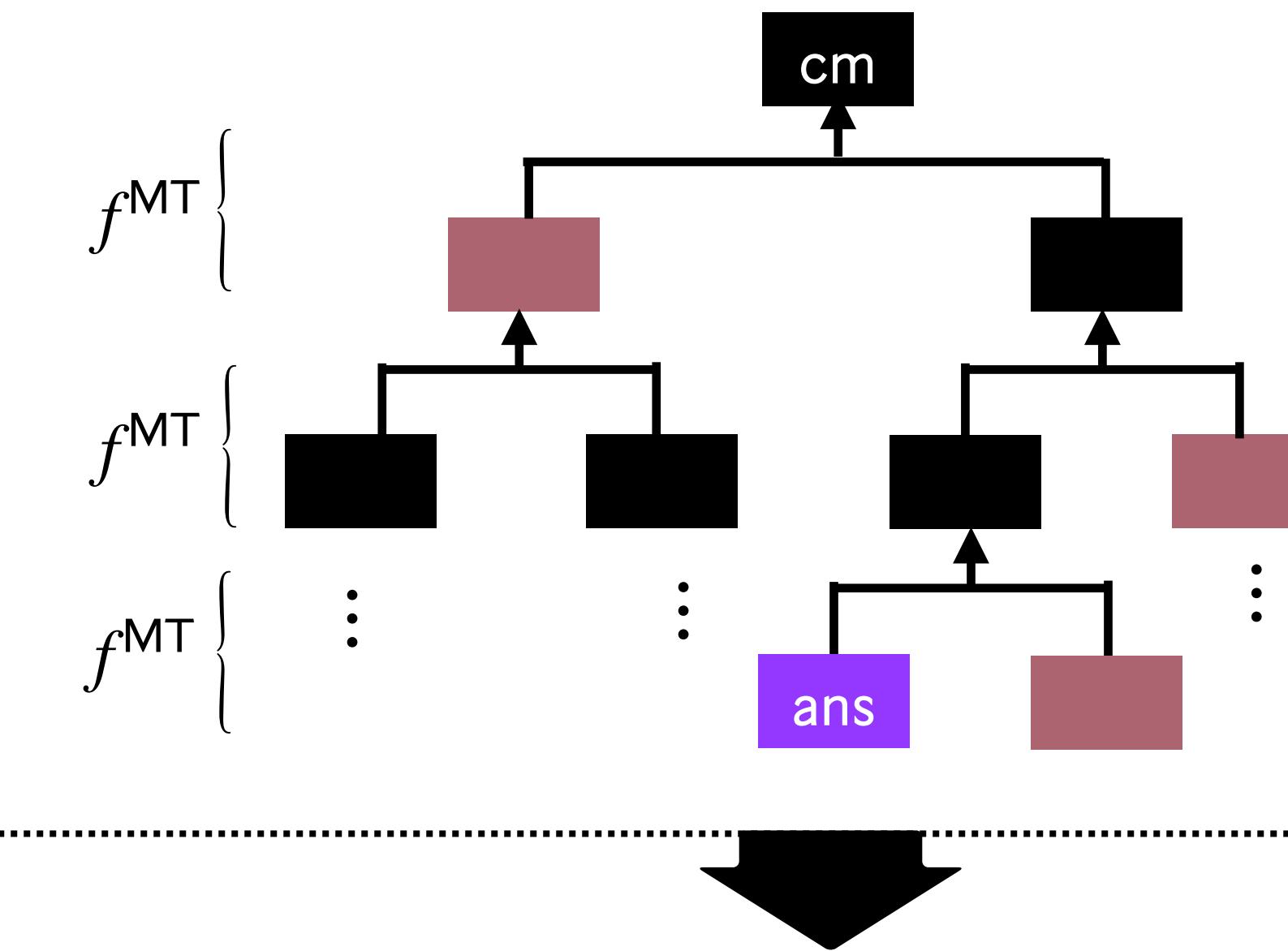


Recall: SNARG BCS[IOP, MT]

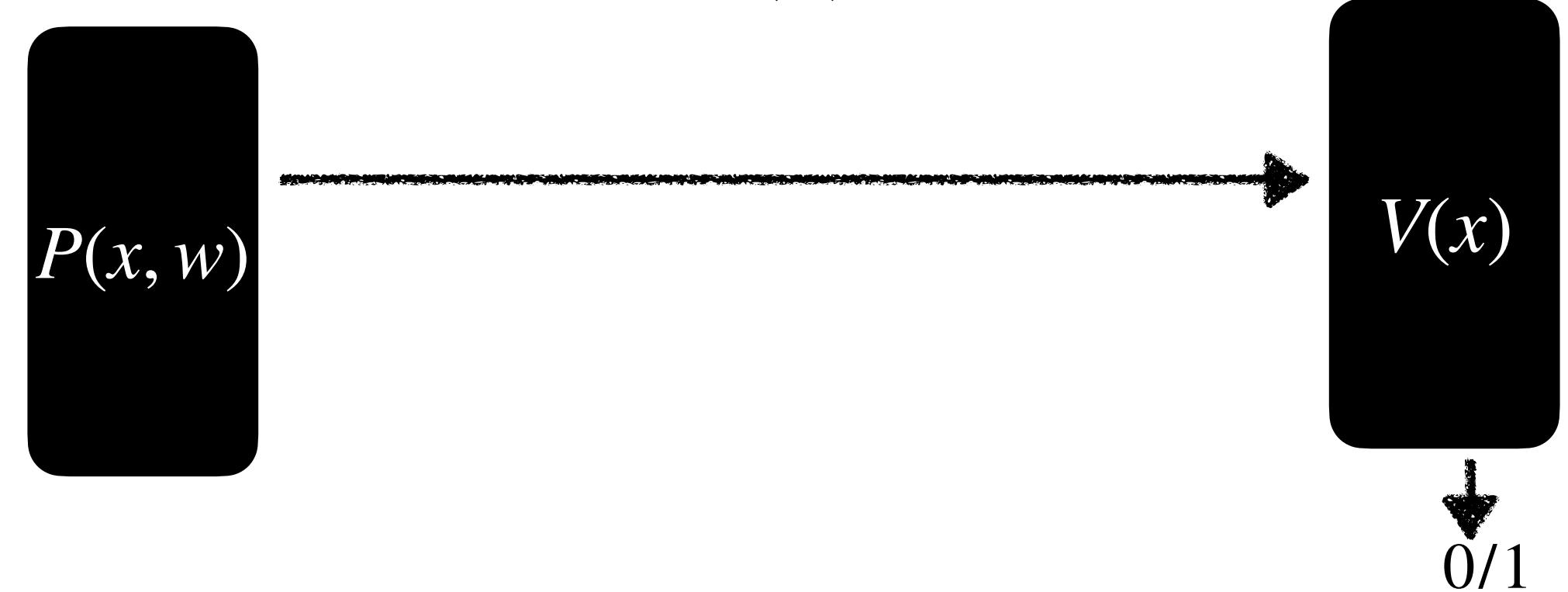
Ingredient #1: Interactive oracle proof (IOP)



Ingredient #2: Merkle commitment scheme (MT)

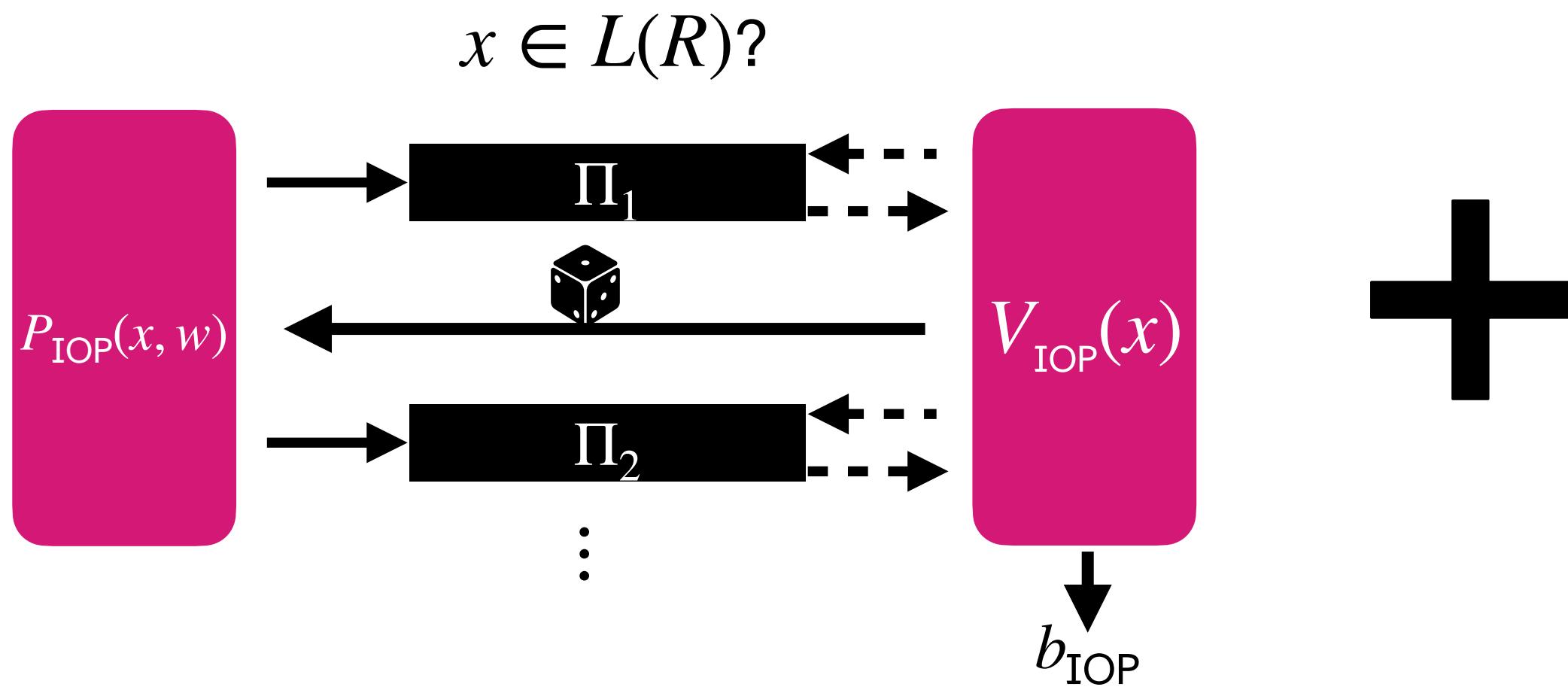


$x \in L(R) ?$

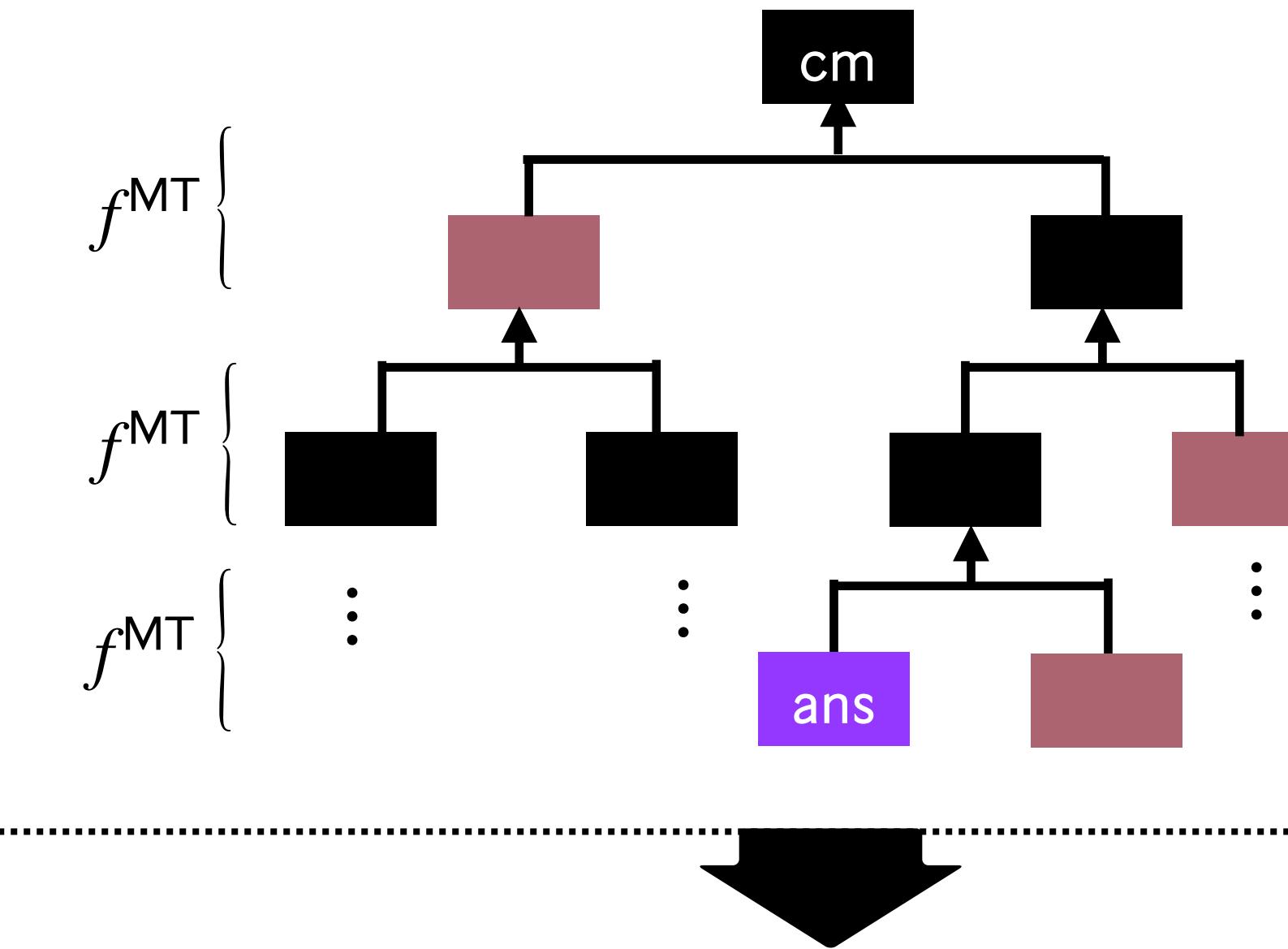
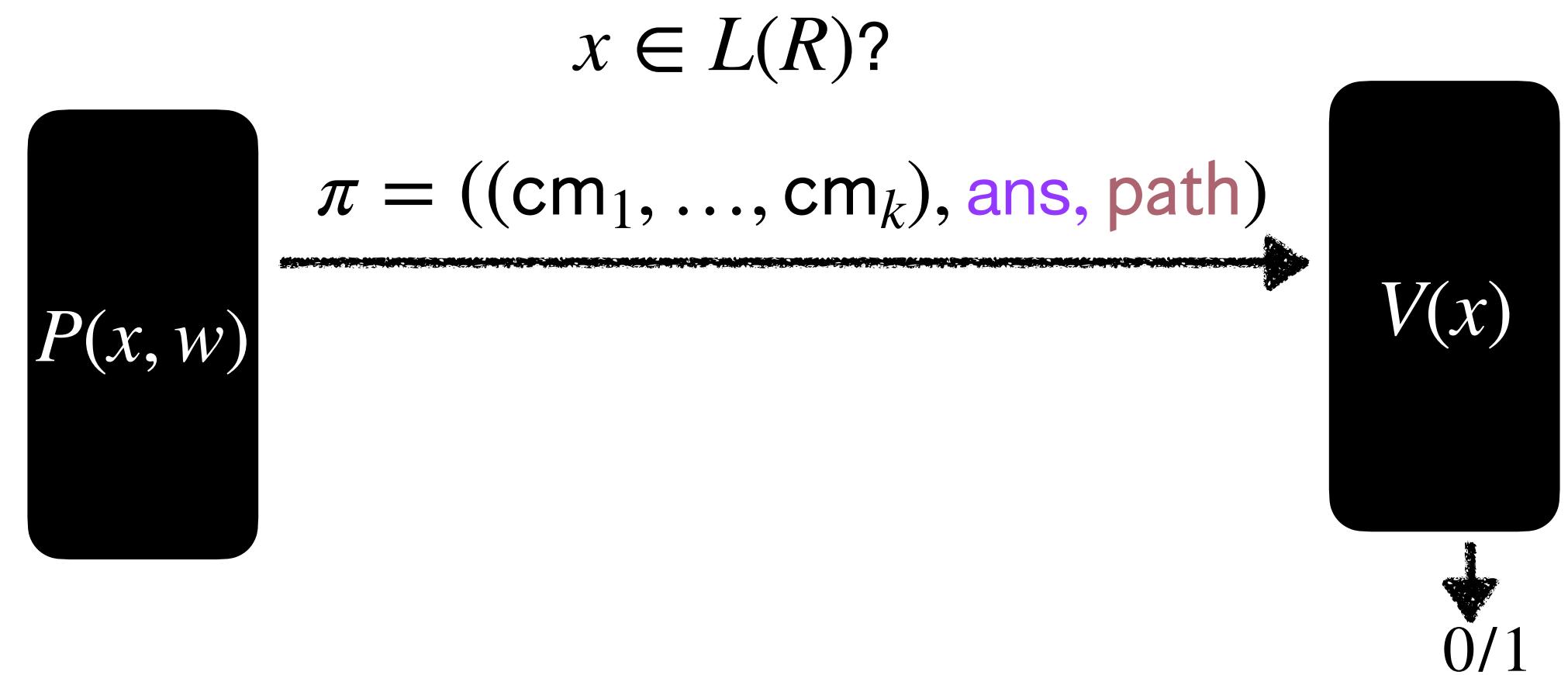


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

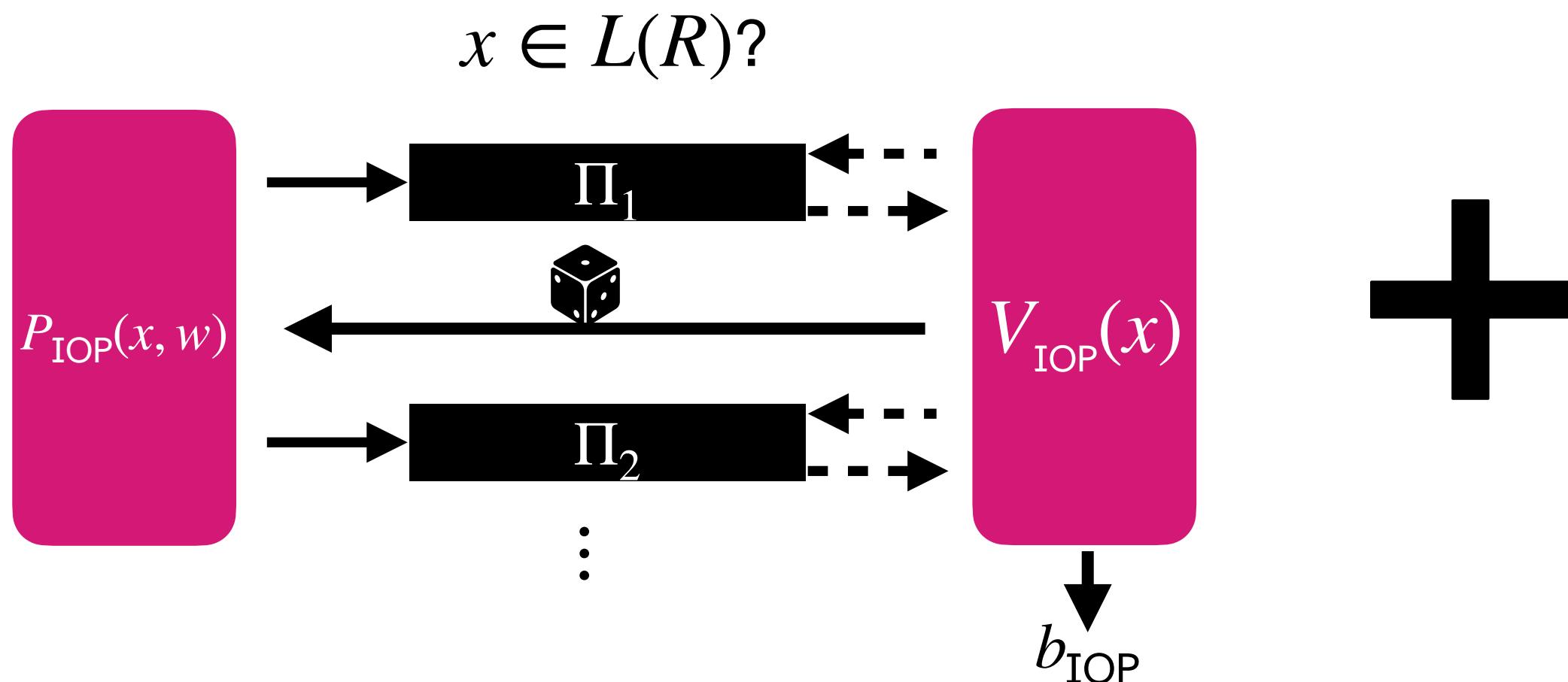


Ingredient #2: Merkle commitment scheme (MT)

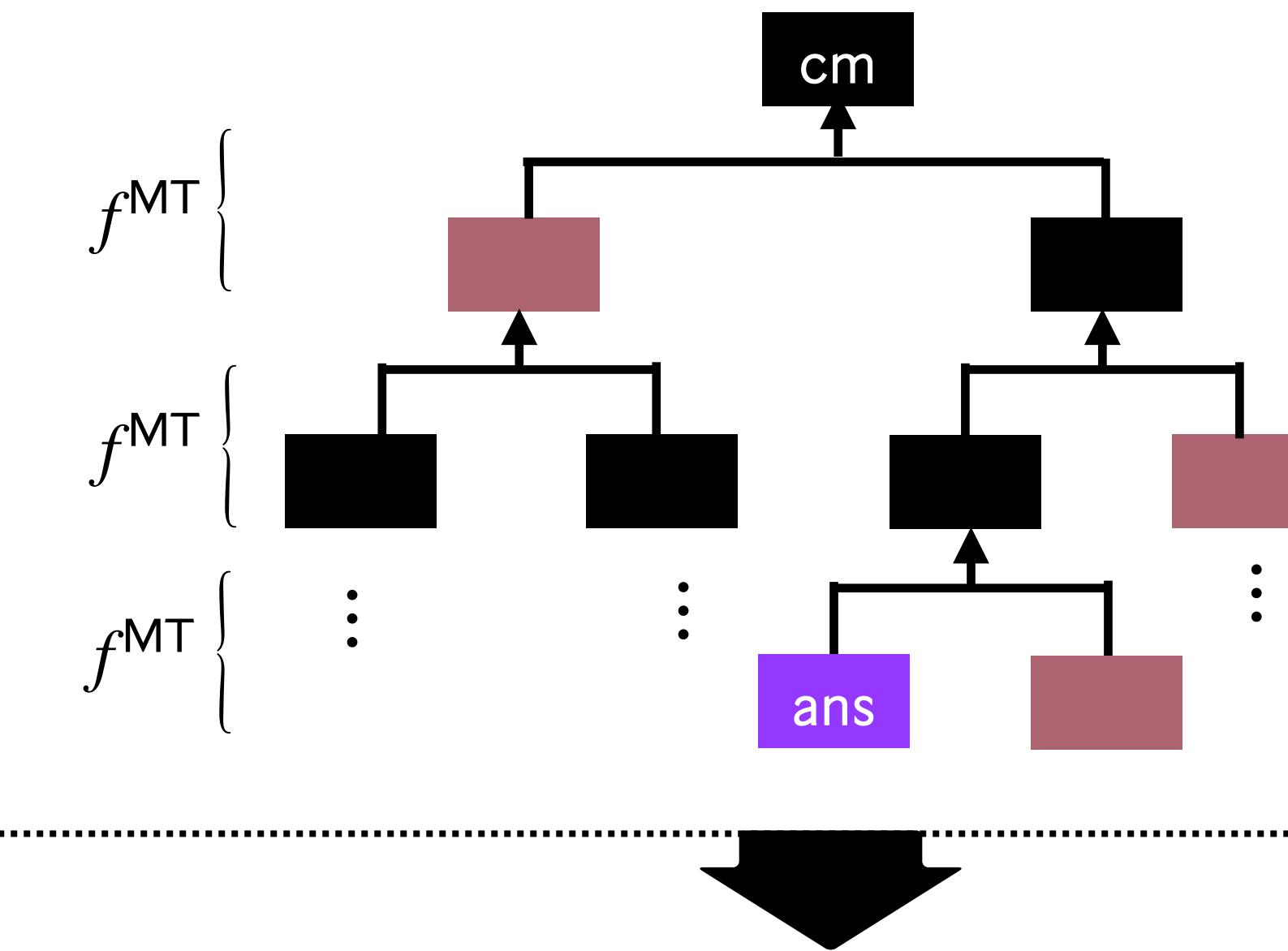


Recall: SNARG BCS[IOP, MT]

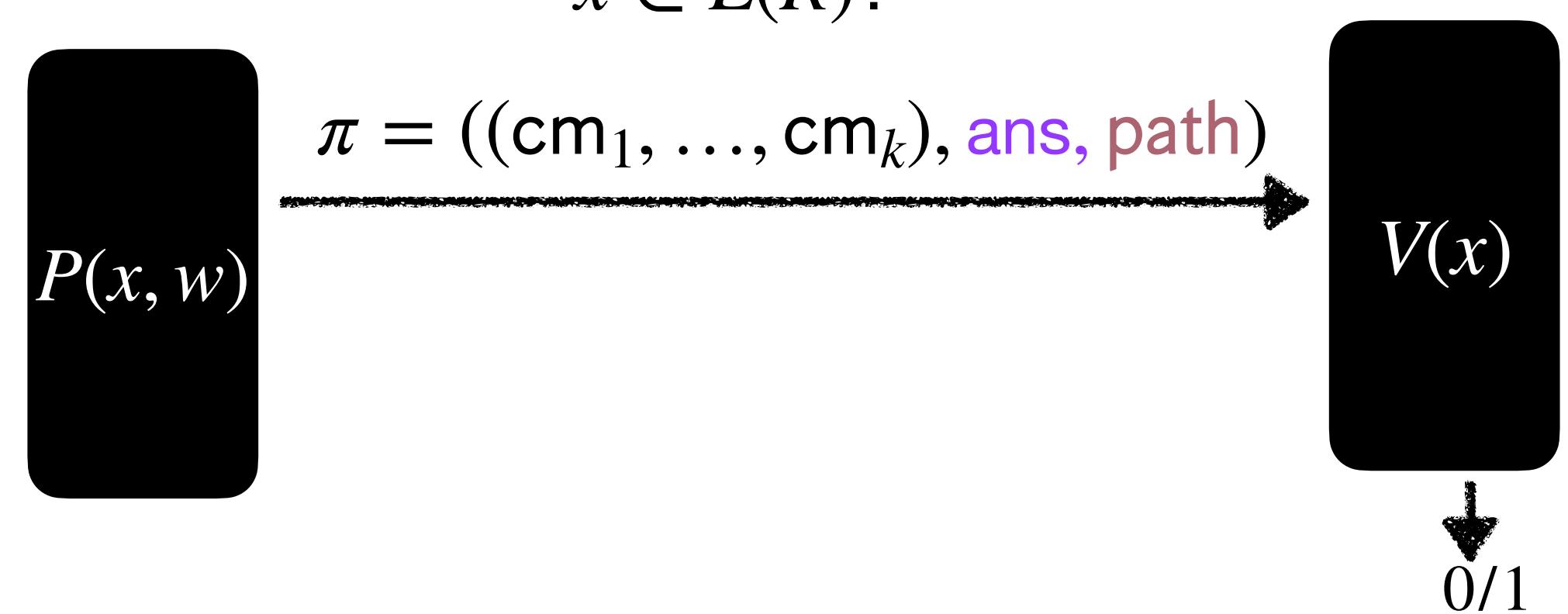
Ingredient #1: Interactive oracle proof (IOP)



Ingredient #2: Merkle commitment scheme (MT)

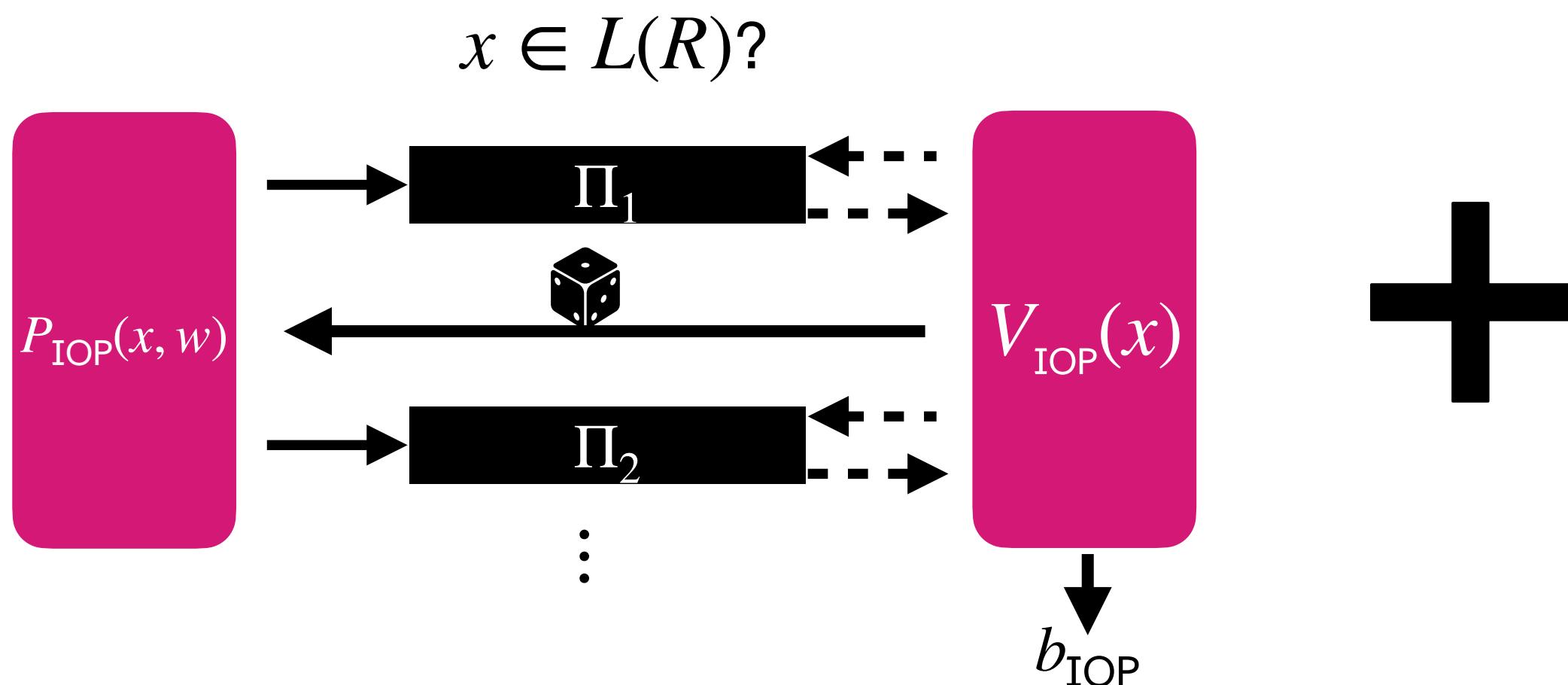


The BCS protocol is widely-used in practice.

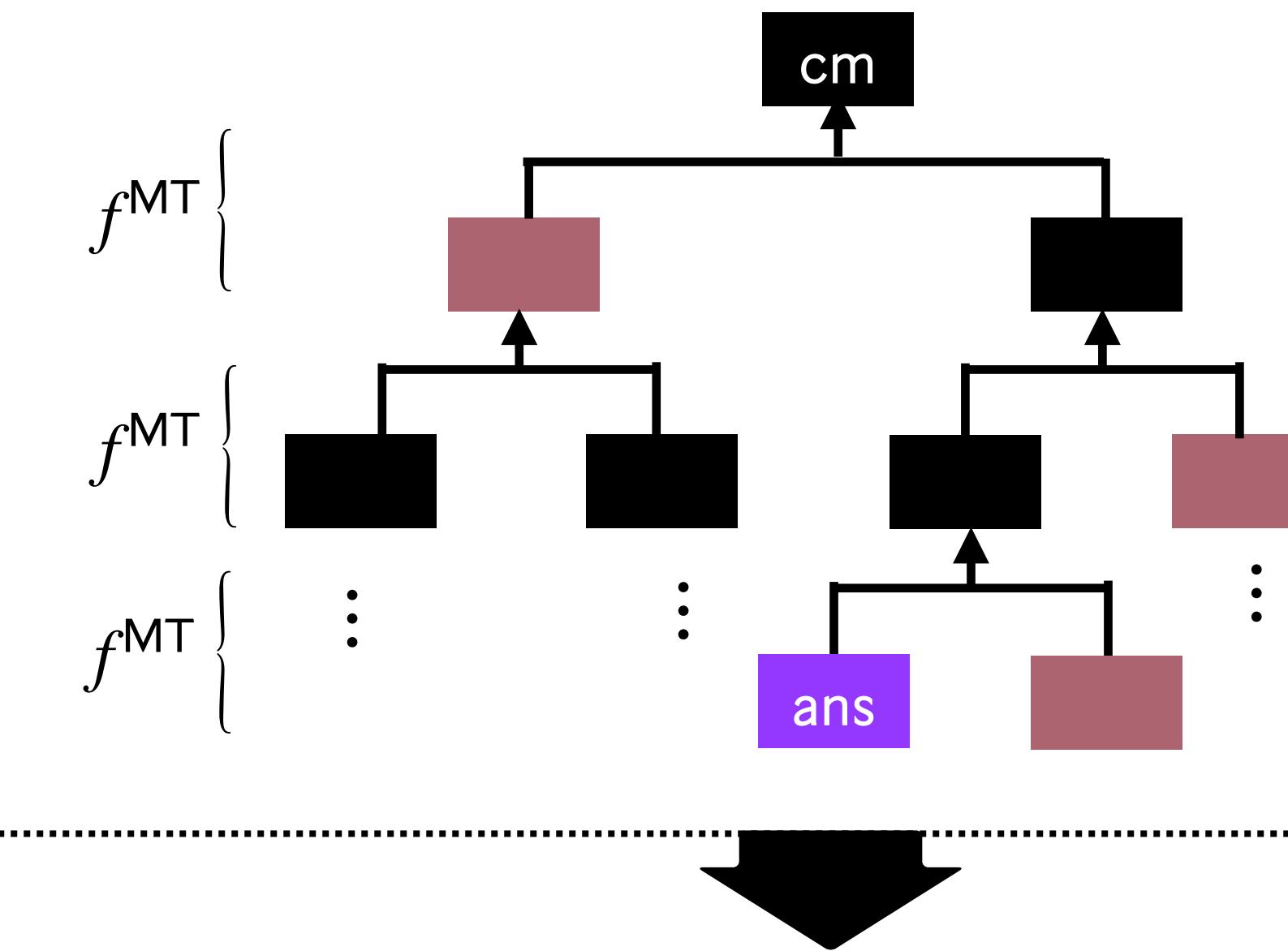


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

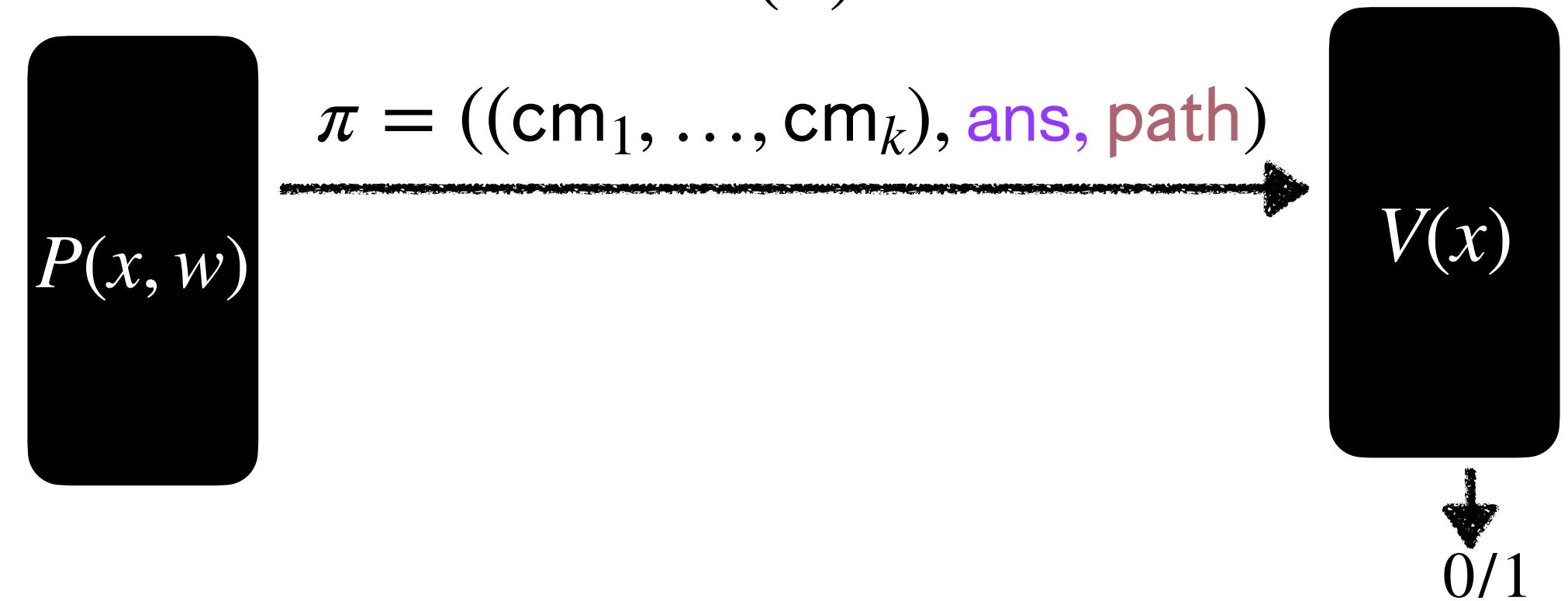


Ingredient #2: Merkle commitment scheme (MT)



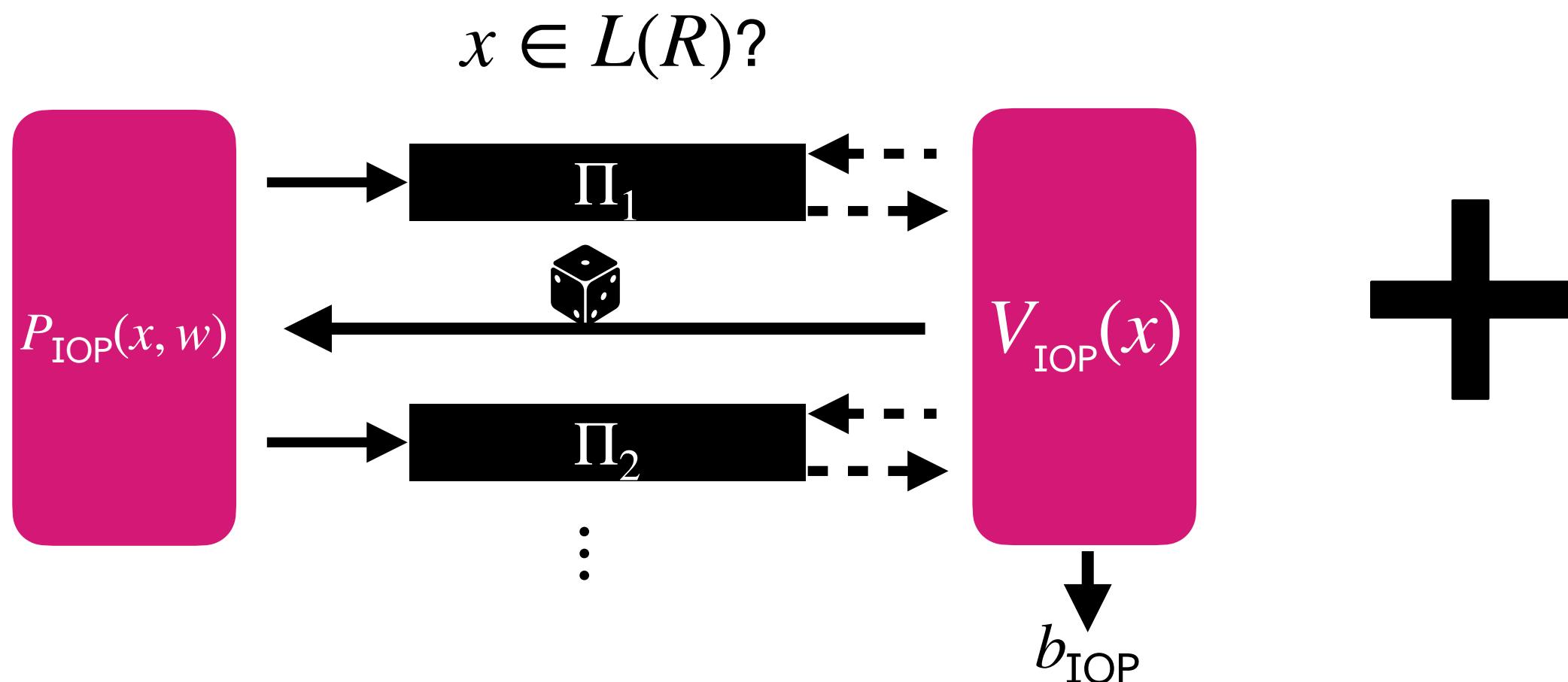
The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: **random oracle model**.

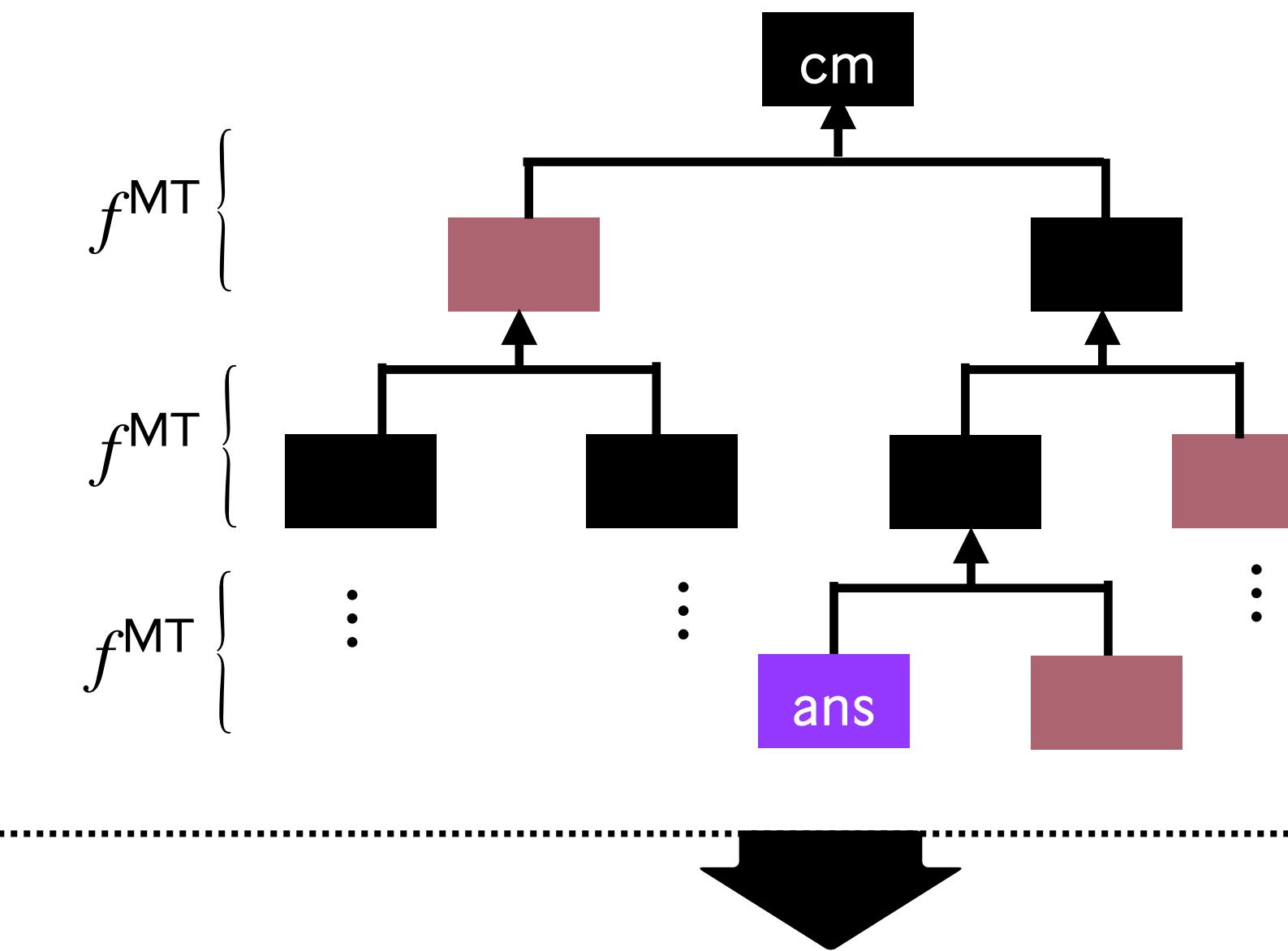


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



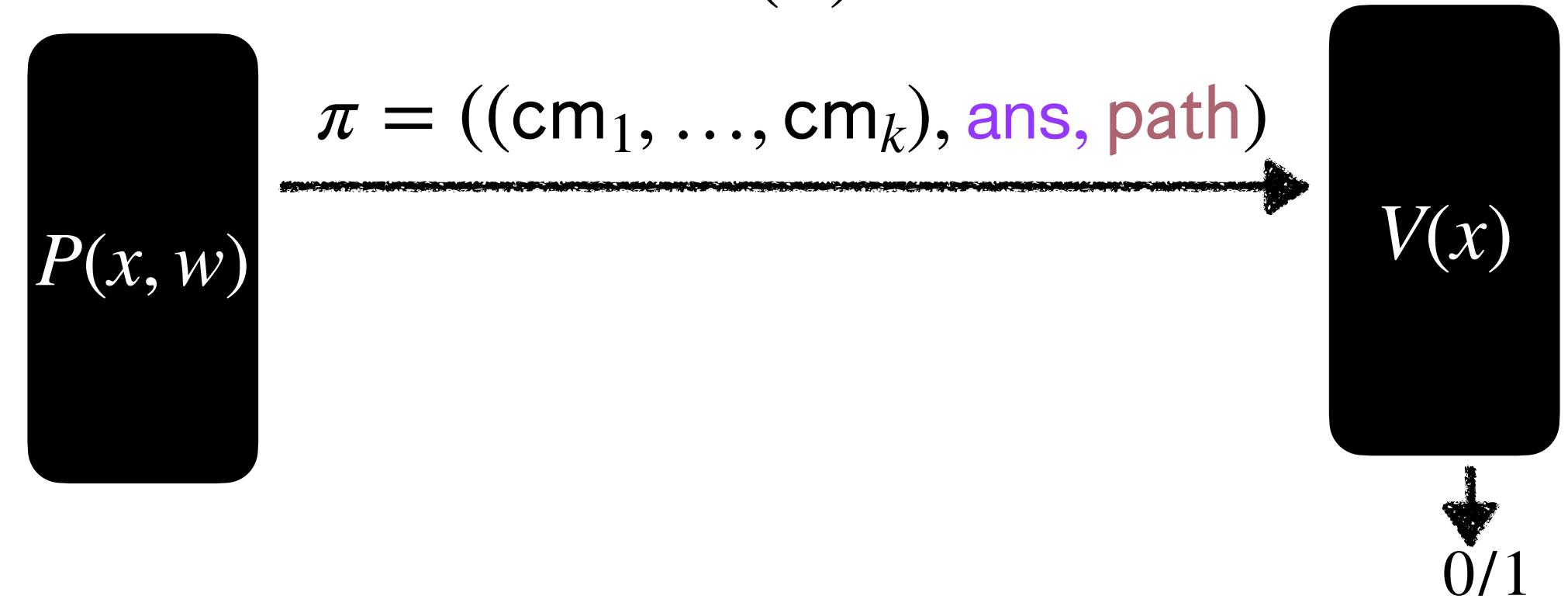
Ingredient #2: Merkle commitment scheme (MT)



The BCS protocol is widely-used in practice.

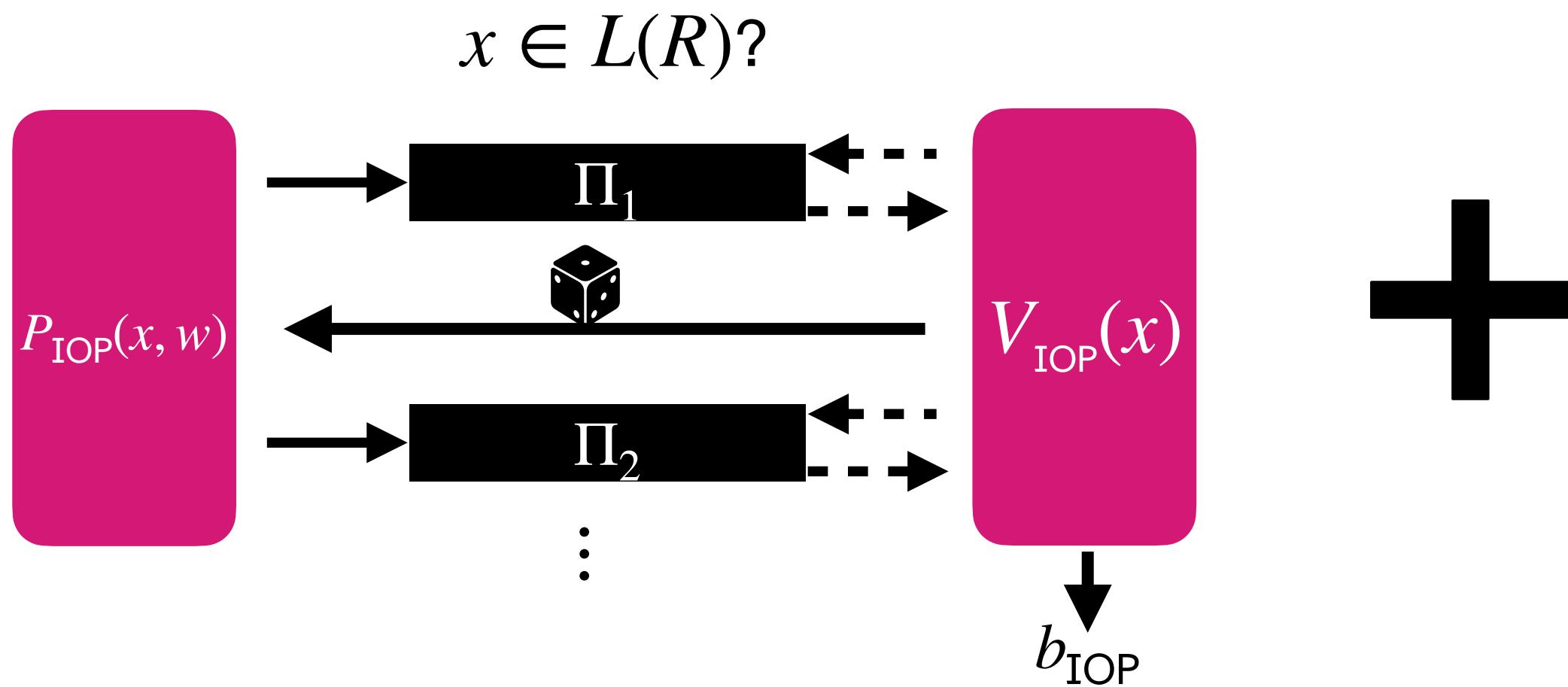
Security is analyzed in an ideal model: **random oracle model**.

Security holds even against **quantum** attackers:

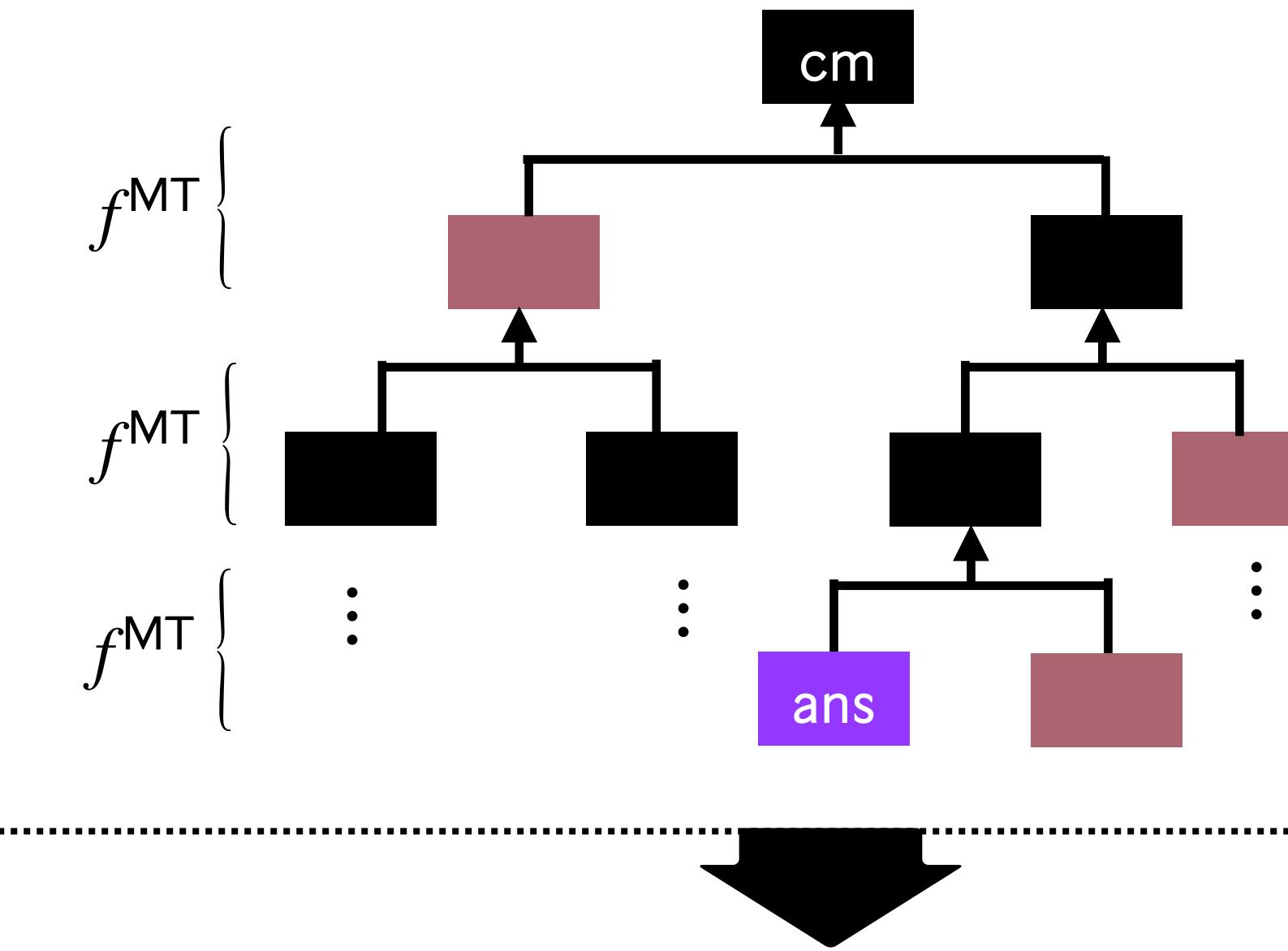


Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)



Ingredient #2: Merkle commitment scheme (MT)



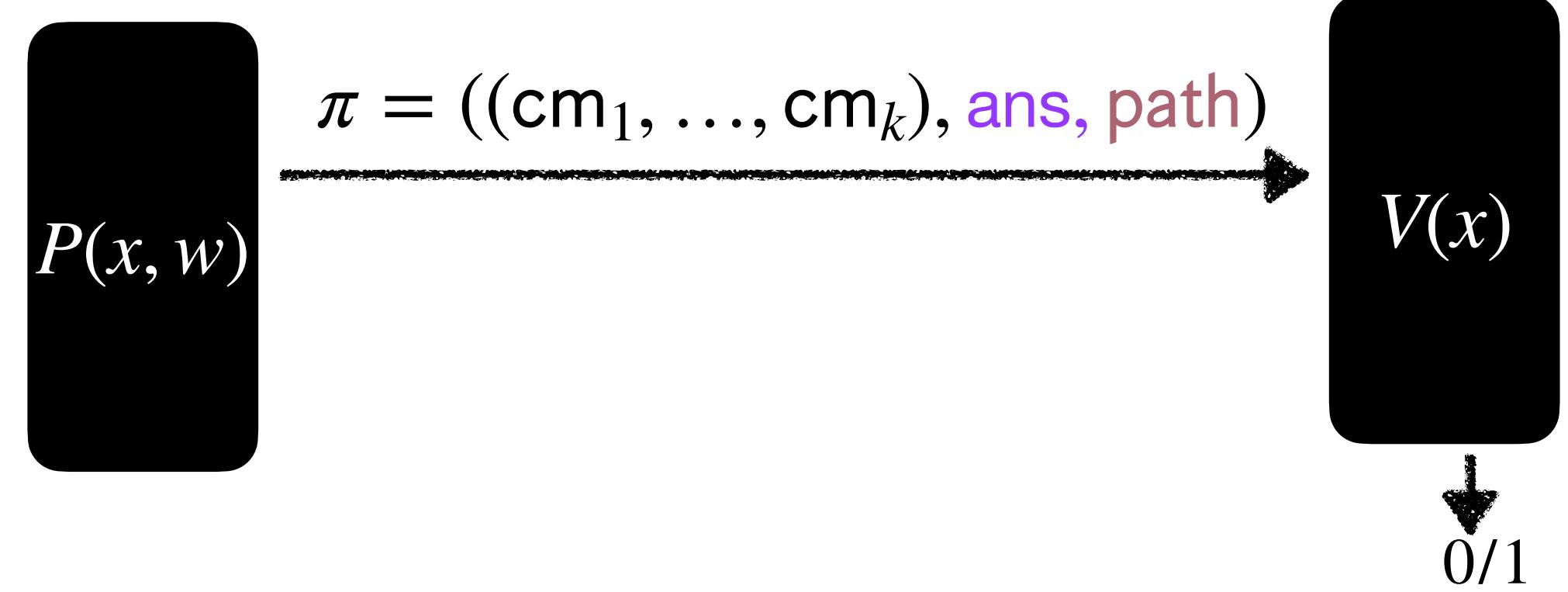
The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: **random oracle model**.

Security holds even against **quantum** attackers:

[CMS19]:

the BCS protocol is secure in the
quantum random oracle model

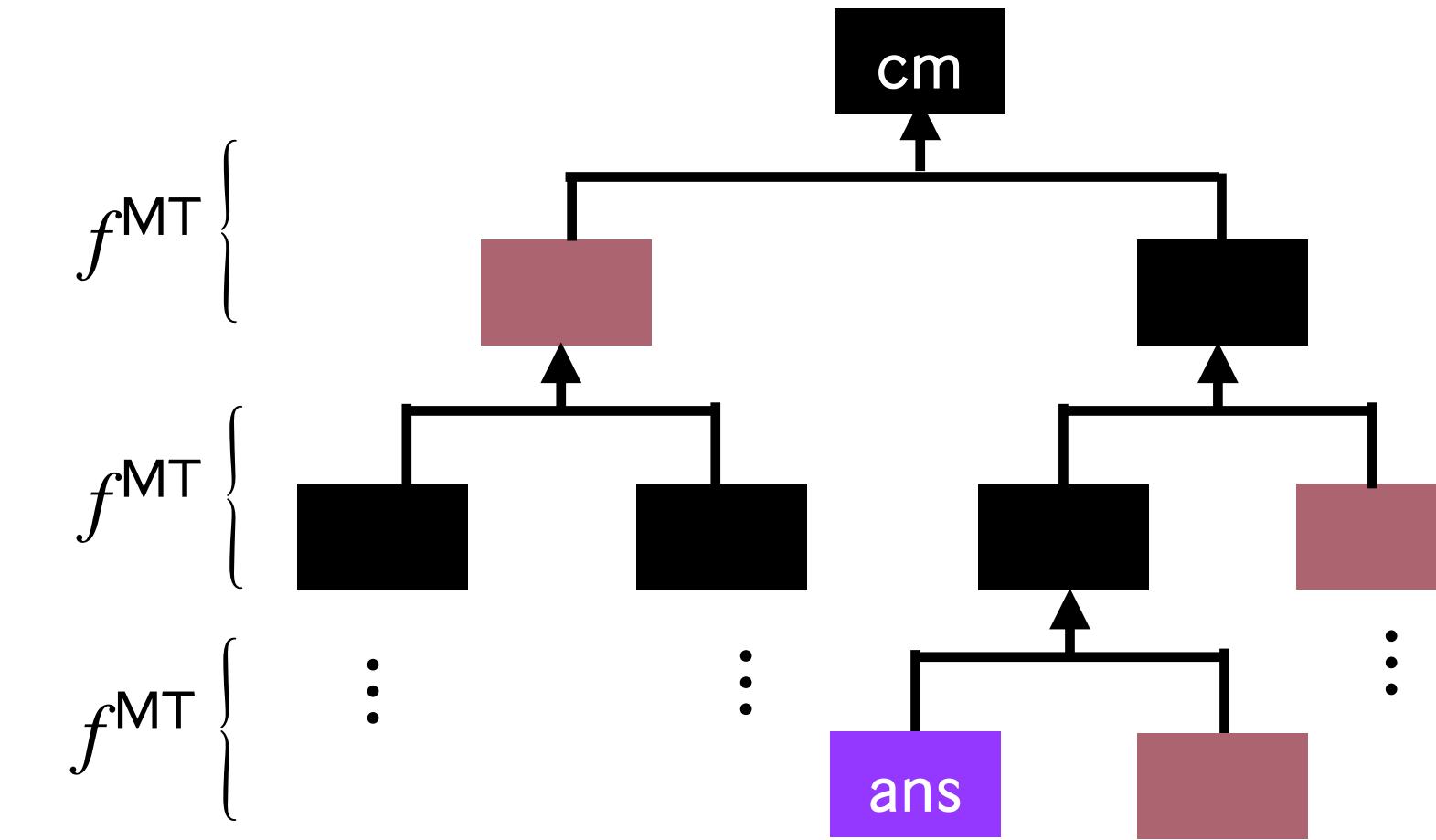


[BMNW25]: **SNRDX BCS[IOR, MT]**

[BMNW25]: SNRDX BCS[IOR, MT]

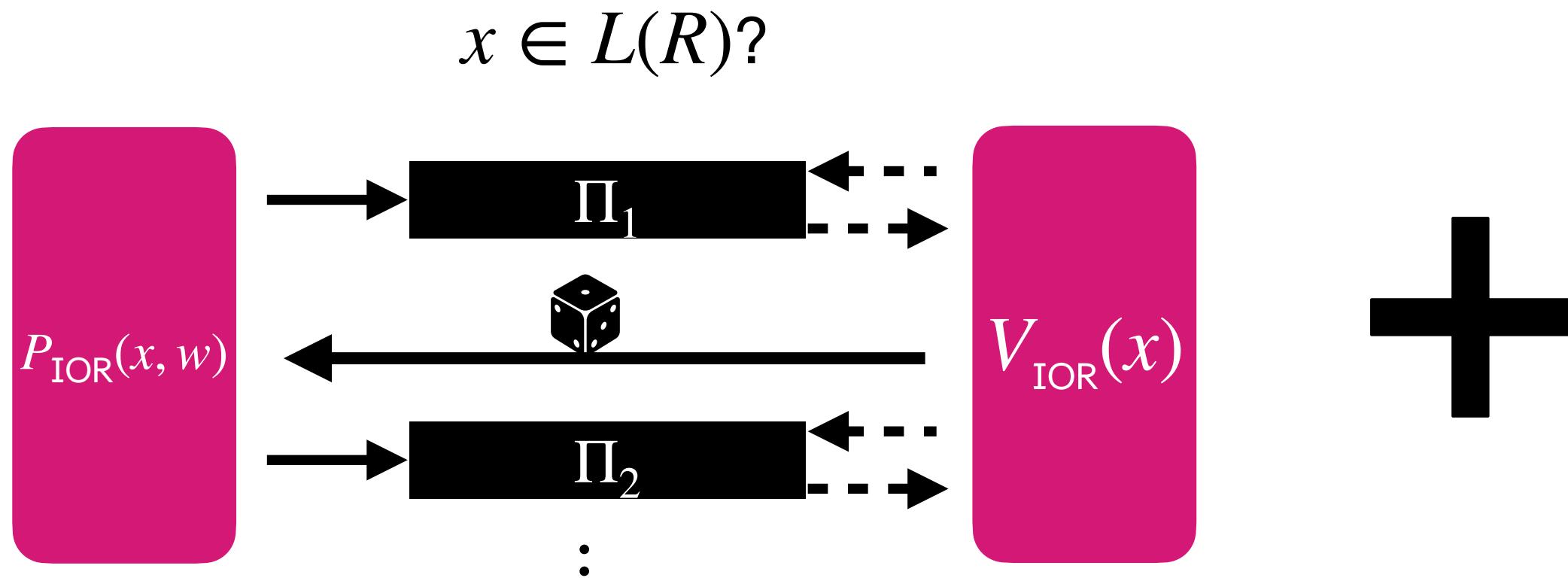
+

Ingredient #2: Merkle commitment scheme (MT)

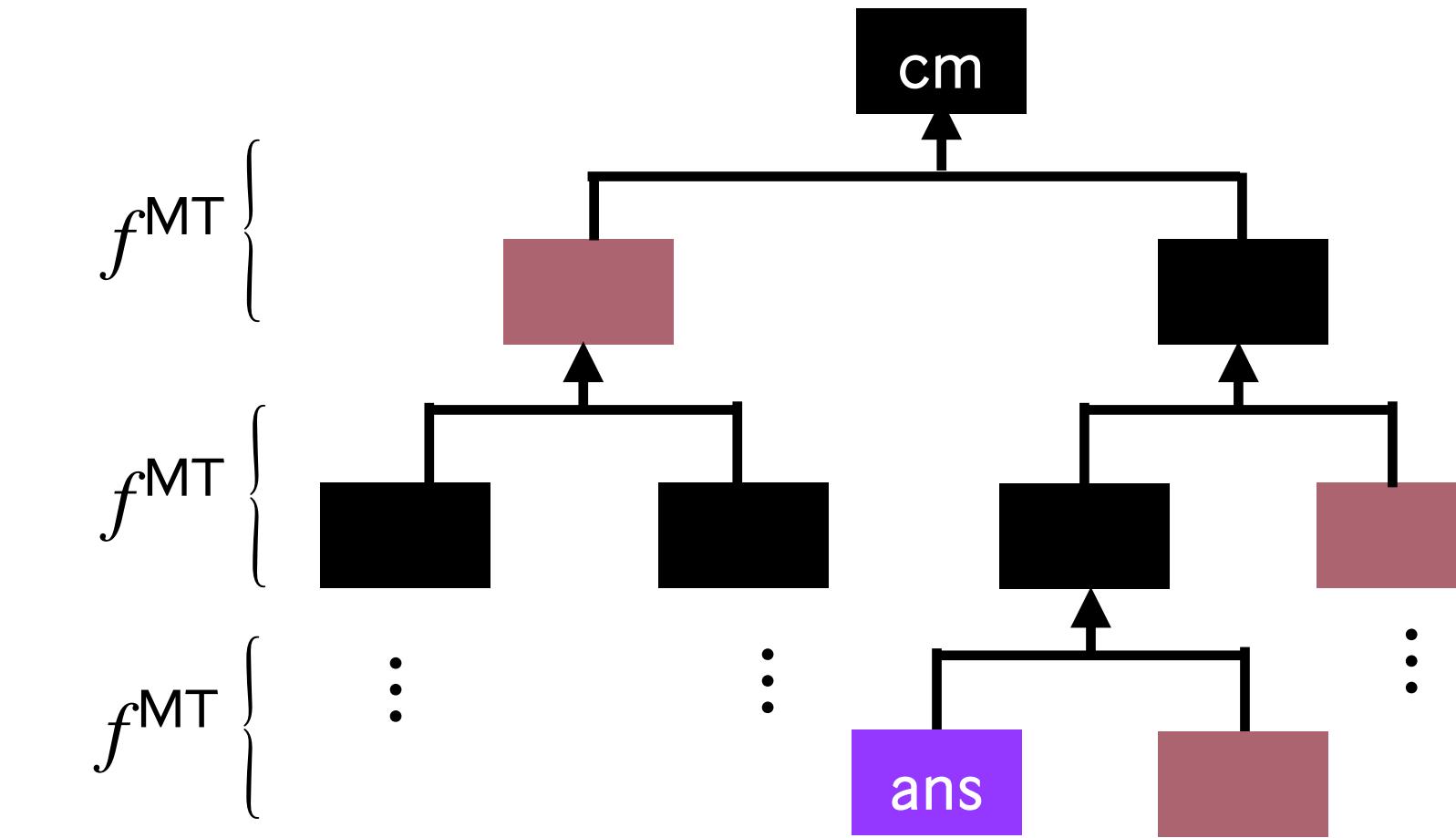


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

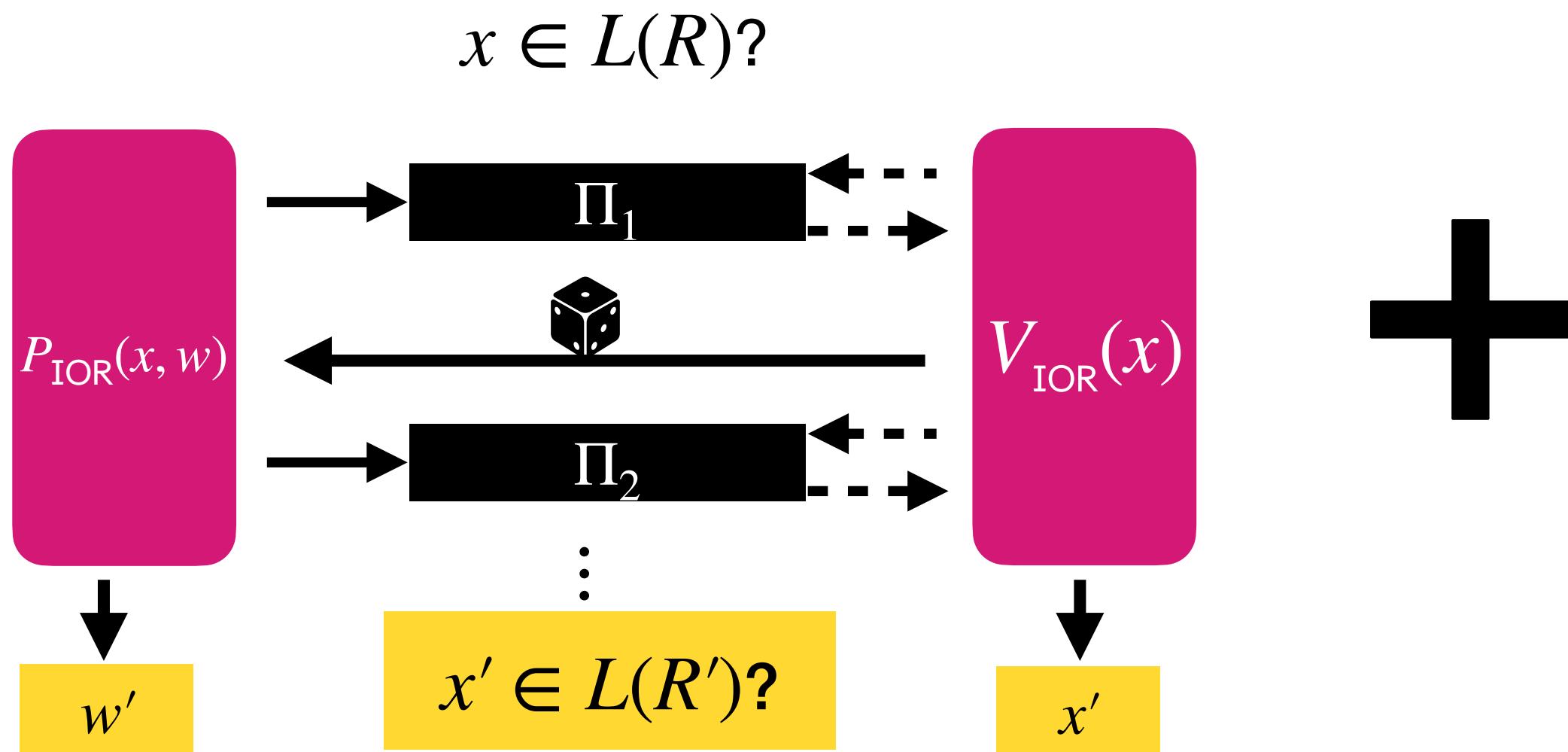


Ingredient #2: Merkle commitment scheme (MT)

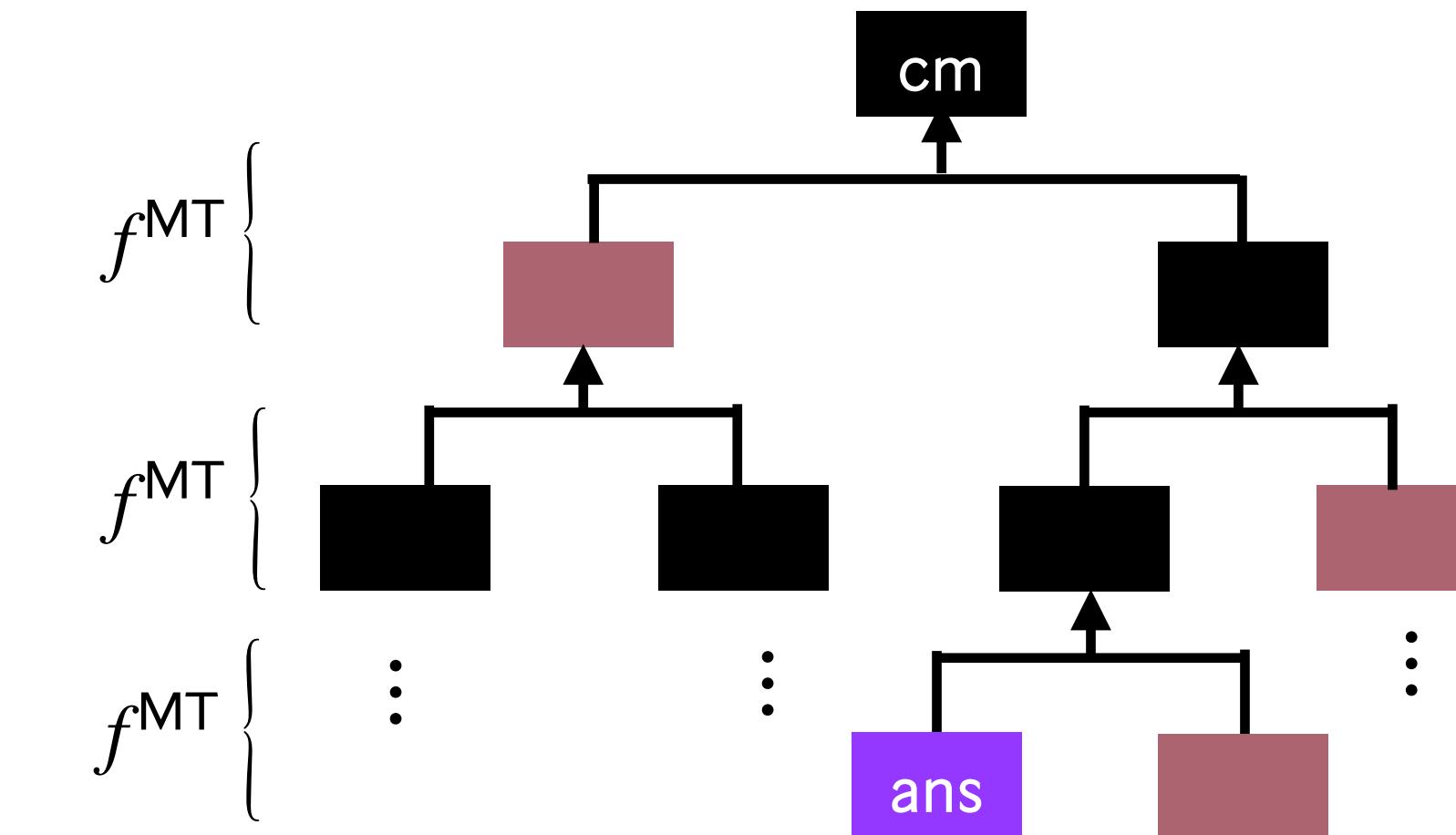


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

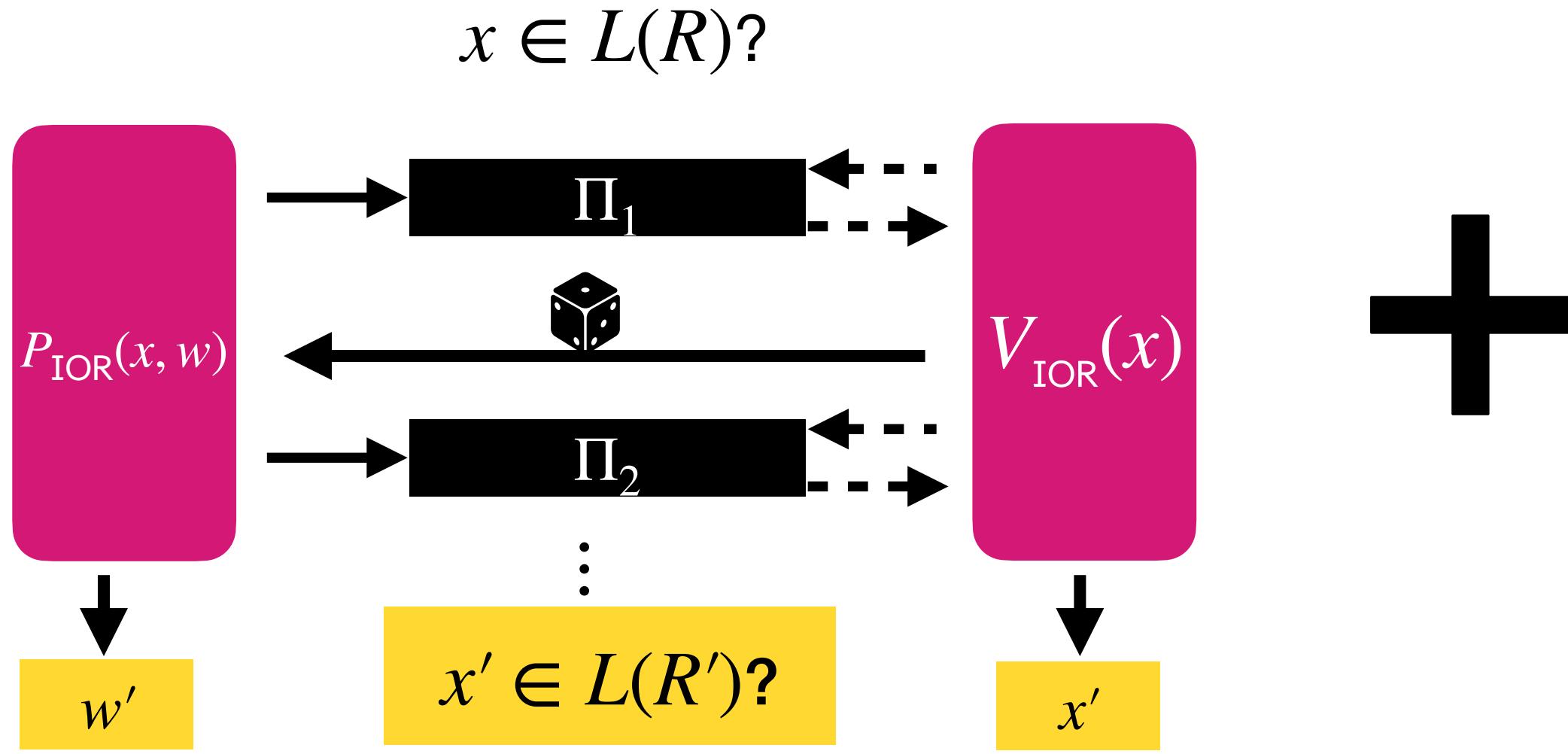


Ingredient #2: Merkle commitment scheme (MT)

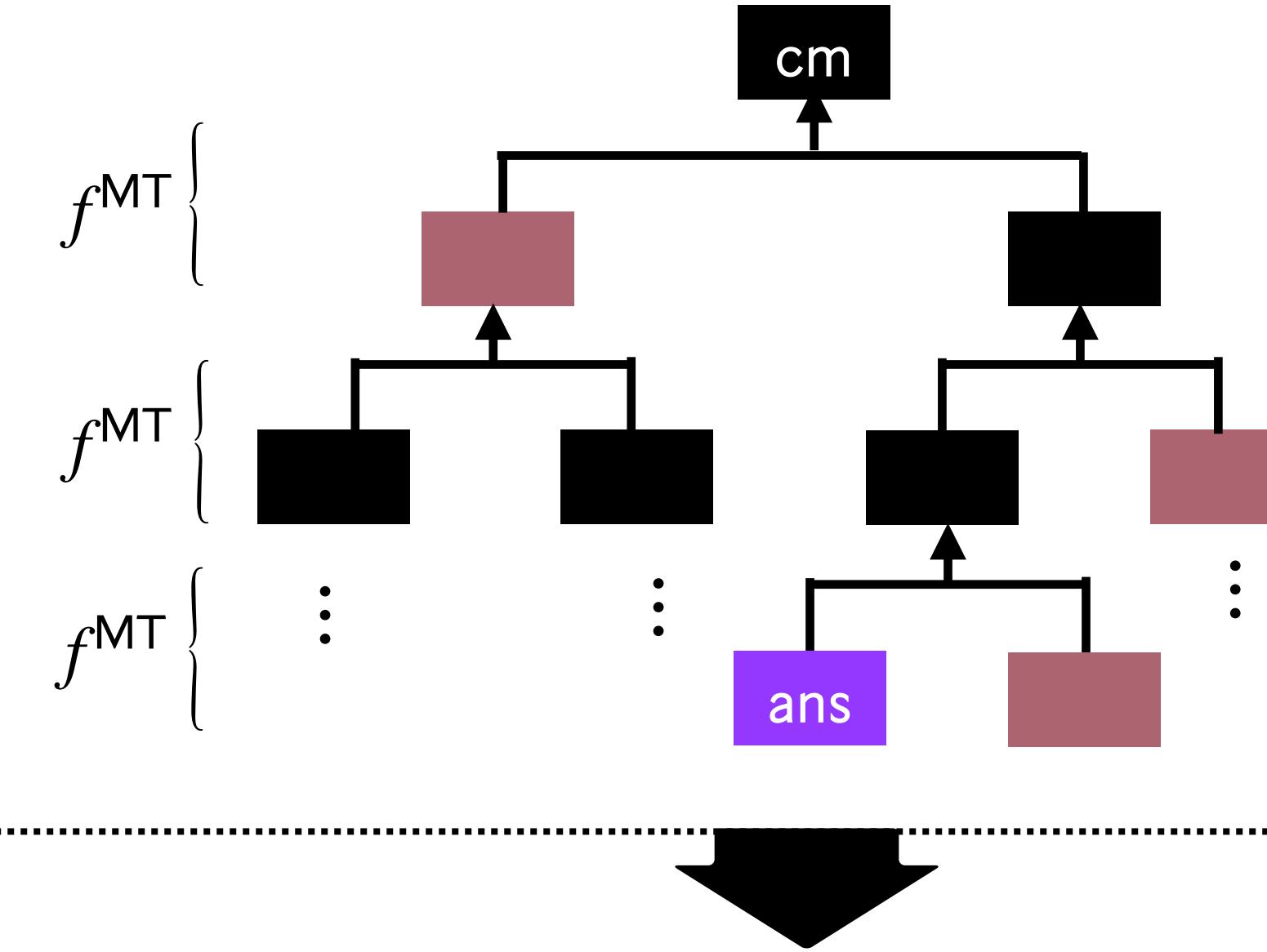


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

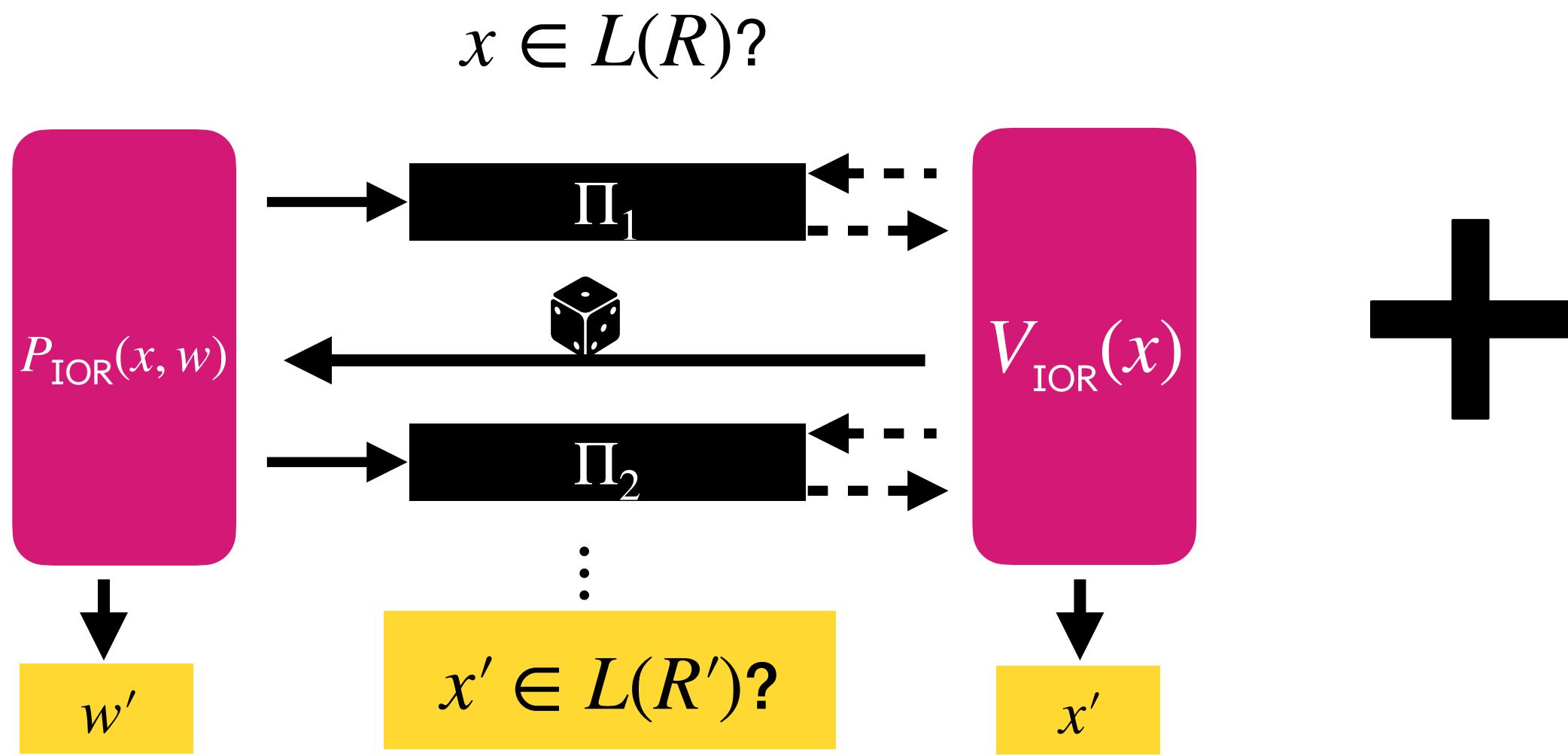


Ingredient #2: Merkle commitment scheme (MT)

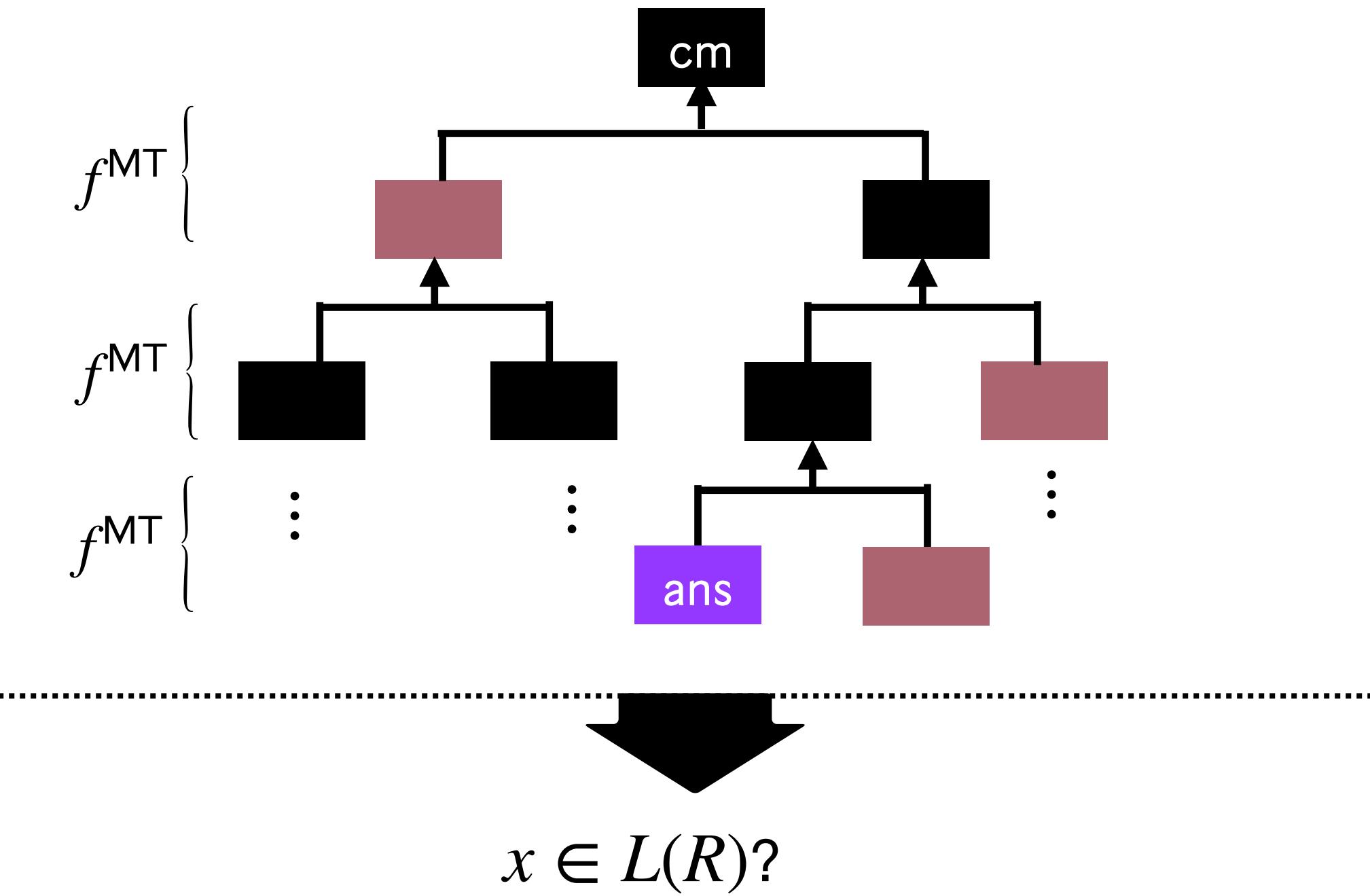
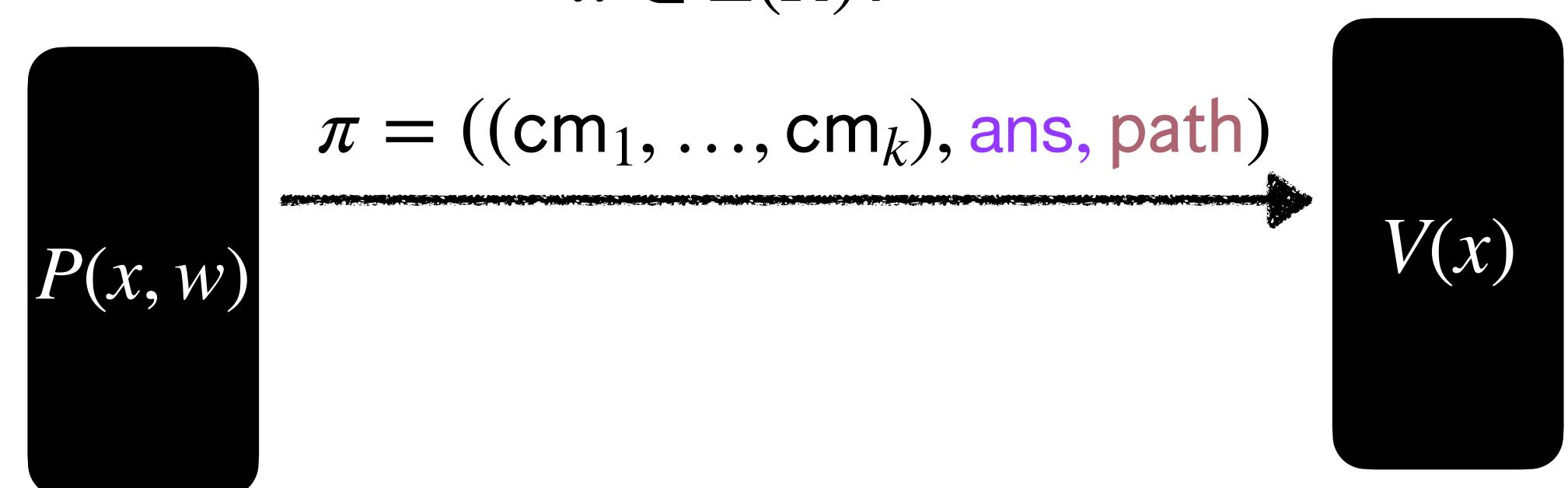


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

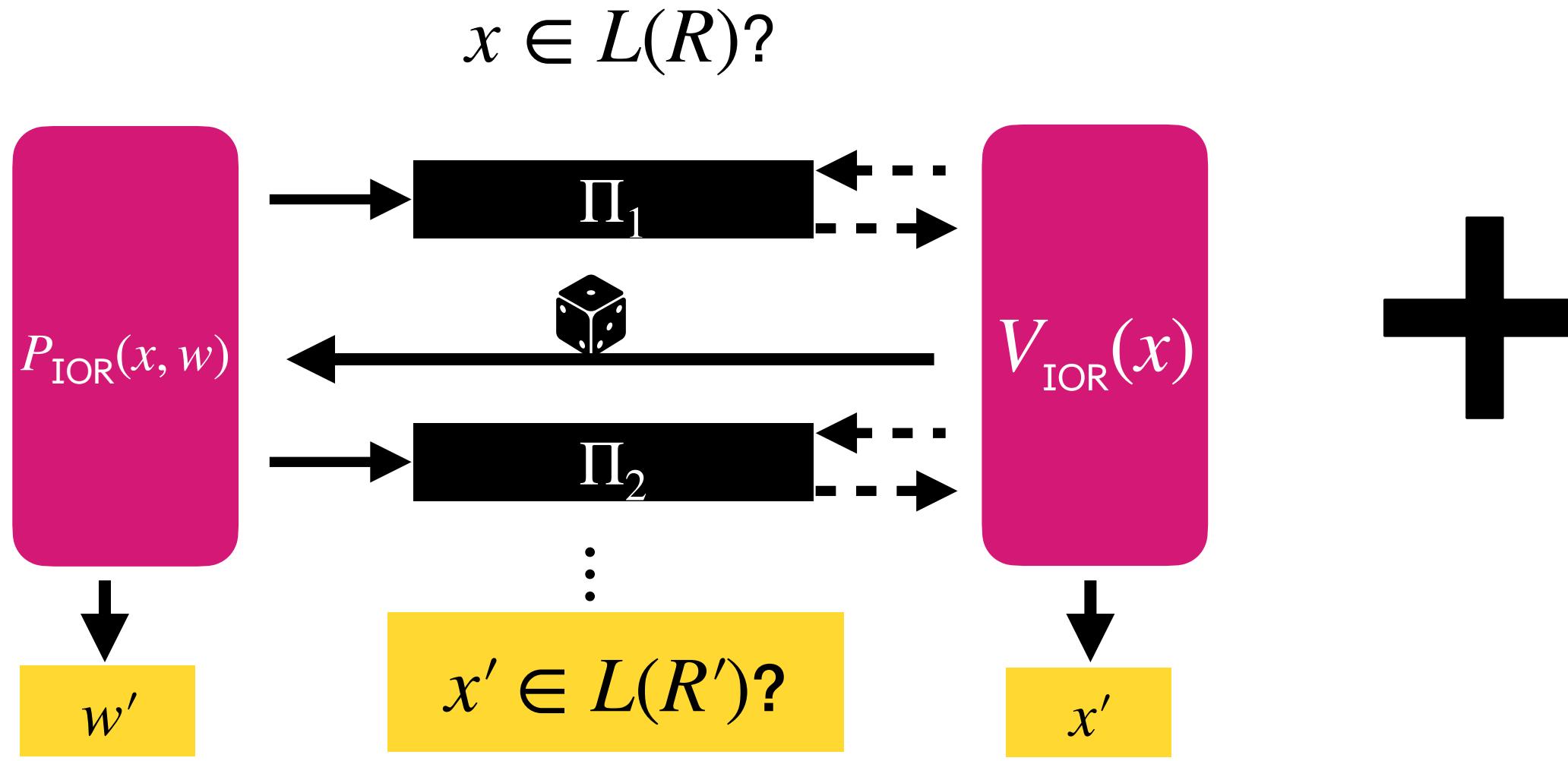


Ingredient #2: Merkle commitment scheme (MT)

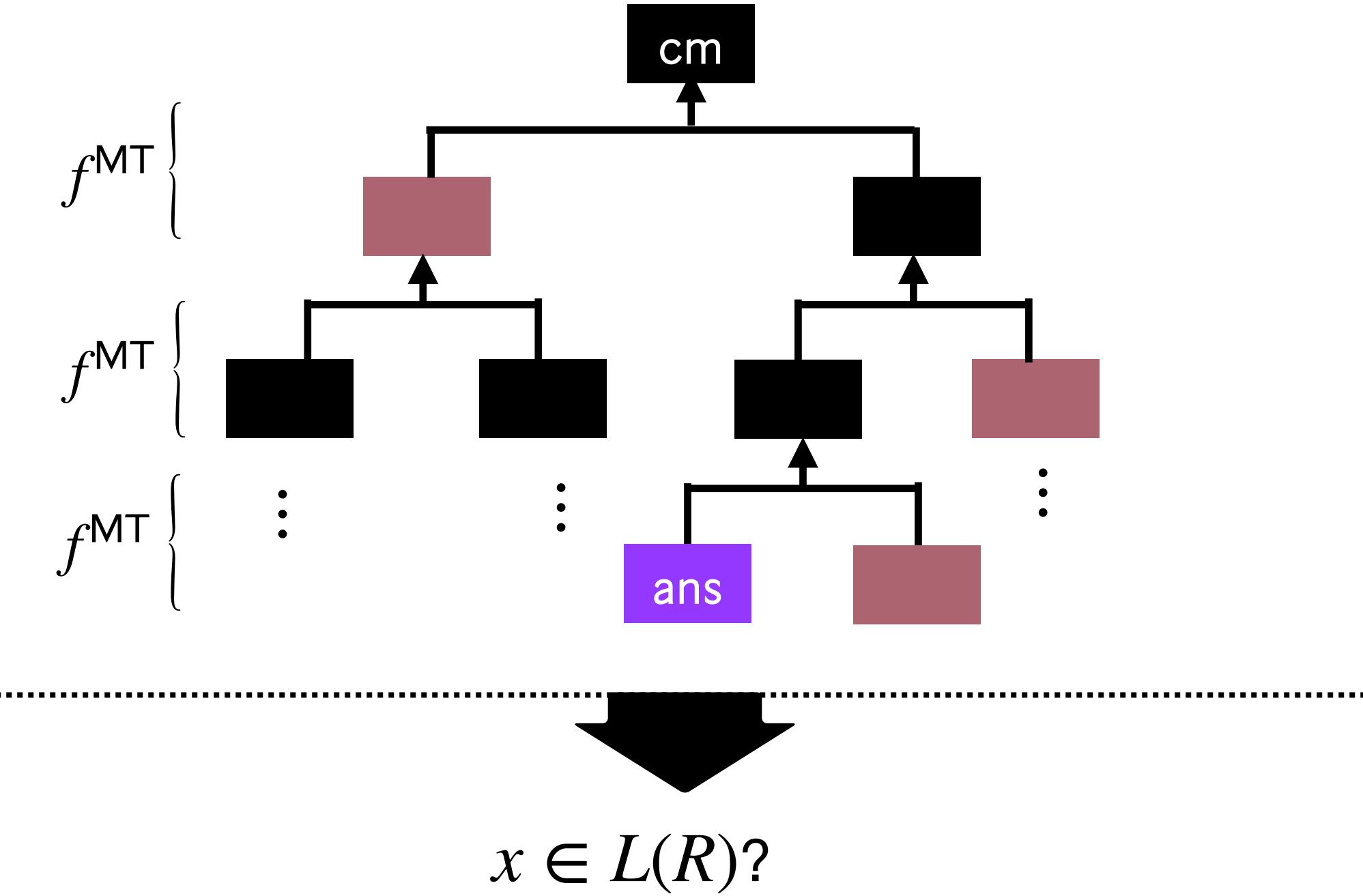
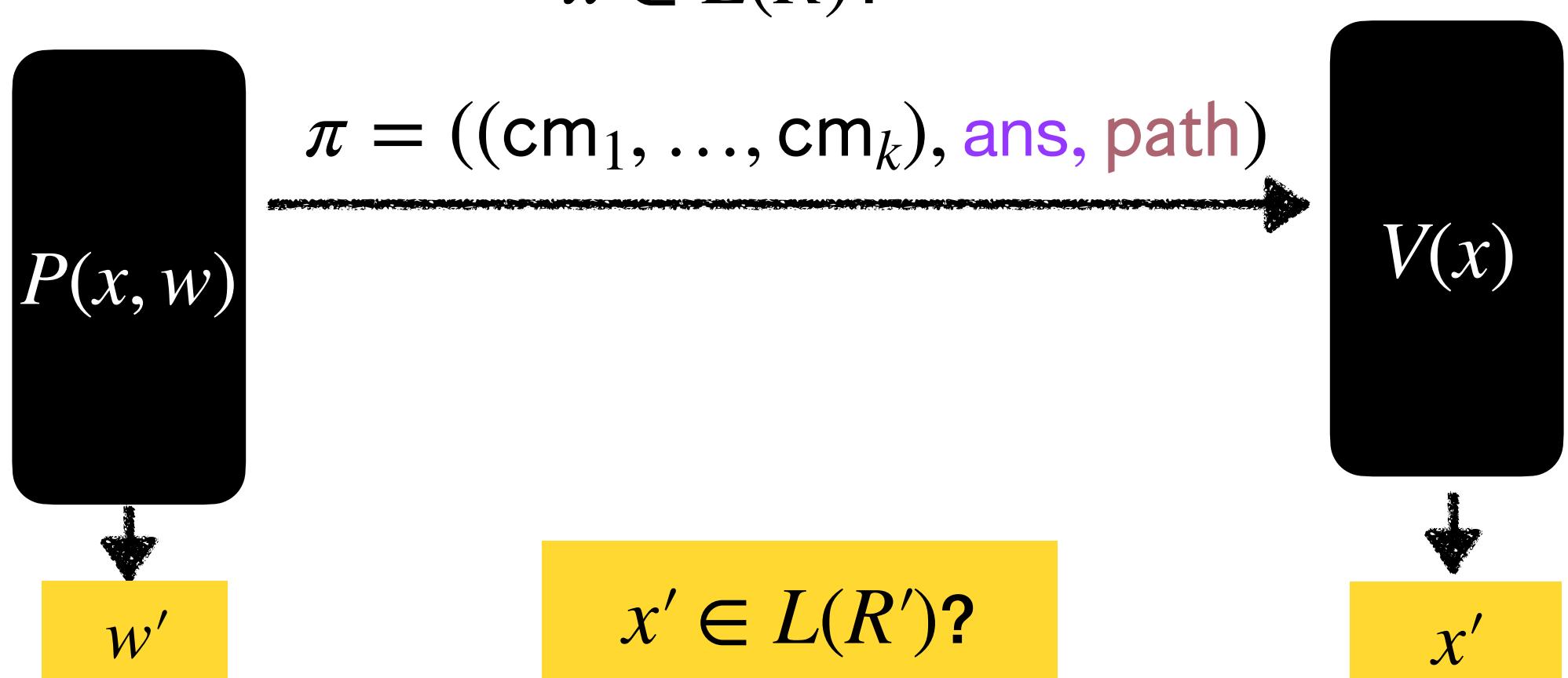


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

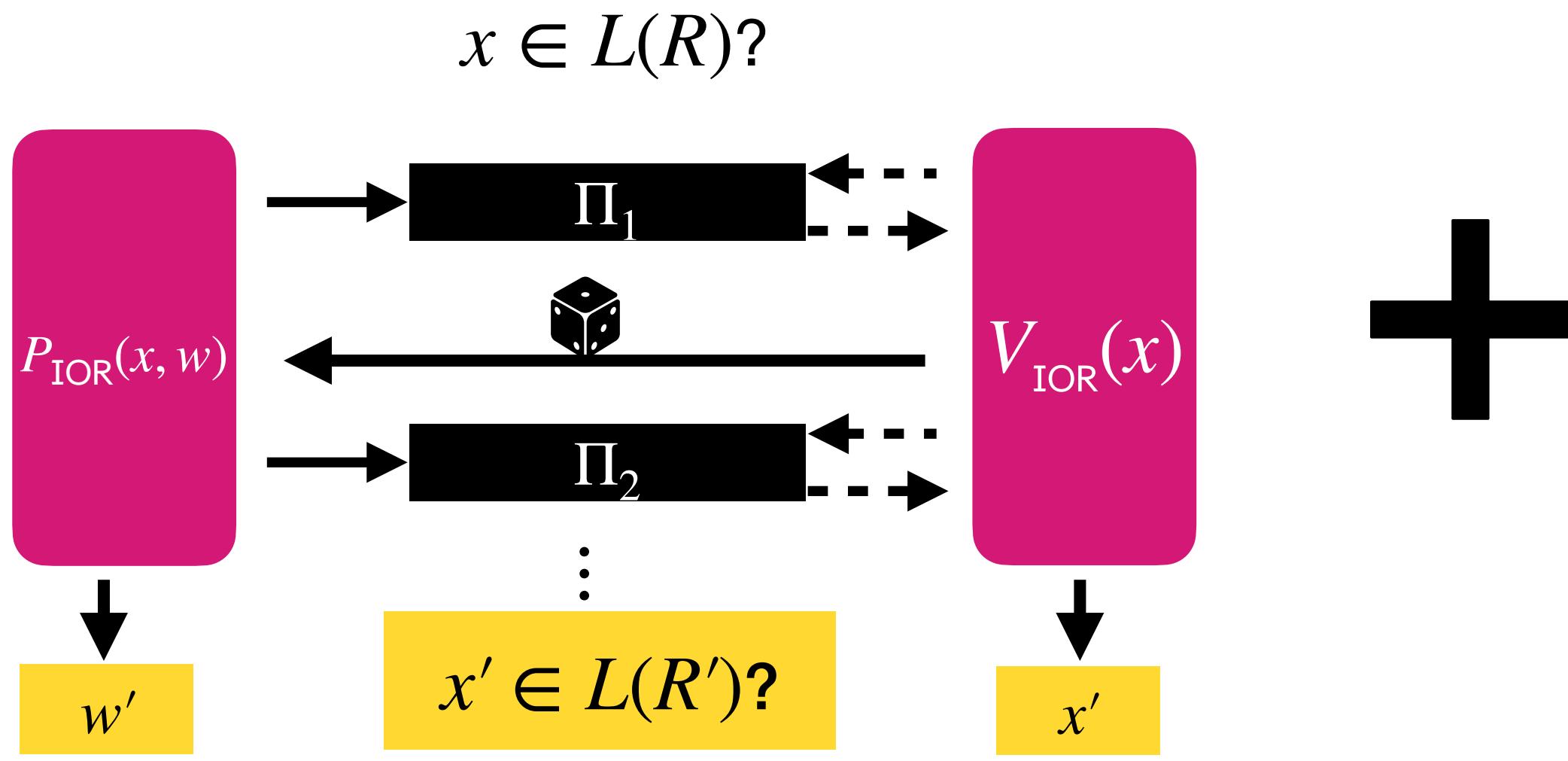


Ingredient #2: Merkle commitment scheme (MT)

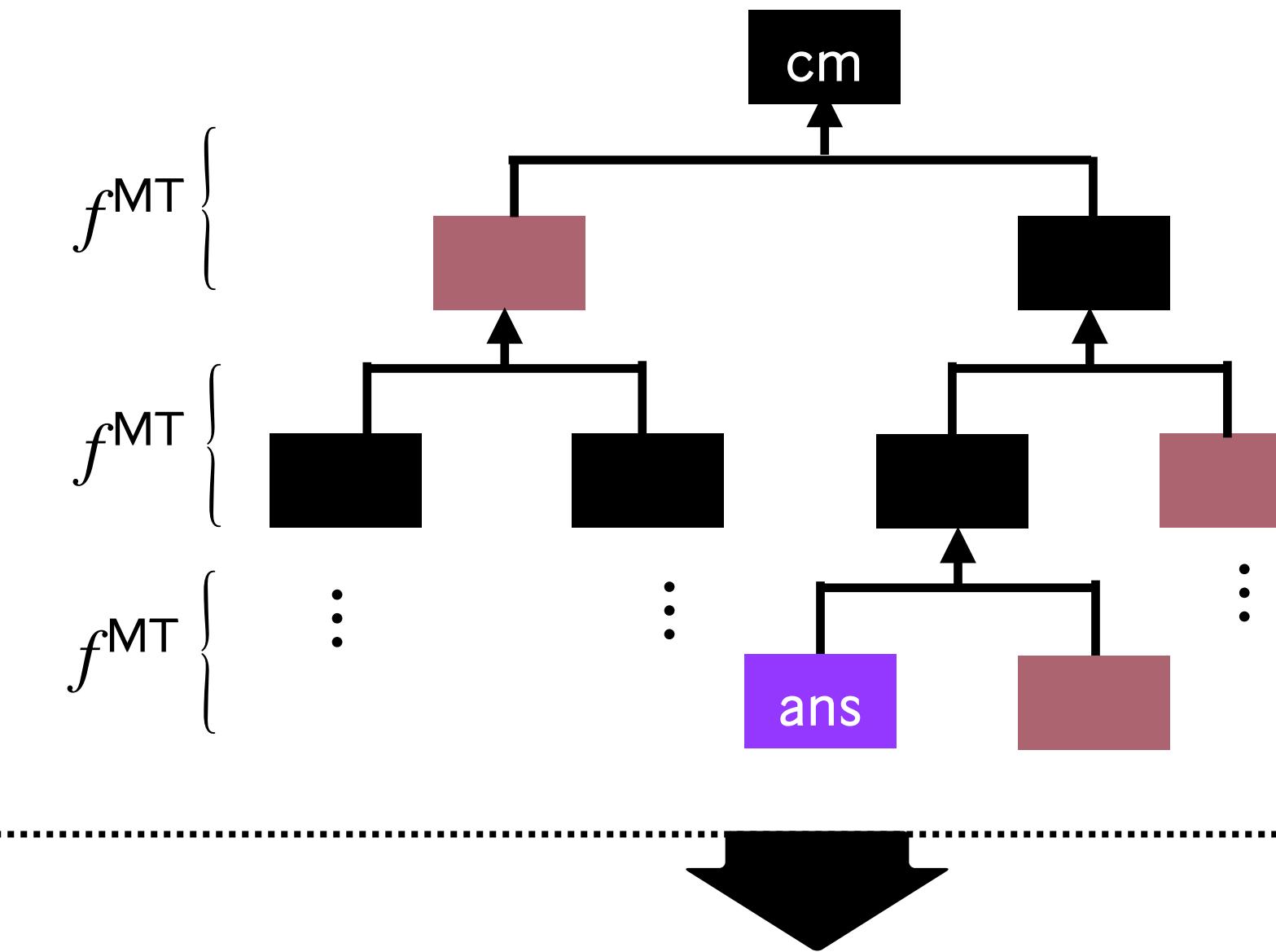


[BMNW25]: SNRDX BCS[IOR, MT]

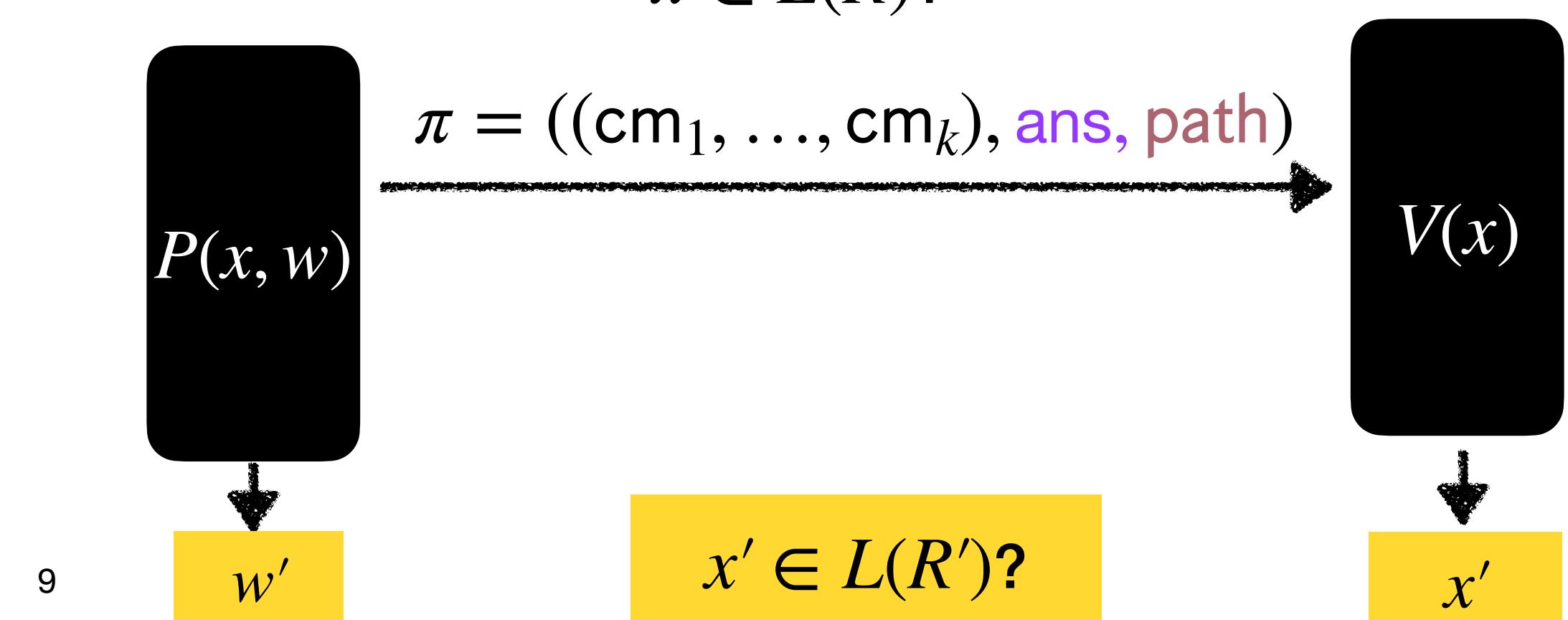
Ingredient #1: Interactive oracle reduction (IOR)



Ingredient #2: Merkle commitment scheme (MT)

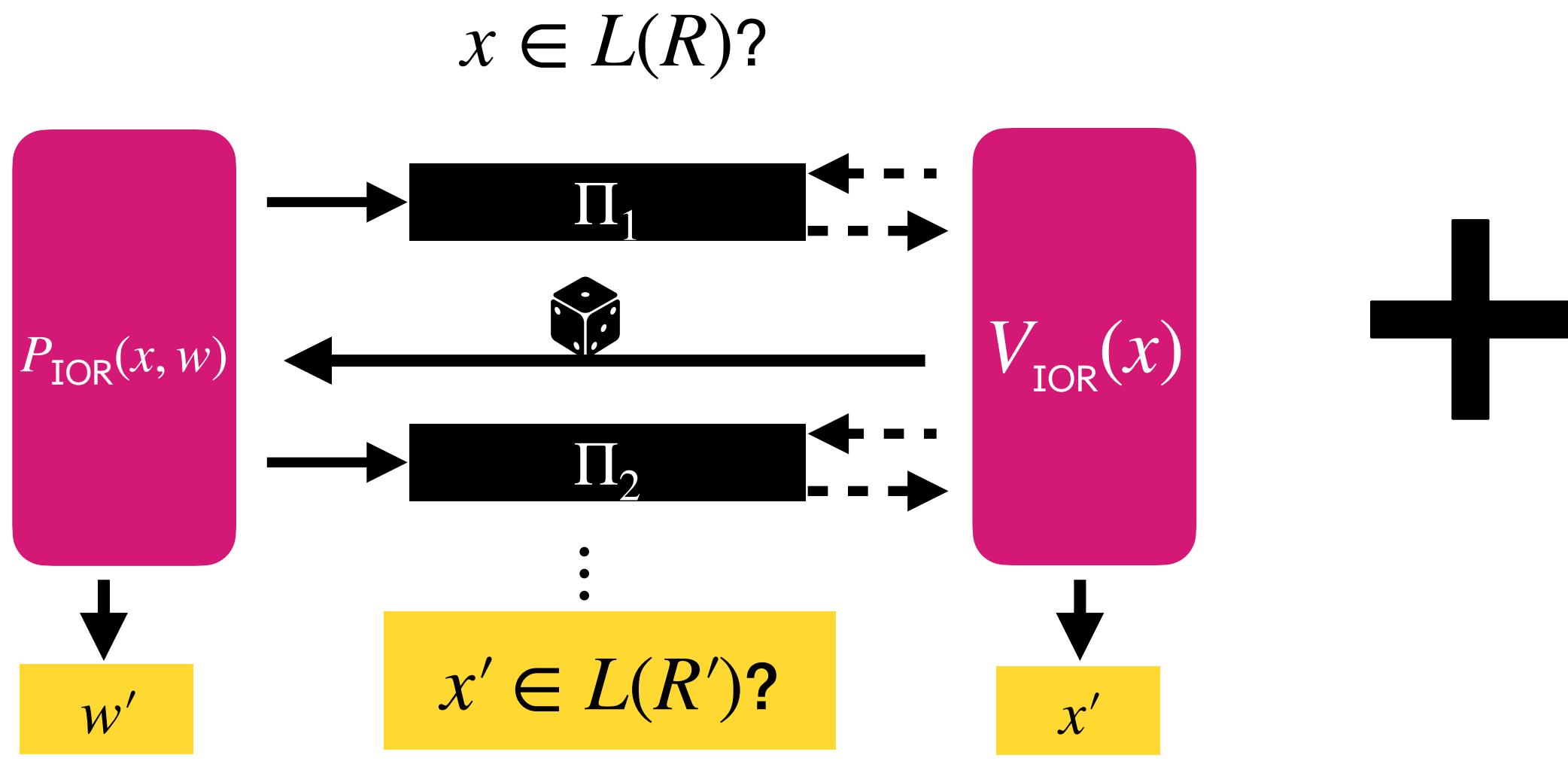


Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

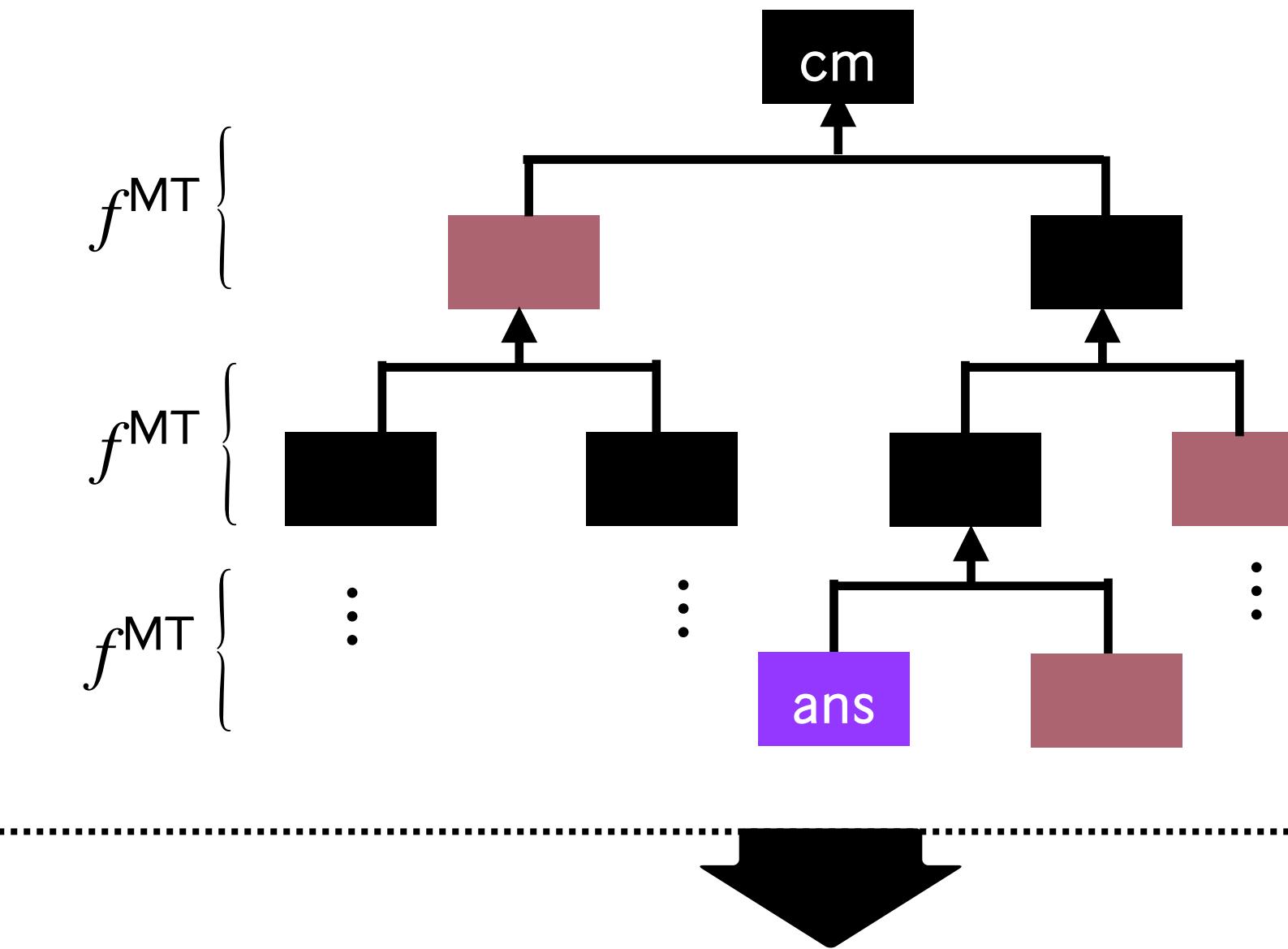


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)

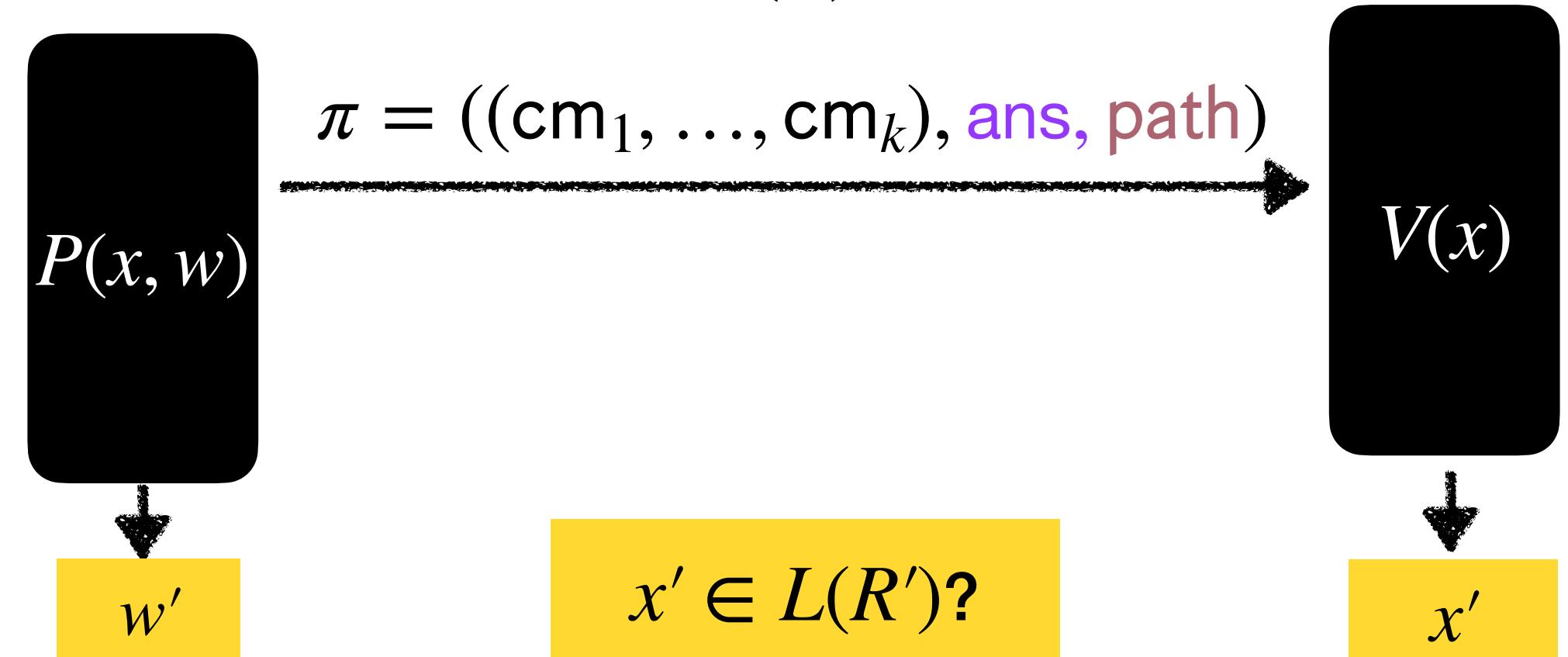


Ingredient #2: Merkle commitment scheme (MT)



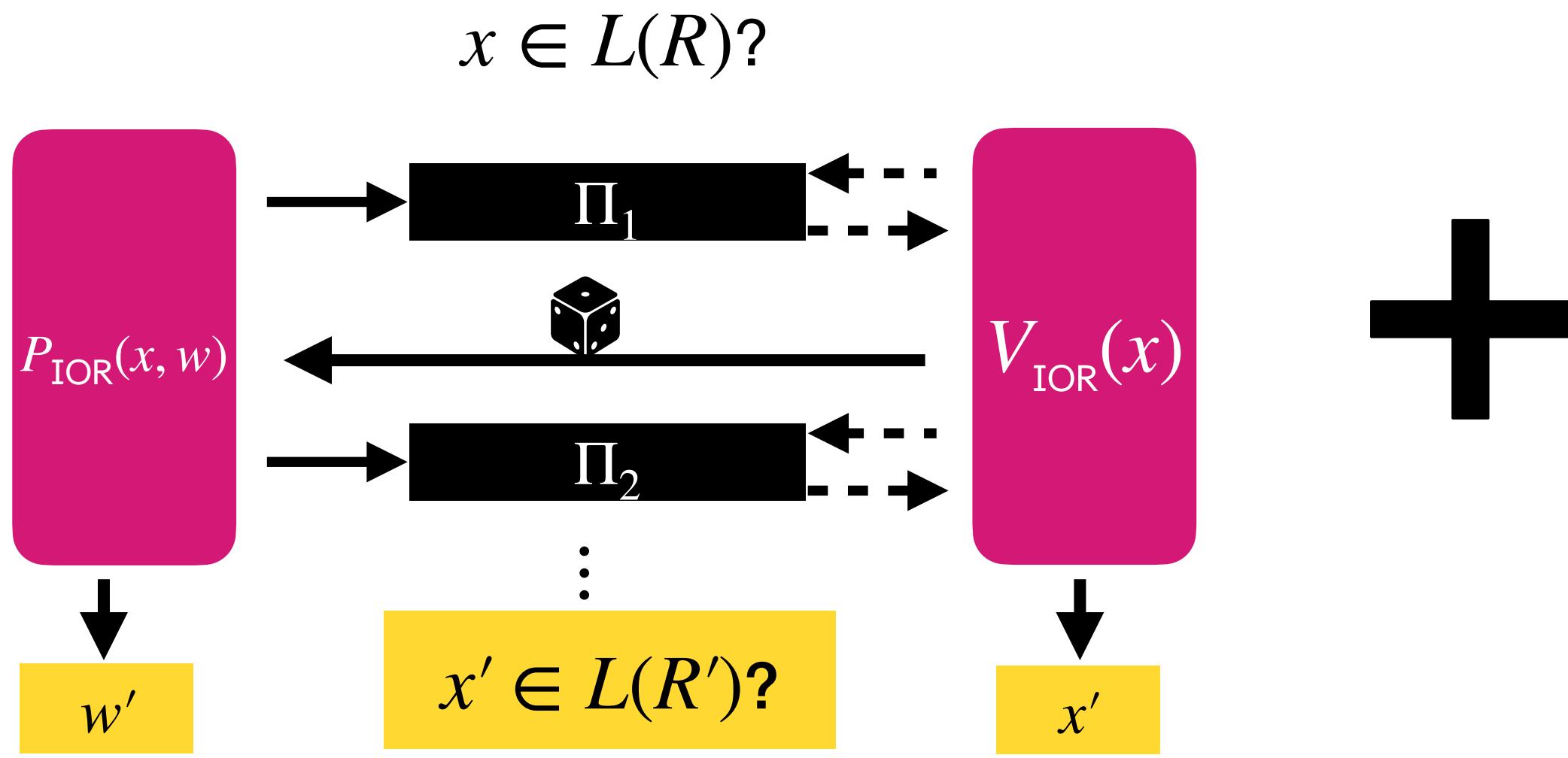
Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

Secure in the ROM against classical attackers [BMNW25].

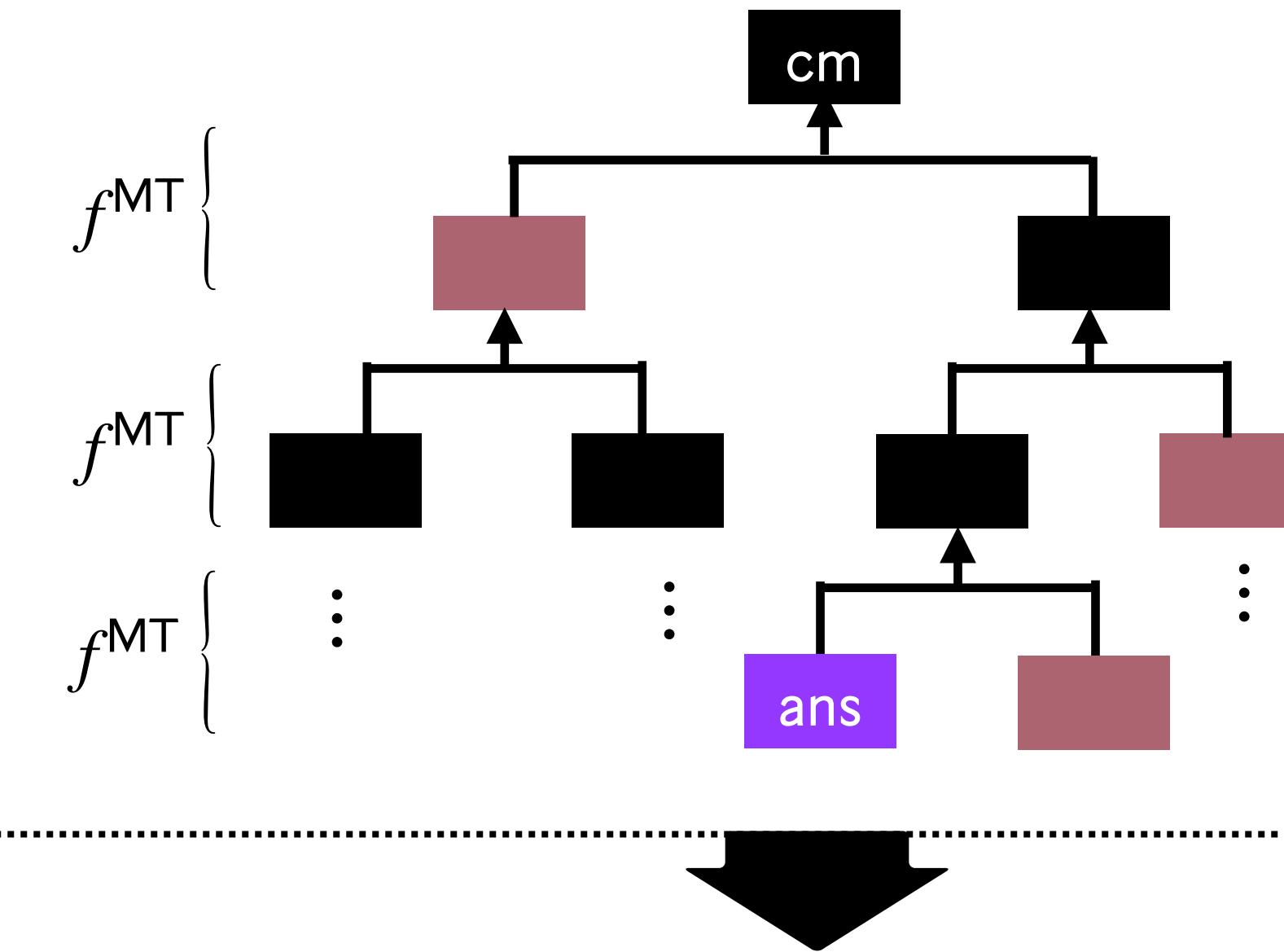


[BMNW25]: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR)



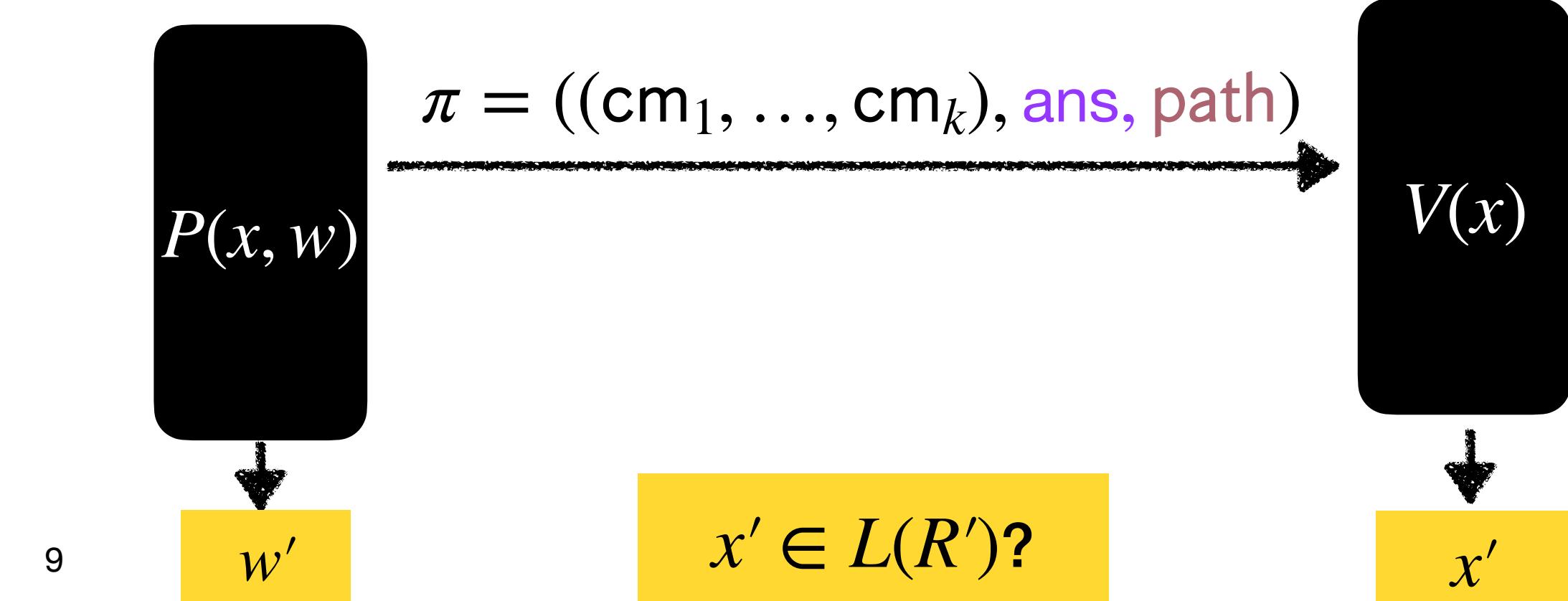
Ingredient #2: Merkle commitment scheme (MT)



Simple and efficient hash-based SNRDXs [BMNW25; BCFW25].

Secure in the ROM against classical attackers [BMNW25].

OUR QUESTION:
Are these hash-based SNRDXs
secure in the QROM?



Why post-quantum security matters for hash-based SNRDXs?

Why post-quantum security matters for hash-based SNRDXs?

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

Why post-quantum security matters for hash-based SNRDXs?

**Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),**

**are likely to be an important building block
for post-quantum redesigns of Ethereum.**

Why not use [CMS19]?

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[**IOP, MT**], not BCS[**IOR, MT**]

Classically, BCS[**IOR, MT**] and BCS[**IOP, MT**]
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[**IOP, MT**], not BCS[**IOR, MT**]

Classically, BCS[**IOR, MT**] and BCS[**IOP, MT**]
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 3: proves **non-adaptive** security of BCS[**IOP, MT**]

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[**IOP, MT**], not BCS[**IOR, MT**]

Classically, BCS[**IOR, MT**] and BCS[**IOP, MT**]
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 3: proves **non-adaptive** security of BCS[**IOP, MT**]

We target **adaptive** security of BCS[**IOR, MT**].

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[**IOP, MT**], not BCS[**IOR, MT**]

Classically, BCS[**IOR, MT**] and BCS[**IOP, MT**]
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 3: proves **non-adaptive** security of BCS[**IOP, MT**]

We target **adaptive** security of BCS[**IOR, MT**].

Problem 4: adopts a "**monolithic**" proof approach

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to BCS[**IOP, MT**], not BCS[**IOR, MT**]

Classically, BCS[**IOR, MT**] and BCS[**IOP, MT**]
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS19]?

We cannot. Also, we should not.

Problem 3: proves **non-adaptive** security of BCS[**IOP, MT**]

We target **adaptive** security of BCS[**IOR, MT**].

Problem 4: adopts a "**monolithic**" proof approach

We want a quantum proof of BCS[**IOR, MT**]
that aligns with the classical one (we want **the "right" one!**).

Problem 1: requires the IOP to satisfy **RBR knowledge soundness**

State-of-the-art IOPs/IORs satisfy a **weaker** variant.

Problem 2: applies to $\text{BCS}[\text{IOP, MT}]$, not $\text{BCS}[\text{IOR, MT}]$

Classically, $\text{BCS}[\text{IOR, MT}]$ and $\text{BCS}[\text{IOP, MT}]$
require **different** proofs.

Quantumly, even **larger gap**.

Why not use [CMS]

We cannot. Also, we should

Problem 3: proves **non-adaptive** security of $\text{BCS}[\text{IOP, MT}]$

We target **adaptive** security of $\text{BCS}[\text{IOR, MT}]$.

Back to the
drawing board!

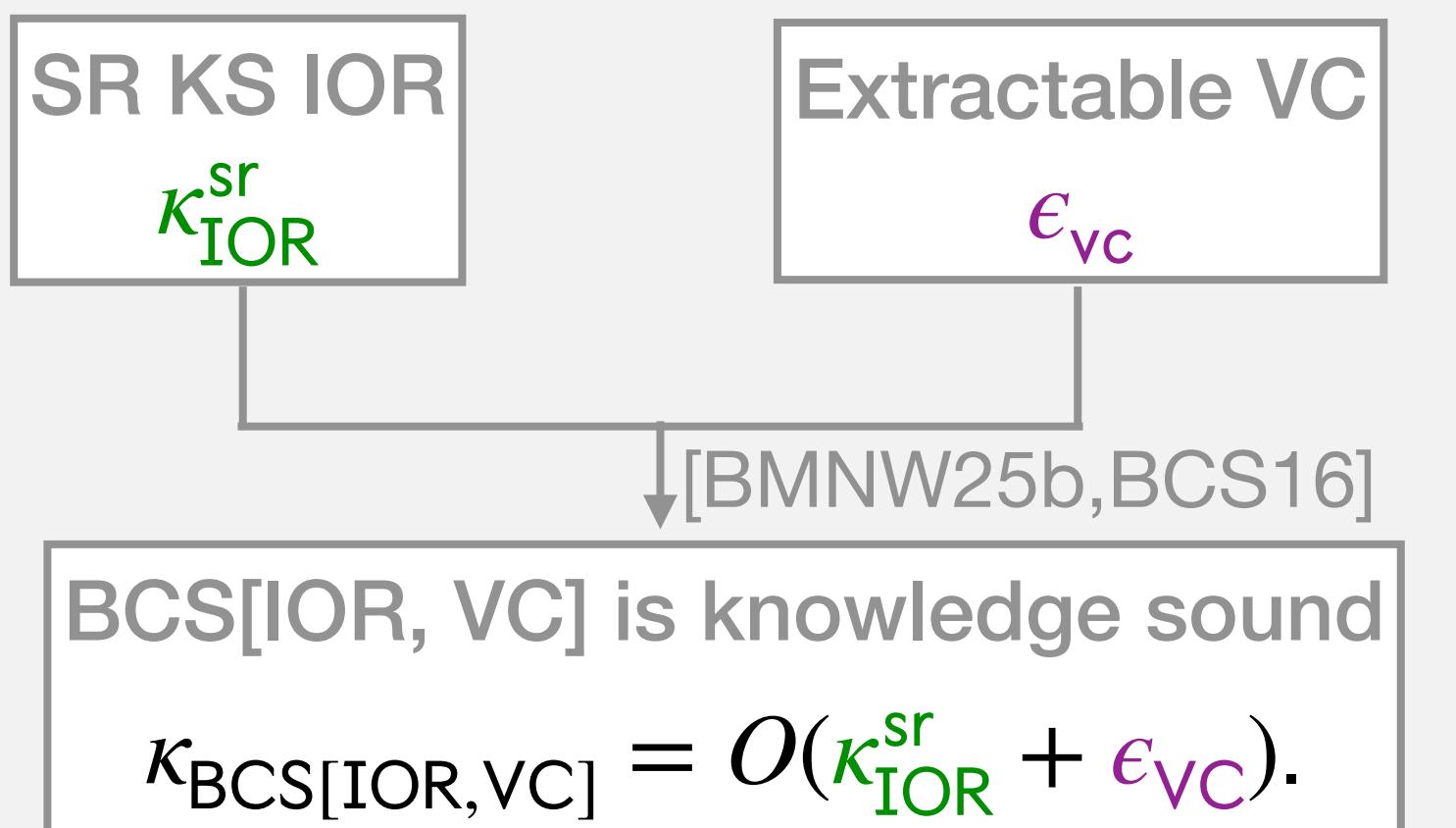
Problem 4: adopts a "**monolithic**" proof approach

We want a quantum proof of $\text{BCS}[\text{IOR, MT}]$
that aligns with the classical one (we want **the "right" one!**).

Our results

Theorem 1:

Theorem 1:



Theorem 1:

Vector commitment (VC) :
an abstraction of MT

SR KS IOR
 $\kappa_{\text{IOR}}^{\text{sr}}$

Extractable VC
 ϵ_{VC}

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Post-quantum case

Theorem 1:

PQSR KS IOR
 $\kappa_{\text{IOR}}^{\star, \text{sr}}$

PQ Extractable VC
 $\epsilon_{\text{VC}}^{\star}$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^{\star} = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^{\star}).$$

Classical case

Vector commitment (VC) :
 an abstraction of MT

SR KS IOR
 $\kappa_{\text{IOR}}^{\text{sr}}$

Extractable VC
 ϵ_{VC}

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Post-quantum case

Theorem 2:

PQSR KS IOR
 $\kappa_{\text{IOR}}^{\star, \text{sr}}$

PQ Extractable VC
 $\epsilon_{\text{VC}}^{\star}$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^{\star} = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^{\star}).$$

Classical case

Theorem 1:

Vector commitment (VC) :
 an abstraction of MT

SR KS IOR
 $\kappa_{\text{IOR}}^{\text{sr}}$

Extractable VC
 ϵ_{VC}

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Post-quantum case

Theorem 2:

PQSR KS IOR
 $\kappa_{\text{IOR}}^{\star, \text{sr}}$

PQ Extractable VC
 $\epsilon_{\text{VC}}^{\star}$

Theorem 1:

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^{\star} = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^{\star}).$$

Classical case

RBR KS IOR

relaxed RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR
 $\kappa_{\text{IOR}}^{\text{sr}}$

Extractable VC
 ϵ_{VC}

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Post-quantum case

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^{\star}$$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^{\star} = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^{\star}).$$

Classical case

RBR KS IOR

relaxed RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) : an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Post-quantum case

Theorem 2:

PQSR KS IOR
 $\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$

Grover's alg:
 Preimage finding

RBR KS IOR

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$

Vector commitment (VC) :
 an abstraction of MT

PQSR KS IOR
 $\kappa_{\text{IOR}}^{\star, \text{sr}}$

PQ Extractable VC
 $\epsilon_{\text{VC}}^{\star}$

Theorem 1:

BCS[IOR, VC] is PQ
 knowledge sound

$\kappa_{\text{BCS[IOR,VC]}}^{\star} = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^{\star}).$

Classical case

SR KS IOR
 $\kappa_{\text{IOR}}^{\text{sr}}$

Extractable VC
 ϵ_{VC}

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$

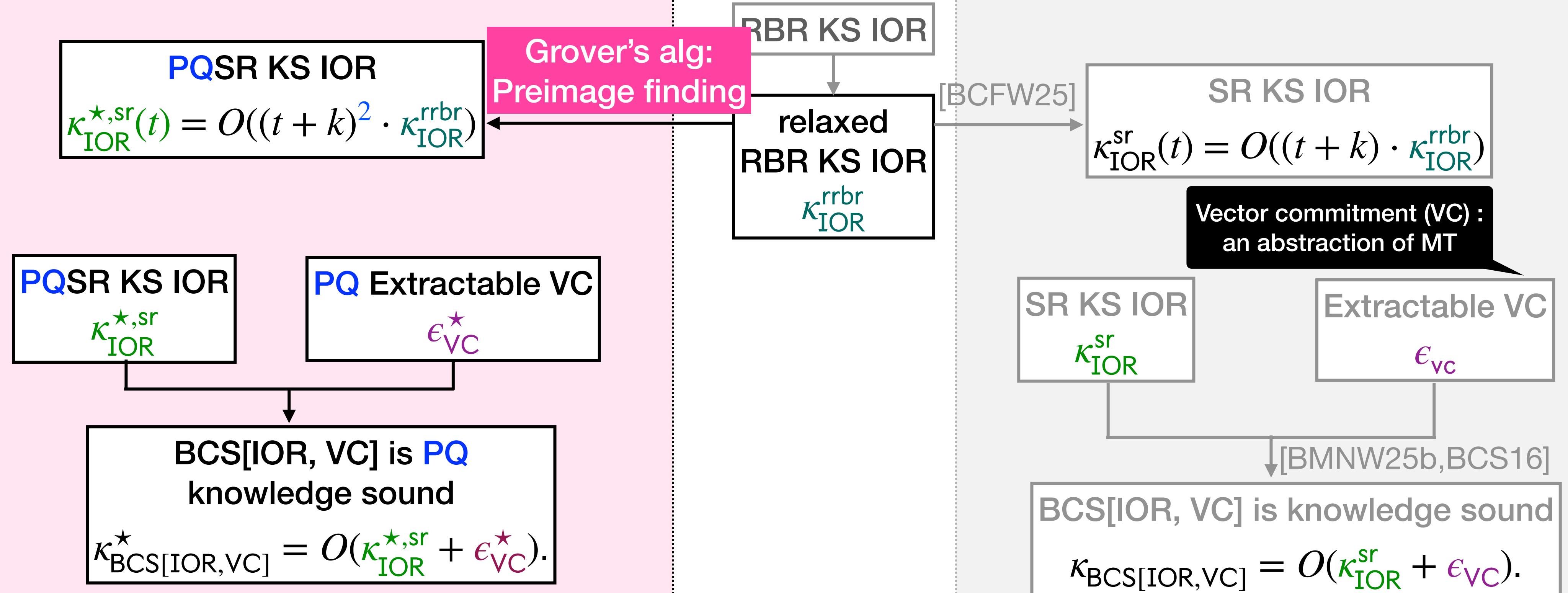
Post-quantum case

Classical case

Theorem 3:

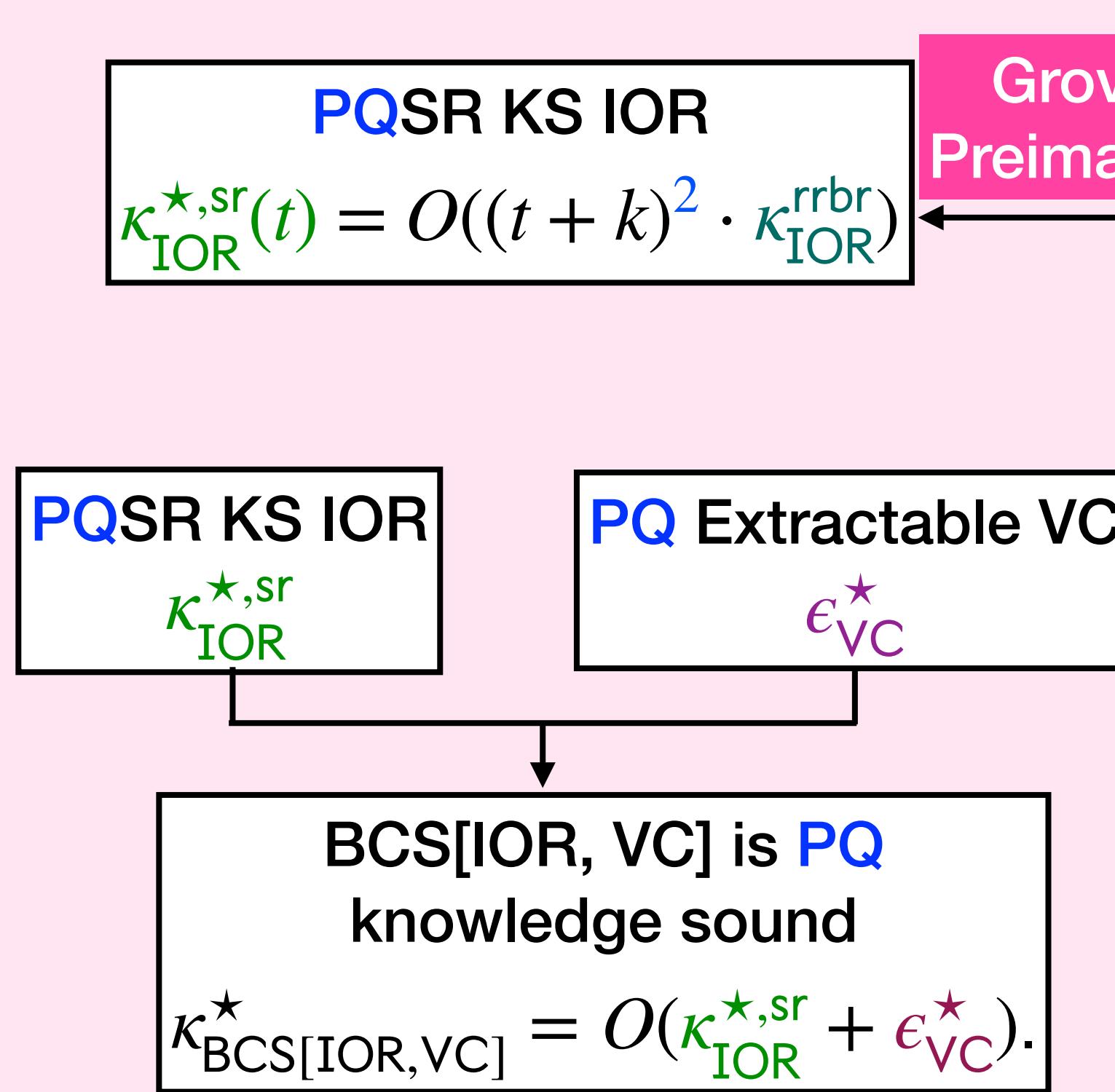
Theorem 2:

Theorem 1:



Post-quantum case

Theorem 3:

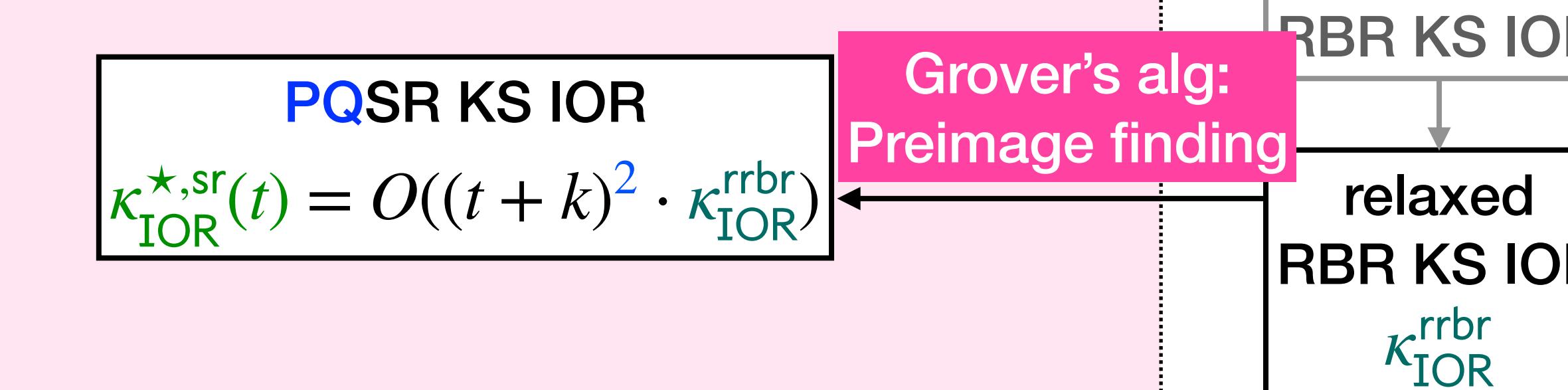
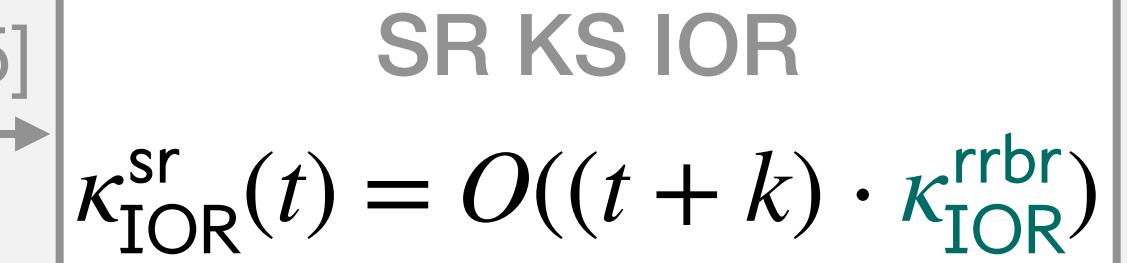


Classical case

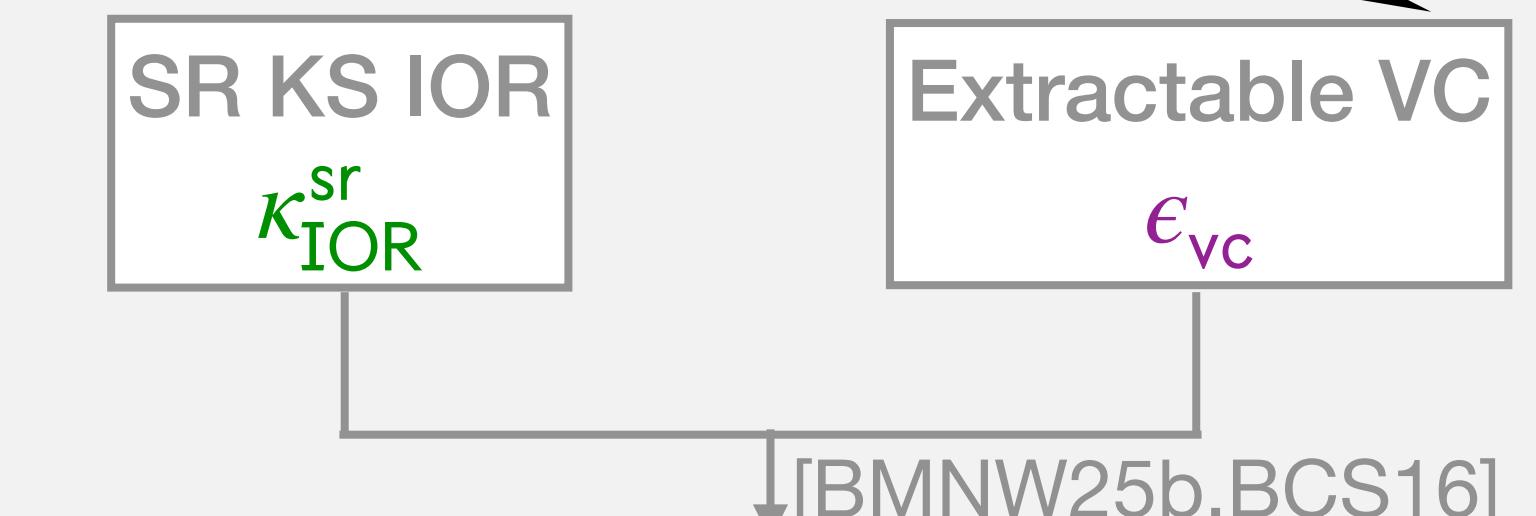
MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

Theorem 2:



Vector commitment (VC) : an abstraction of MT



BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Theorem 1:

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Grover's alg:
Preimage finding

RBR KS IOR

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is **PQ**
knowledge sound

$$\kappa_{\text{BCS}[\text{IOR}, \text{VC}]}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

RBR KS IOR

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS}[\text{IOR}, \text{VC}]} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

Post-quantum case

BHT alg:
The collision error

RBR KS IOR

Grover's alg:
Preimage finding

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

Classical case

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

Post-quantum case

Classical case

BHT alg:
The collision error

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

RBR KS IOR

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

Grover's alg:
Preimage finding

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Putting it together:

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is PQ knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

Post-quantum case

BHT alg:
The collision error

RBR KS IOR

Grover's alg:
Preimage finding

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Classical case

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

$$\kappa_{\text{BCS[IOR,MT]}} = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^2/2^\sigma)$$

Putting it together:

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is **PQ** knowledge sound

$$\kappa_{\text{BCS}[\text{IOR,VC}]}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

Putting it together:

$$\kappa_{\text{BCS}[\text{IOR,MT}]}^* = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^3/2^\sigma)$$

Post-quantum case

Classical case

BHT alg:
The collision error

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

RBR KS IOR

Grover's alg:
Preimage finding

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS}[\text{IOR,VC}]} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

Putting it together:

$$\kappa_{\text{BCS}[\text{IOR,MT}]}^* = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^3/2^\sigma)$$

Asymptotically tight bound

Post-quantum case

Classical case

BHT alg:
The collision error

Grover's alg:
Preimage finding

RBR KS IOR

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS}[\text{IOR,VC}]} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}^*).$$

$$\kappa_{\text{BCS}[\text{IOR,MT}]} = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^2/2^\sigma)$$

Theorem 3:

MT has **PQ** extractability error

$$\epsilon_{\text{MT}}^* = O(t^3/2^\sigma)$$

Theorem 2:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}(t) = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Theorem 1:

PQSR KS IOR

$$\kappa_{\text{IOR}}^{\star, \text{sr}}$$

PQ Extractable VC

$$\epsilon_{\text{VC}}^*$$

BCS[IOR, VC] is **PQ** knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}}^* = O(\kappa_{\text{IOR}}^{\star, \text{sr}} + \epsilon_{\text{VC}}^*).$$

Putting it together:

$$\kappa_{\text{BCS[IOR,MT]}}^* = O((t + k)^2 \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^3/2^\sigma)$$

Asymptotically tight bound

Post-quantum case

Classical case

BHT alg:
The collision error

MT has extractability error

$$\epsilon_{\text{MT}} = O(t^2/2^\sigma)$$

RBR KS IOR

Grover's alg:
Preimage finding

relaxed
RBR KS IOR
 $\kappa_{\text{IOR}}^{\text{rrbr}}$

[BCFW25]

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}(t) = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}})$$

Vector commitment (VC) :
an abstraction of MT

SR KS IOR

$$\kappa_{\text{IOR}}^{\text{sr}}$$

Extractable VC

$$\epsilon_{\text{VC}}$$

[BMNW25b,BCS16]

BCS[IOR, VC] is knowledge sound

$$\kappa_{\text{BCS[IOR,VC]}} = O(\kappa_{\text{IOR}}^{\text{sr}} + \epsilon_{\text{VC}}).$$

$$\kappa_{\text{BCS[IOR,MT]}} = O((t + k) \cdot \kappa_{\text{IOR}}^{\text{rrbr}}) + O(t^2/2^\sigma)$$

Small constant in O notation

Technical Overview

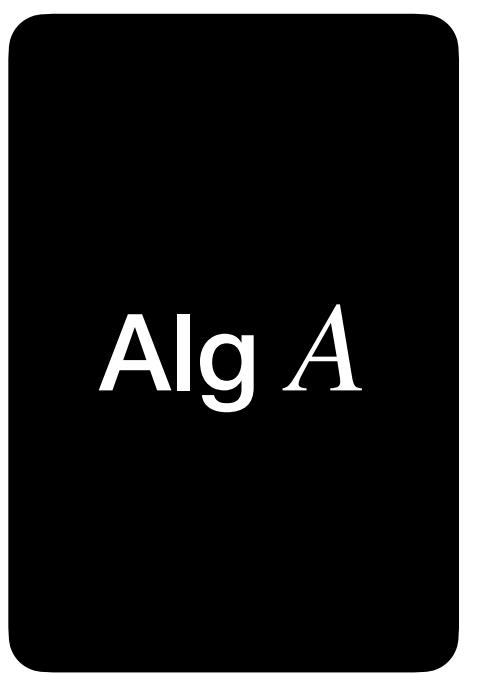
Ideal model for hash functions

Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^o)$

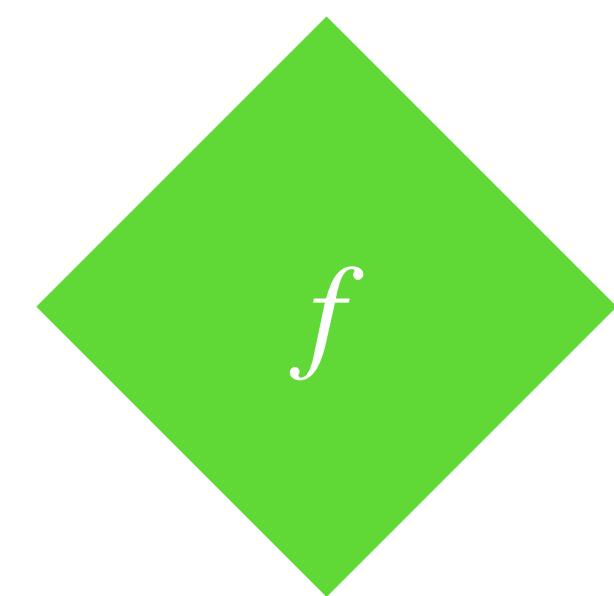
Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^o)$



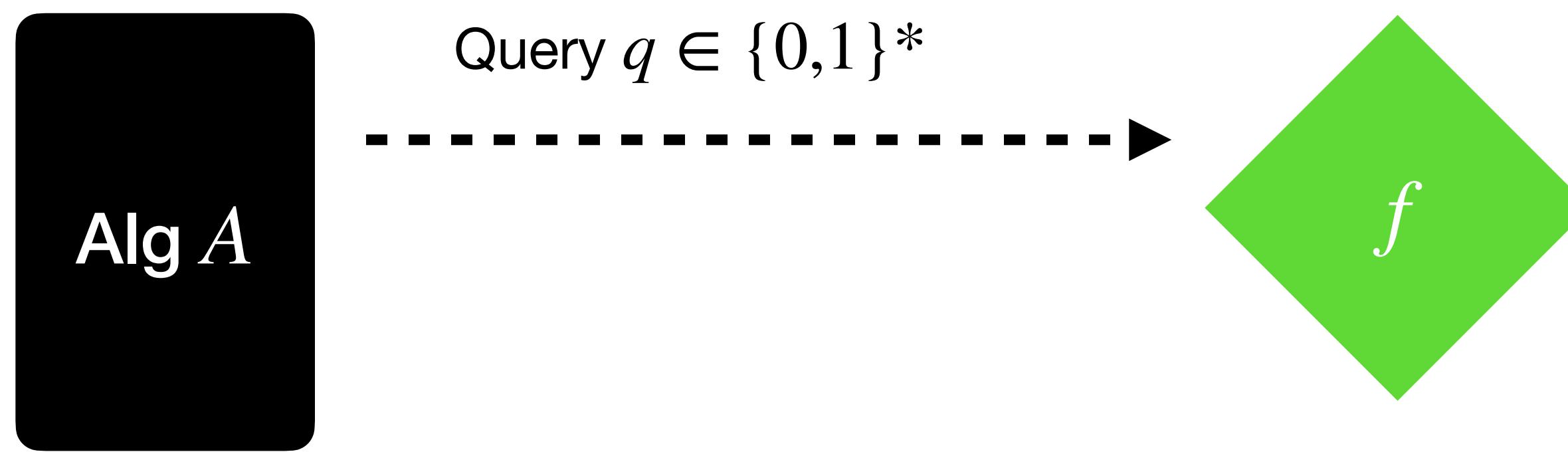
Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^o)$



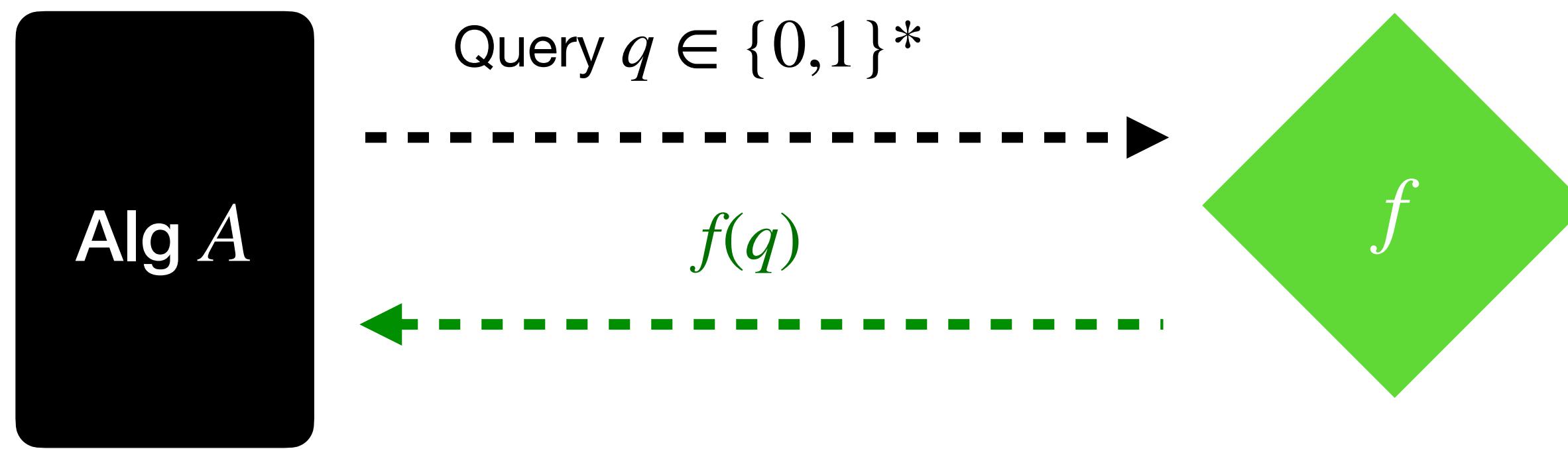
Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^o)$



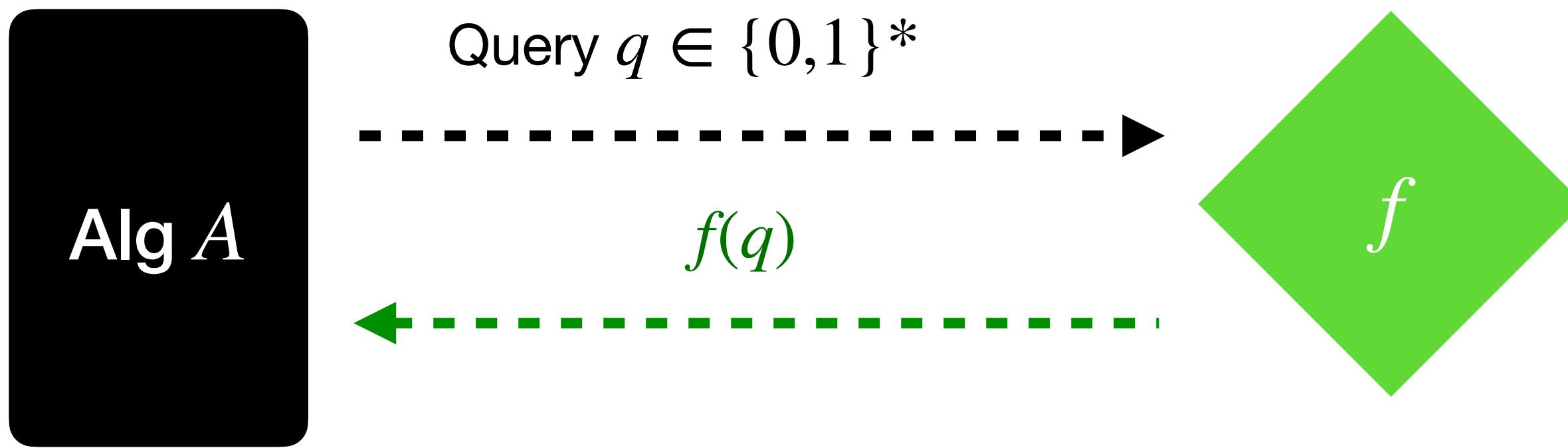
Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^o)$



Ideal model for hash functions

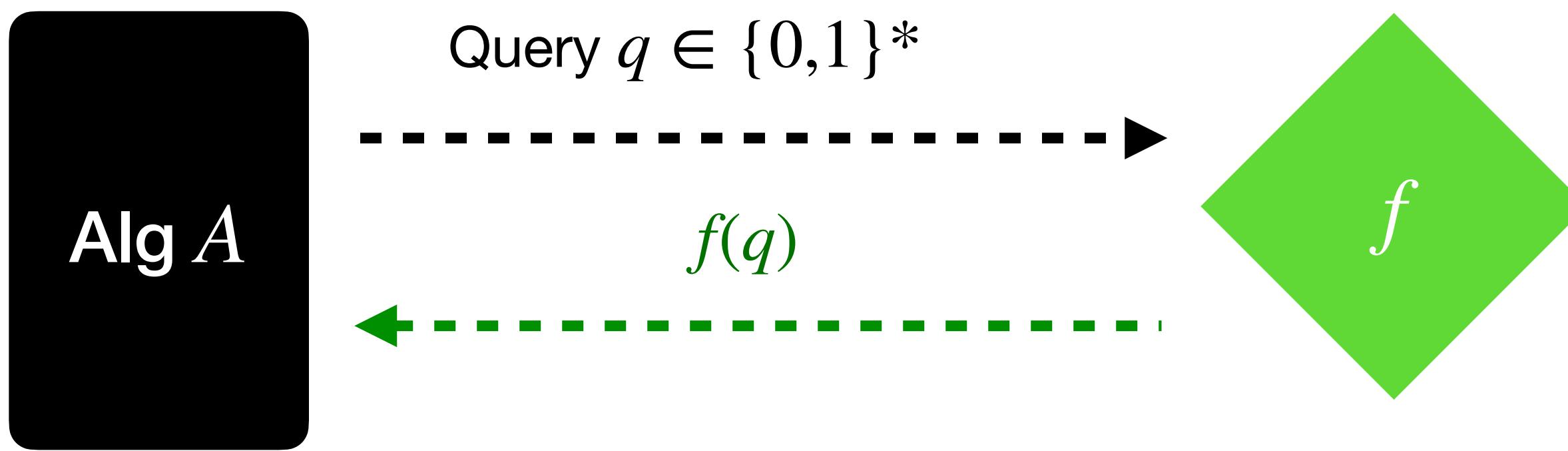
Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$



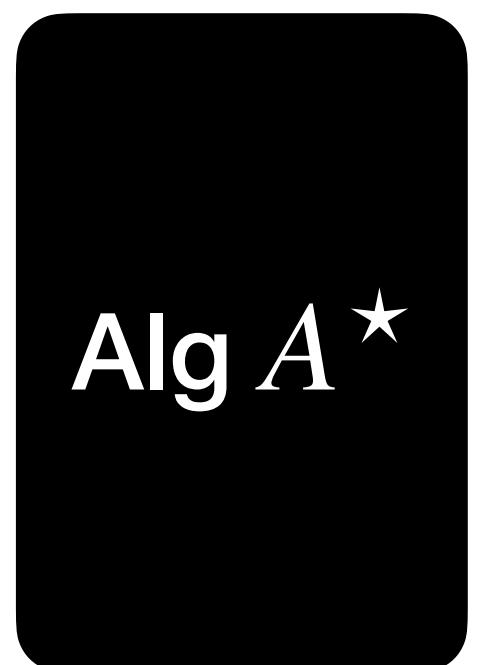
Quantum random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$

Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$

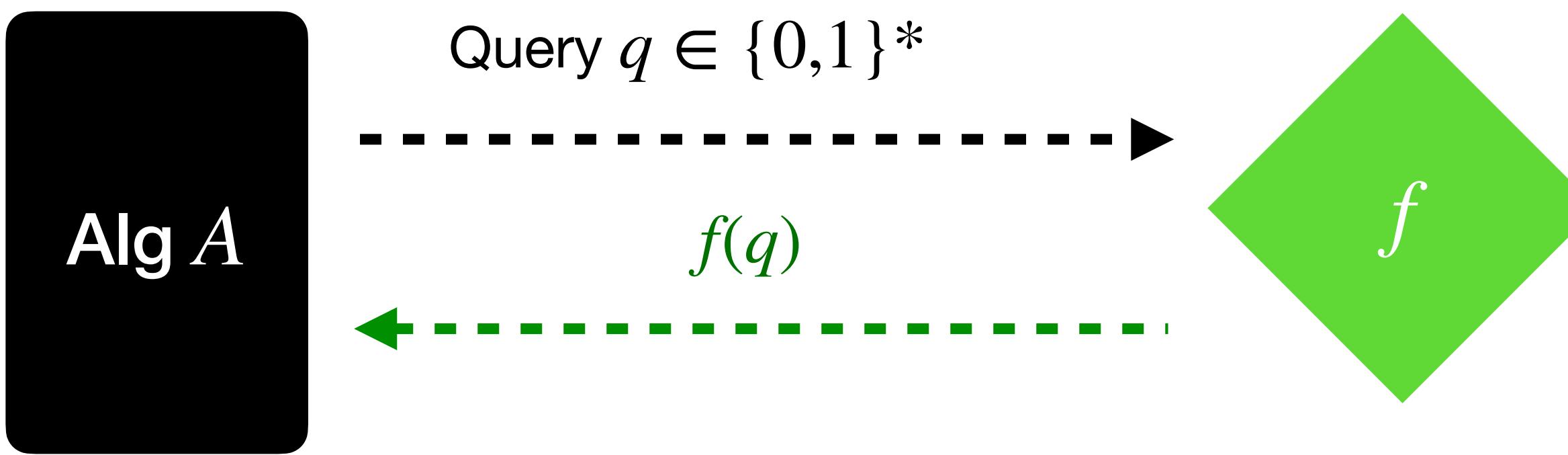


Quantum random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$



Ideal model for hash functions

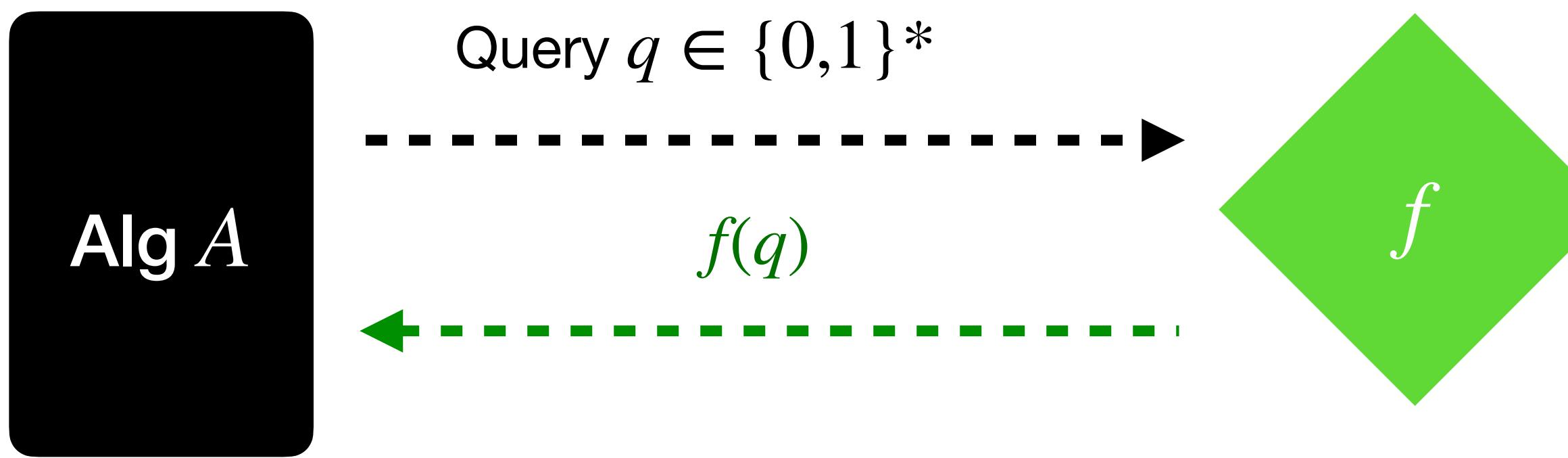
Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$



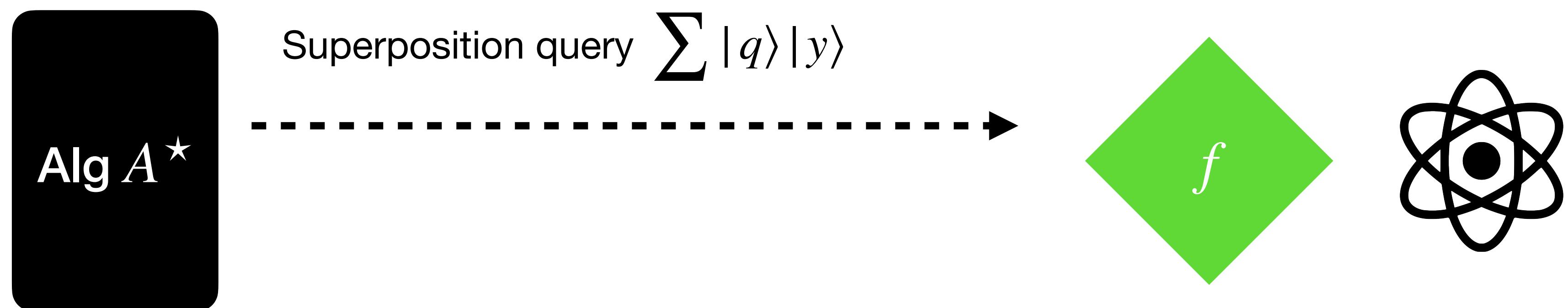
Quantum random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$

Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$

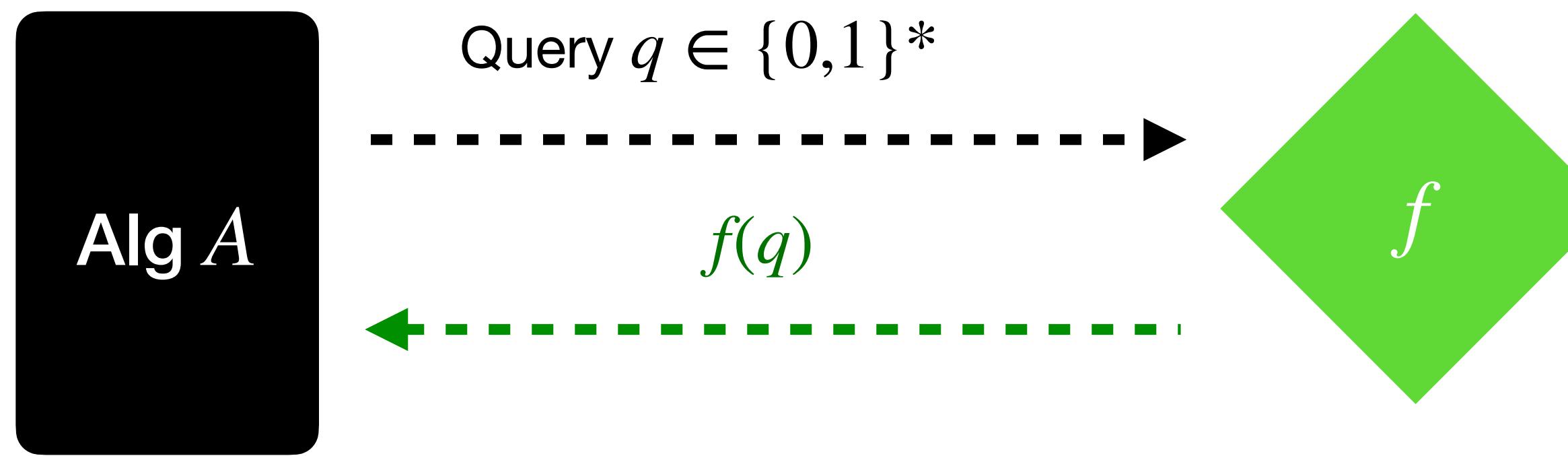


Quantum random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma)$

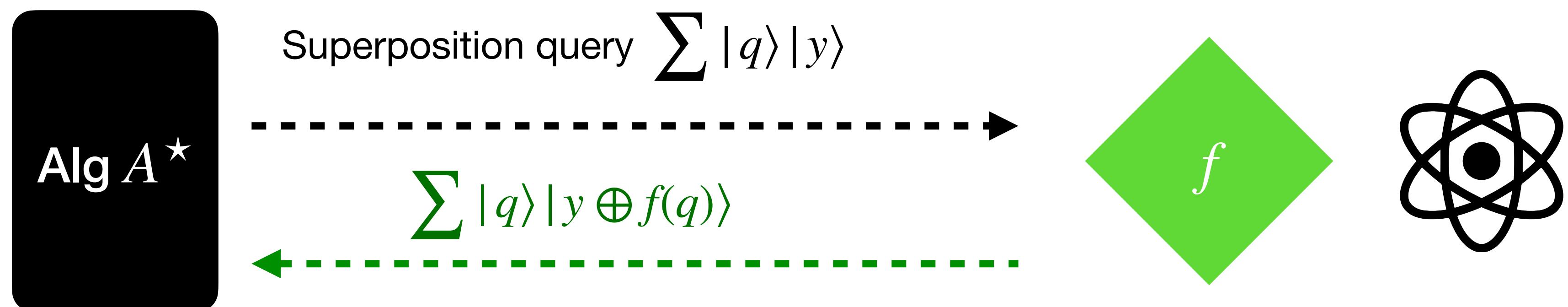


Ideal model for hash functions

Random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^{\sigma})$



Quantum random oracle $f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^{\sigma})$

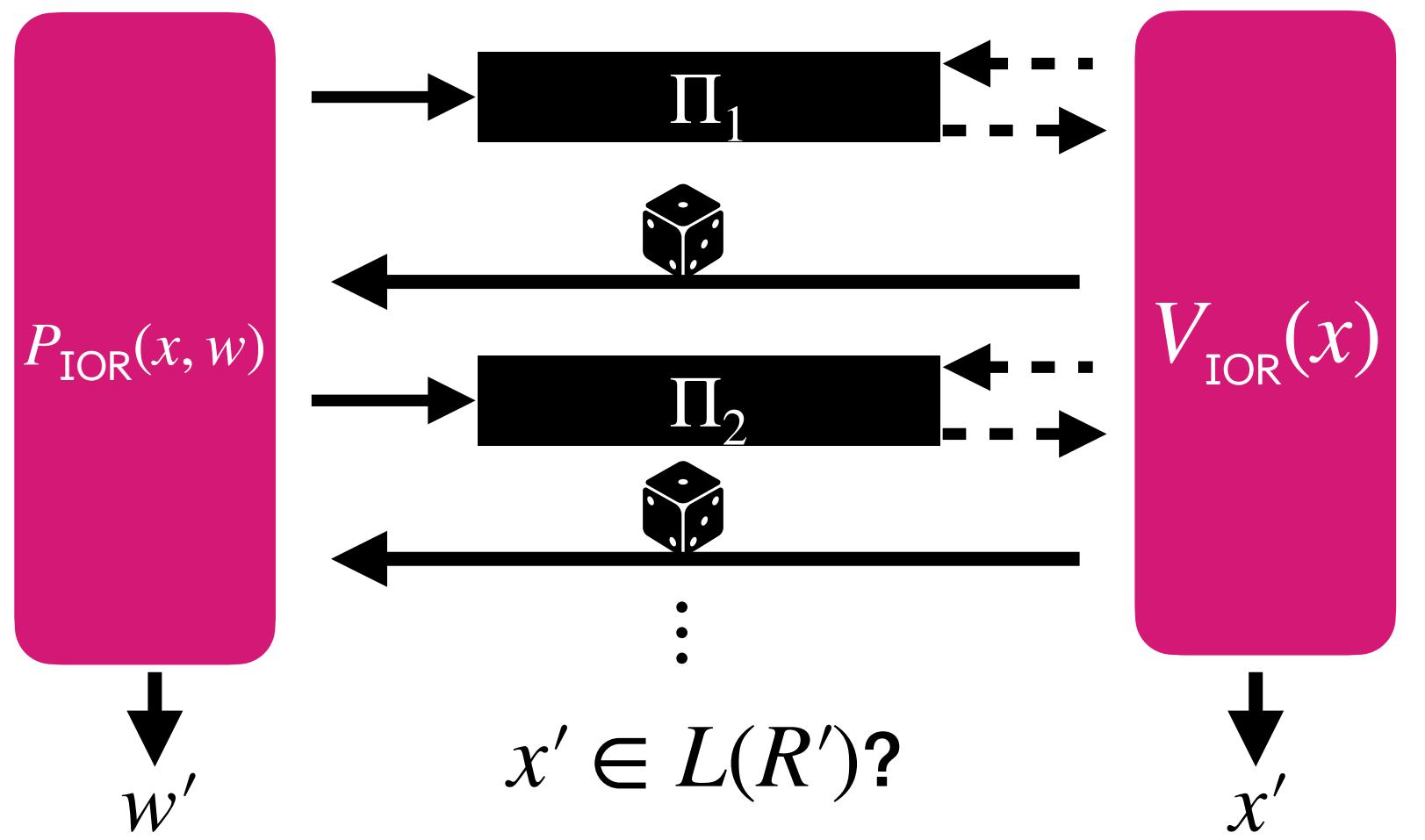


How to remove interaction?

How to remove interaction?

Interactive oracle reduction (IOR)

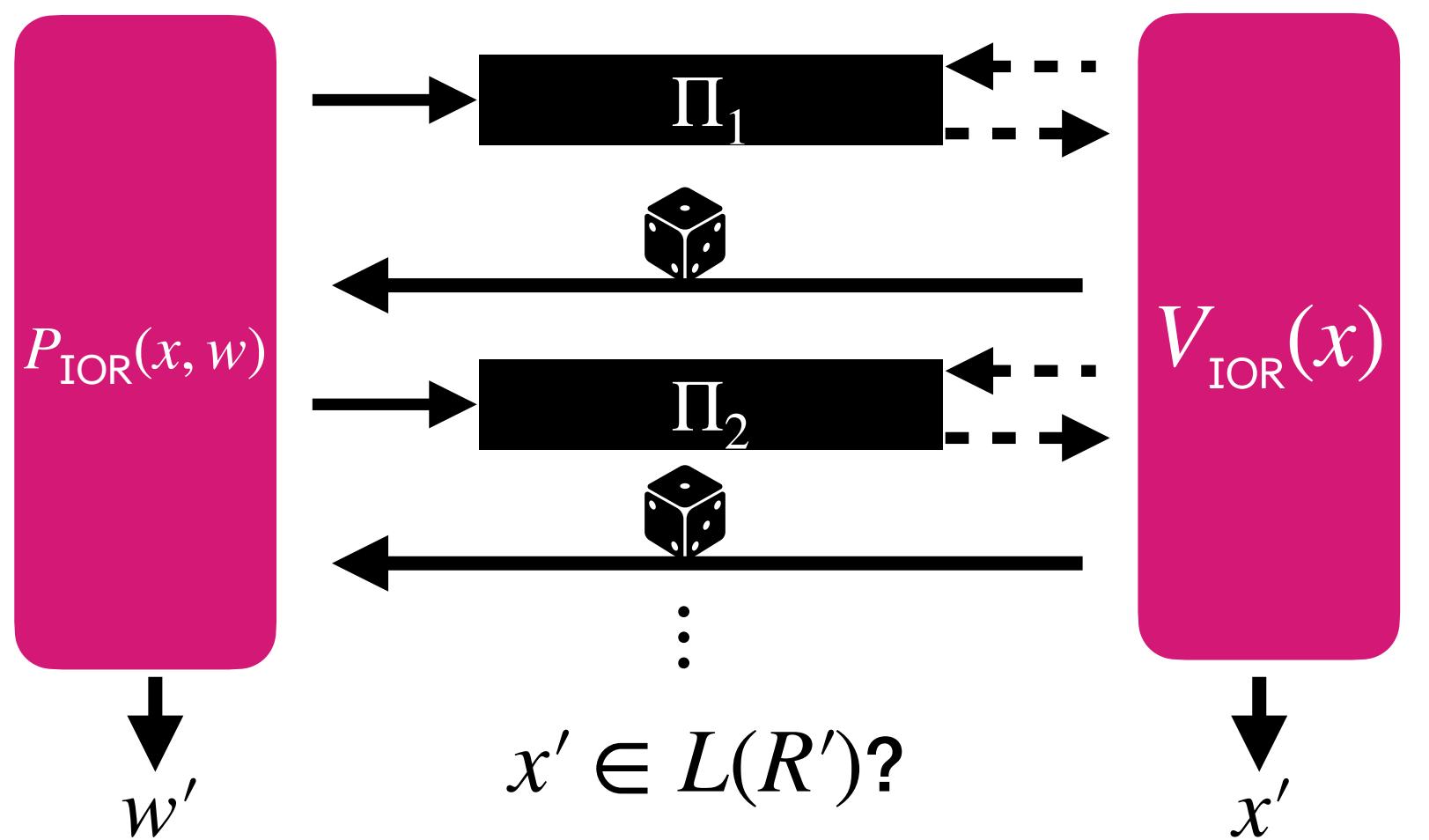
$$x \in L(R)?$$



How to remove interaction?

Interactive oracle reduction (IOR)

$$x \in L(R) ?$$

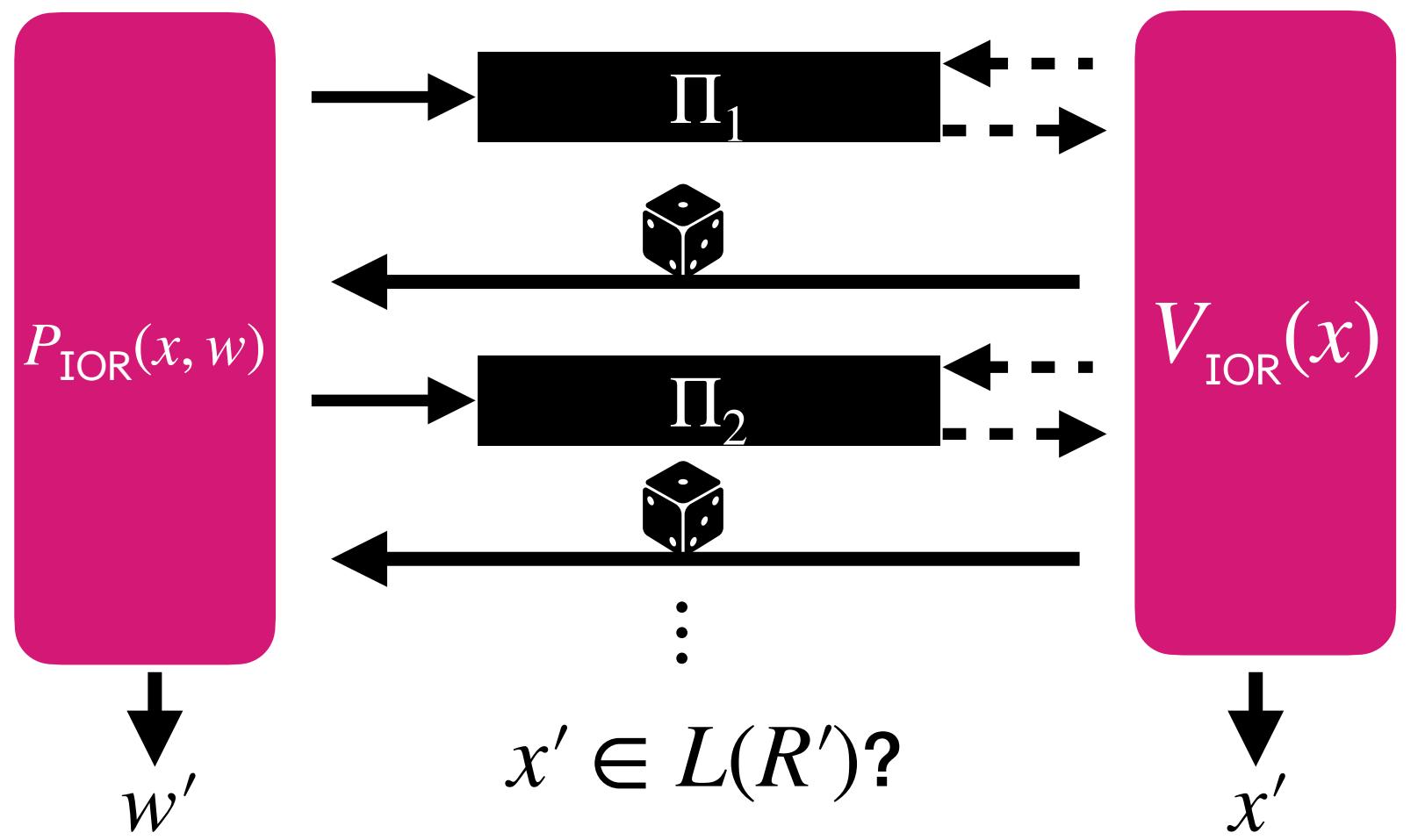


Omitted: instances x, x' can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$

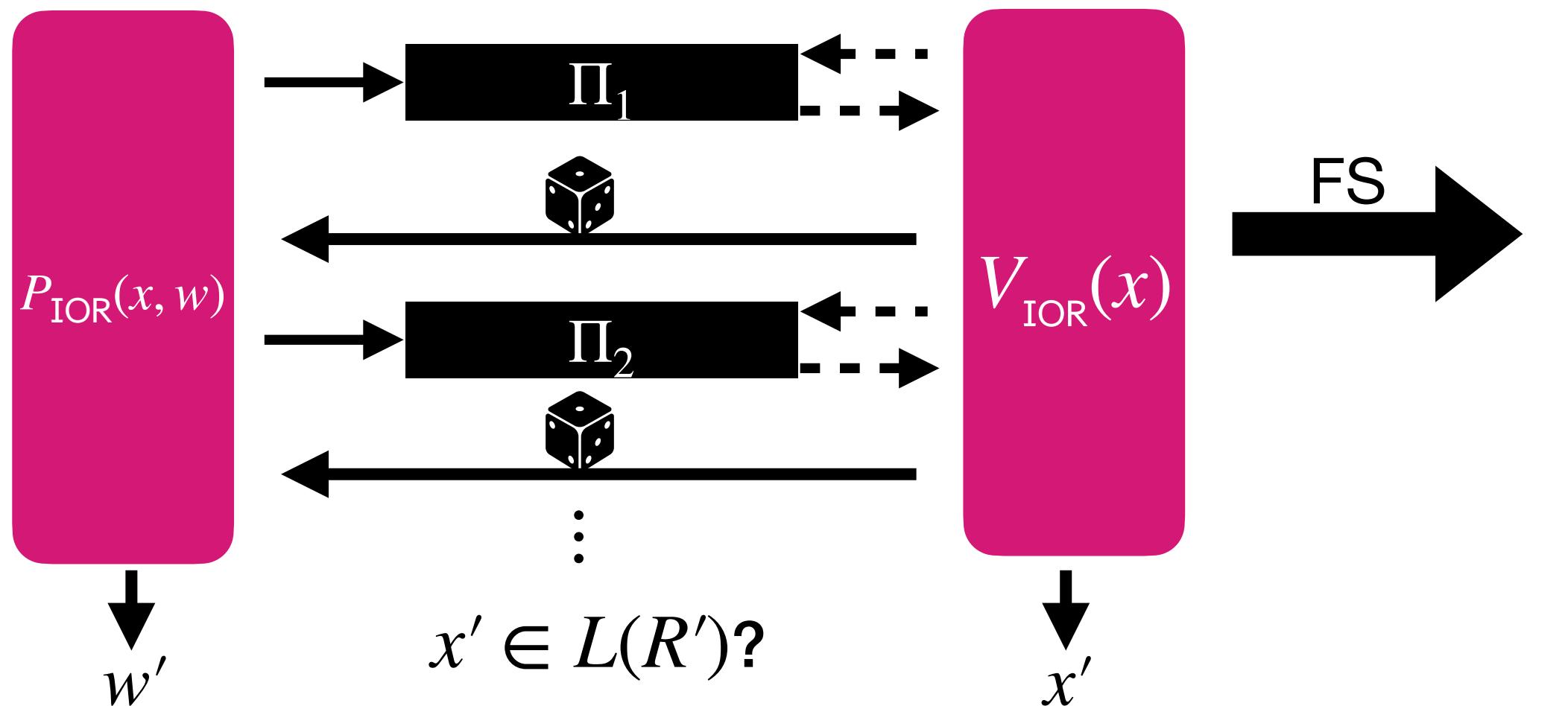


Omitted: instances x, x' can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



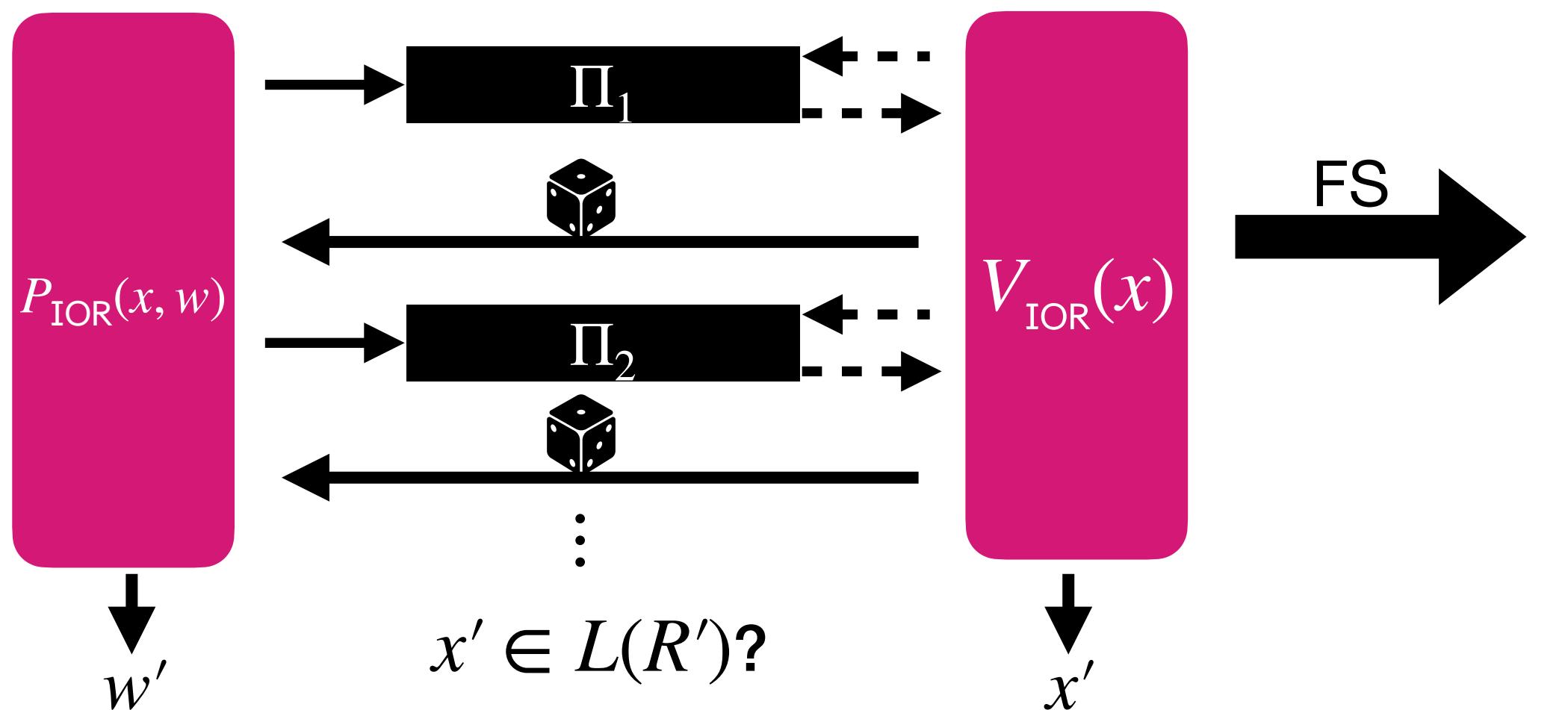
Omitted: instances x, x' can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

Non-interactive

$x \in L(R) ?$



Omitted: instances x, x' can also include oracles.

How to remove interaction?

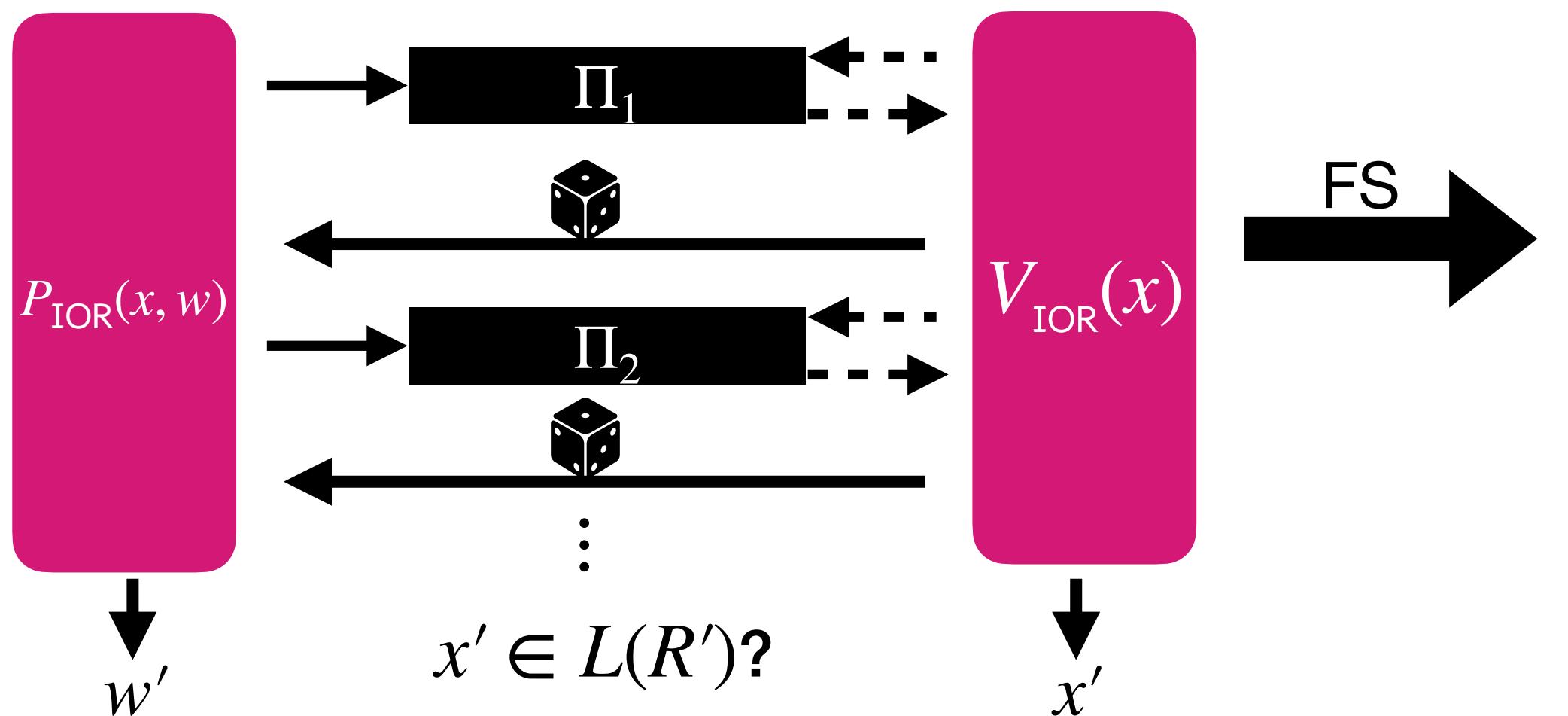
Interactive oracle reduction (IOR)

$x \in L(R)?$

Interactive

Non-interactive

Use random function to derive randomness

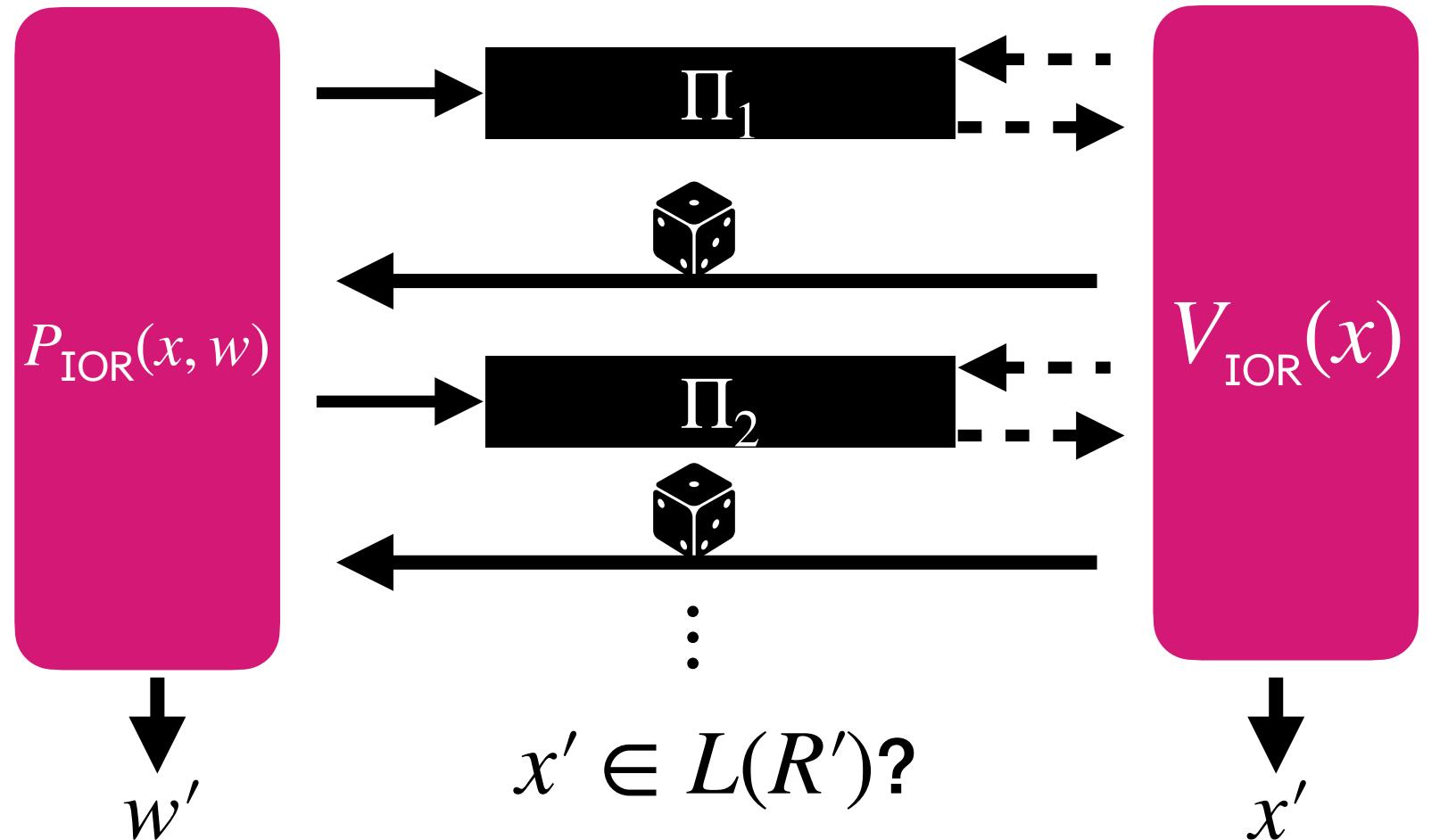


Omitted: instances x, x' can also include oracles.

How to remove interaction?

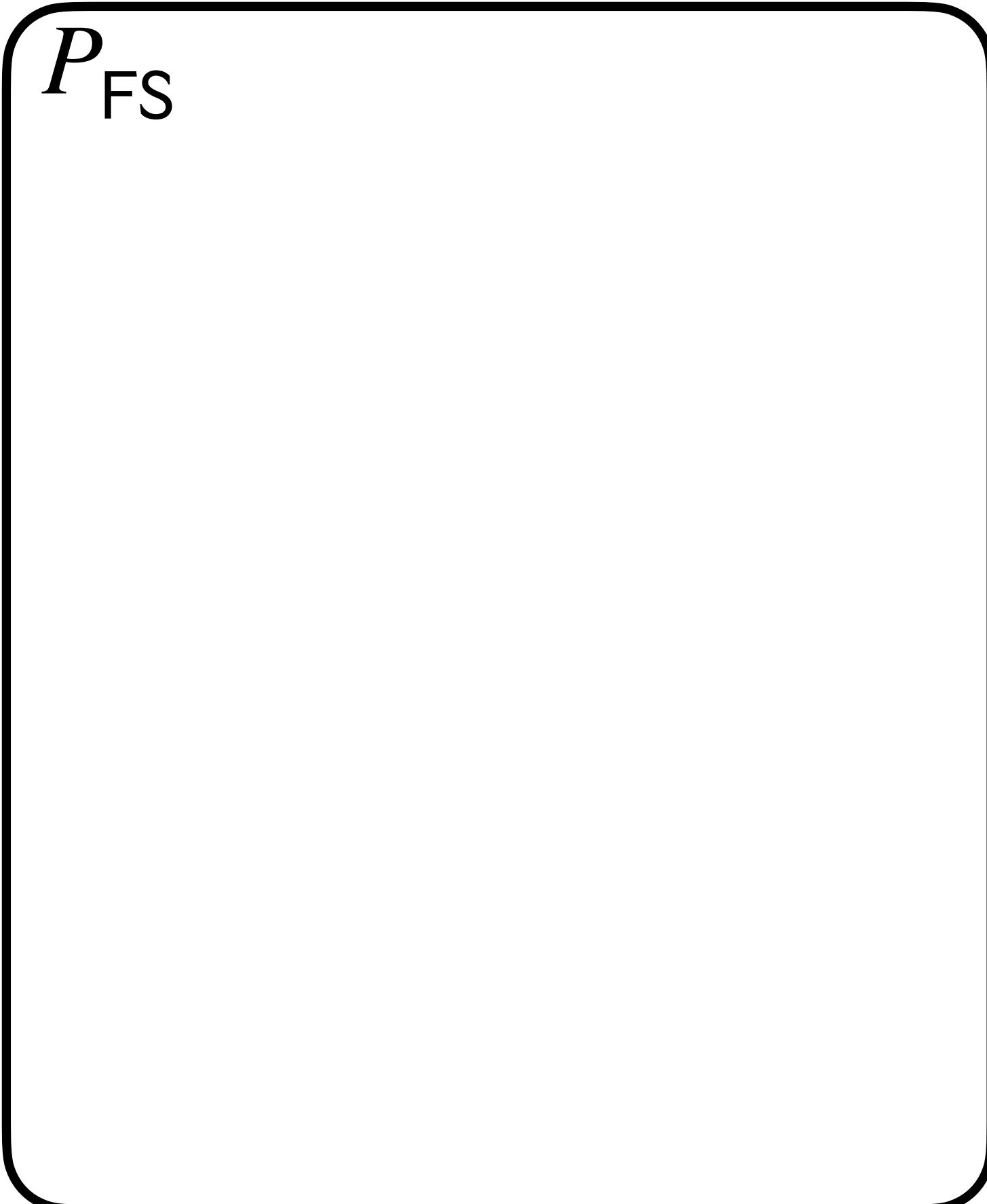
Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



Non-interactive

Use random function to derive randomness

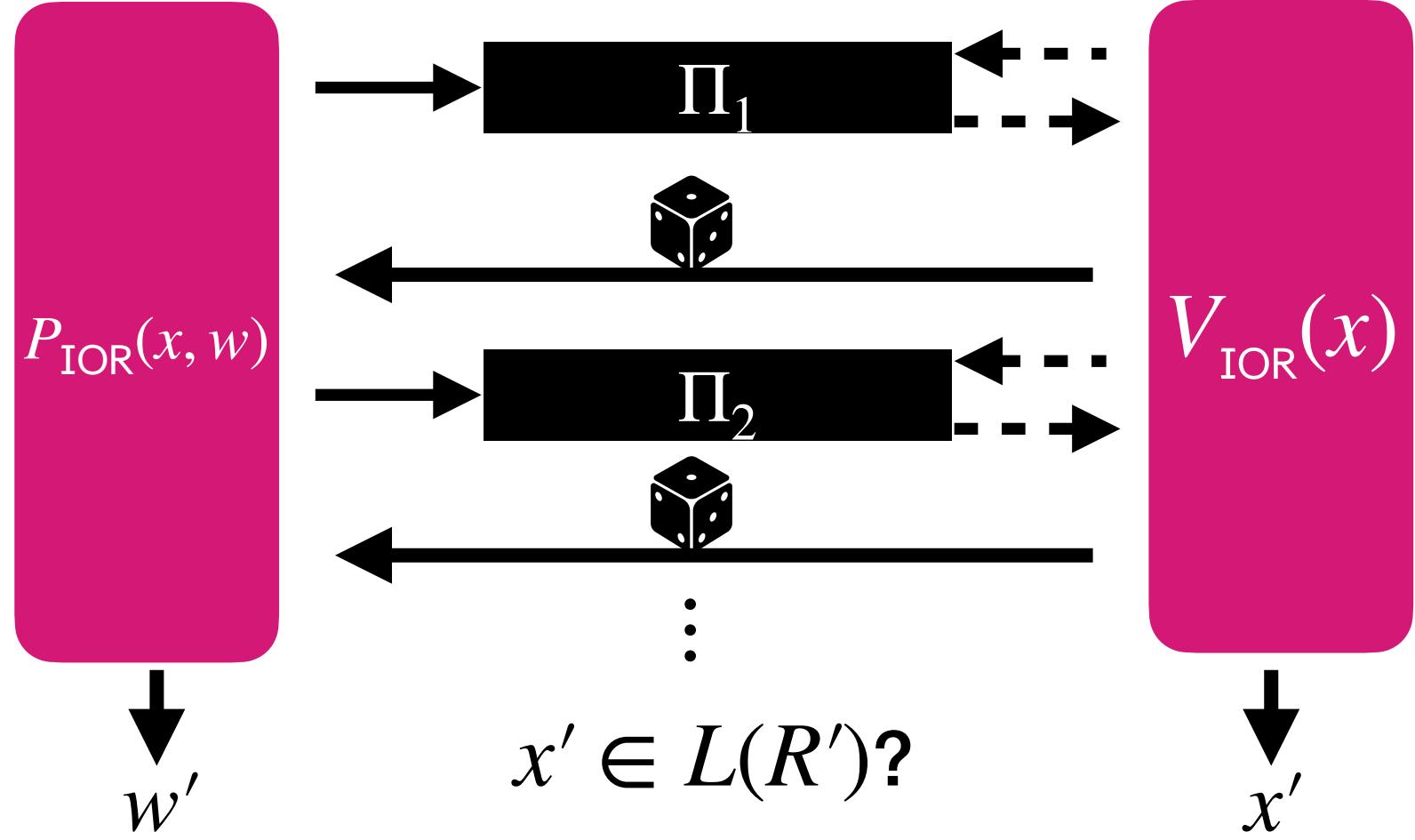


Omitted: instances x, x' can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

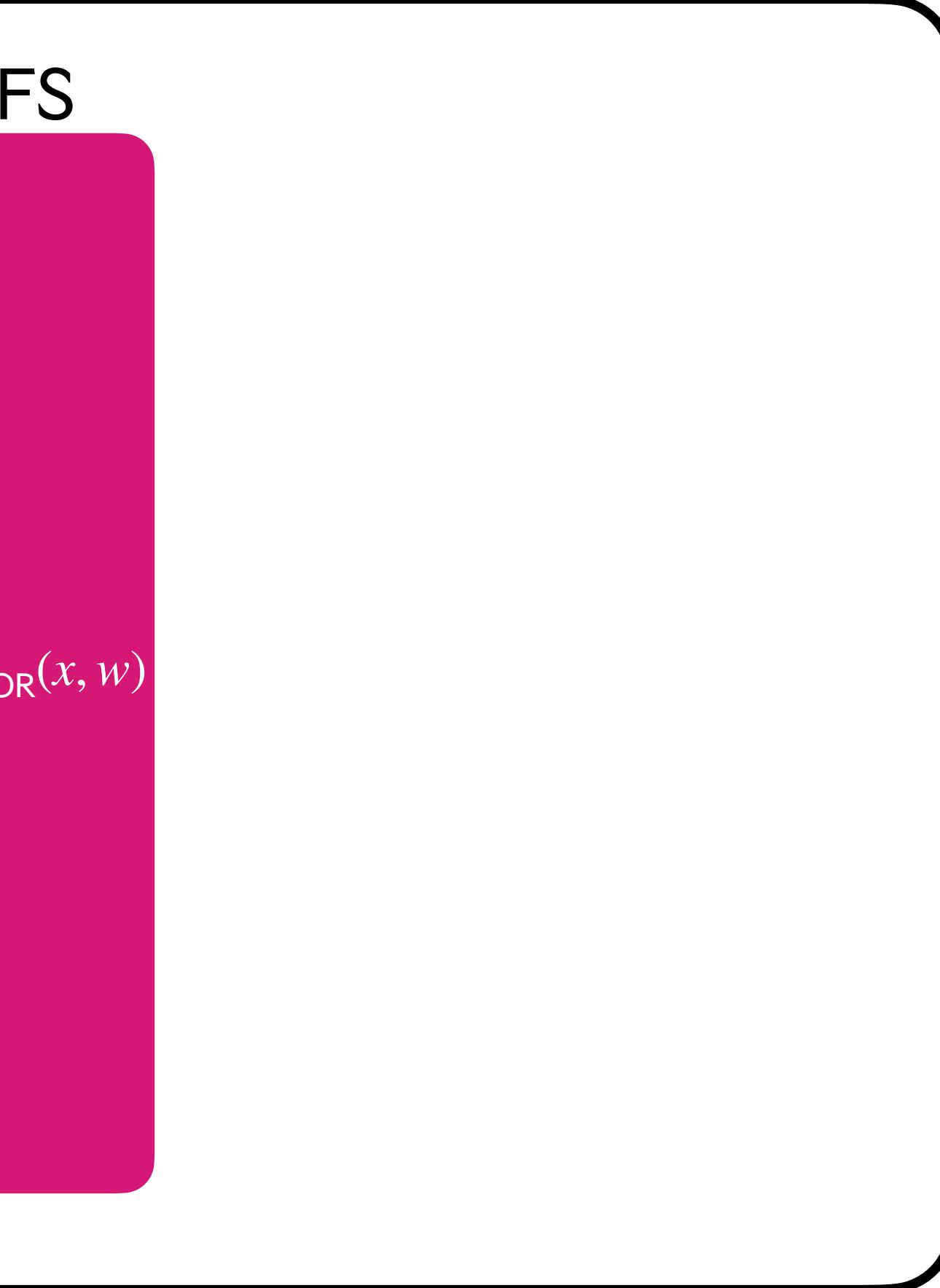
$x \in L(R)?$



Omitted: instances x, x' can also include oracles.

Non-interactive

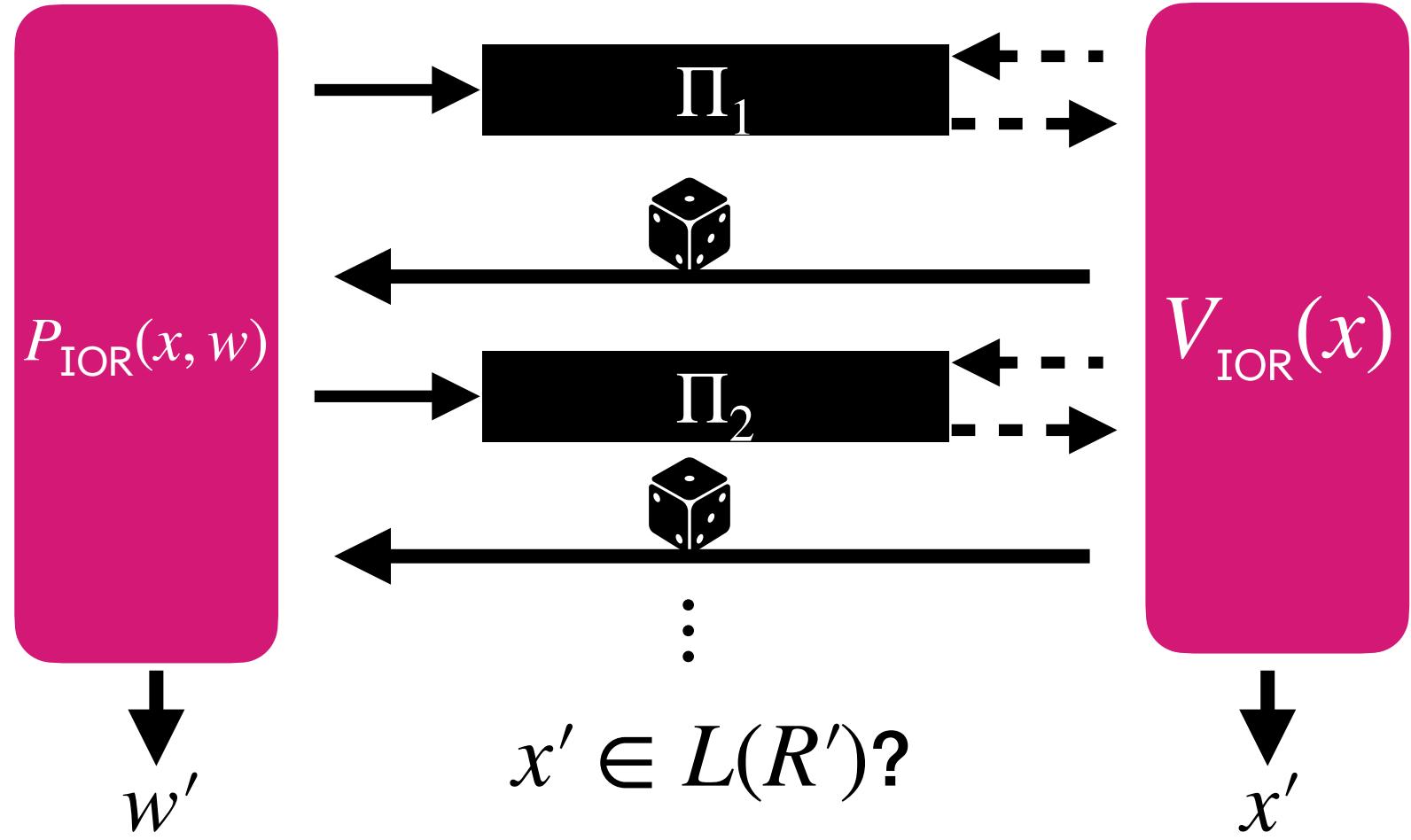
Use random function to derive randomness



How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



Non-interactive

Use random function to derive randomness

Omitted: instances x, x' can also include oracles.

How to remove interaction?

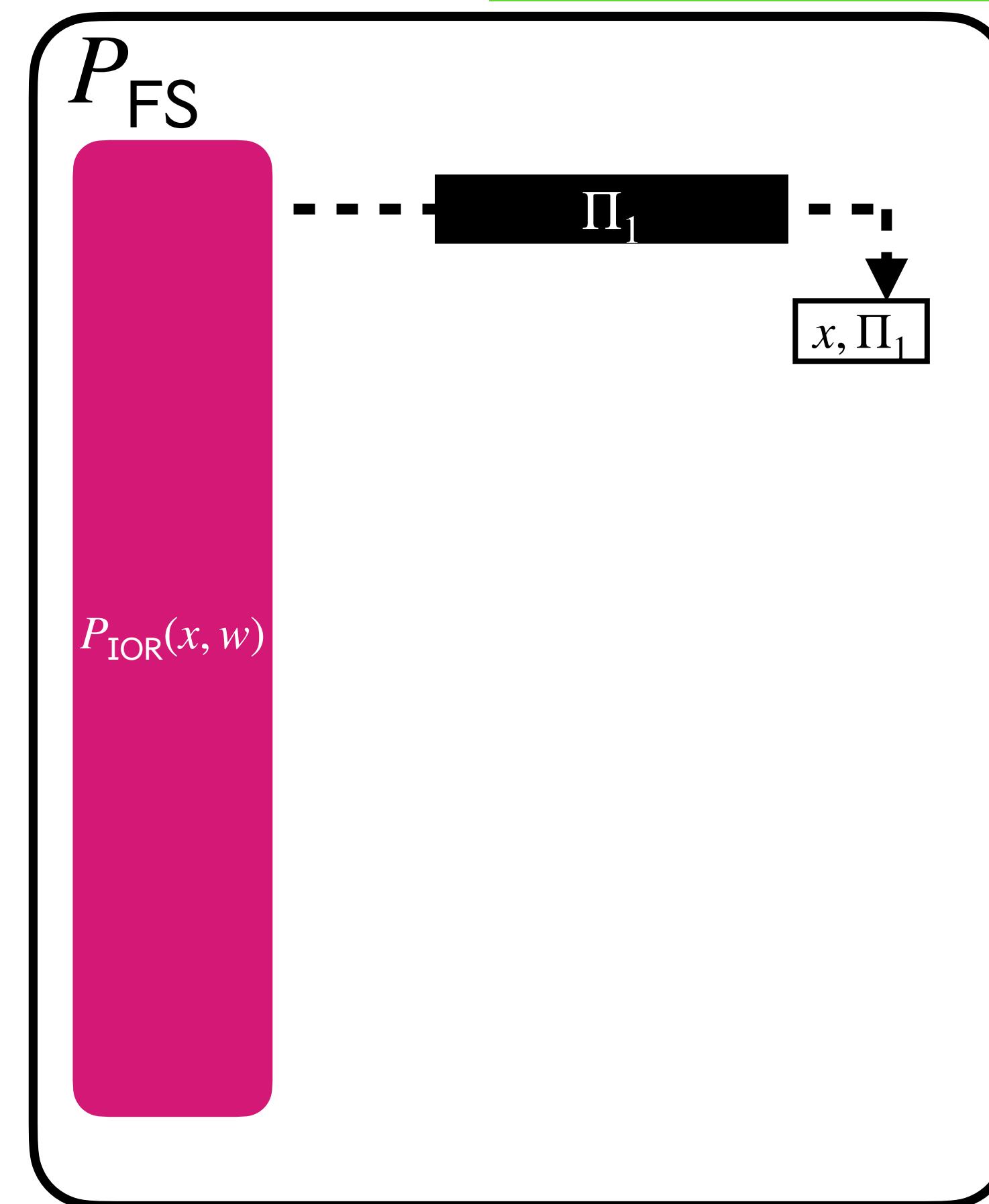
Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



Non-interactive

Use random function to derive randomness

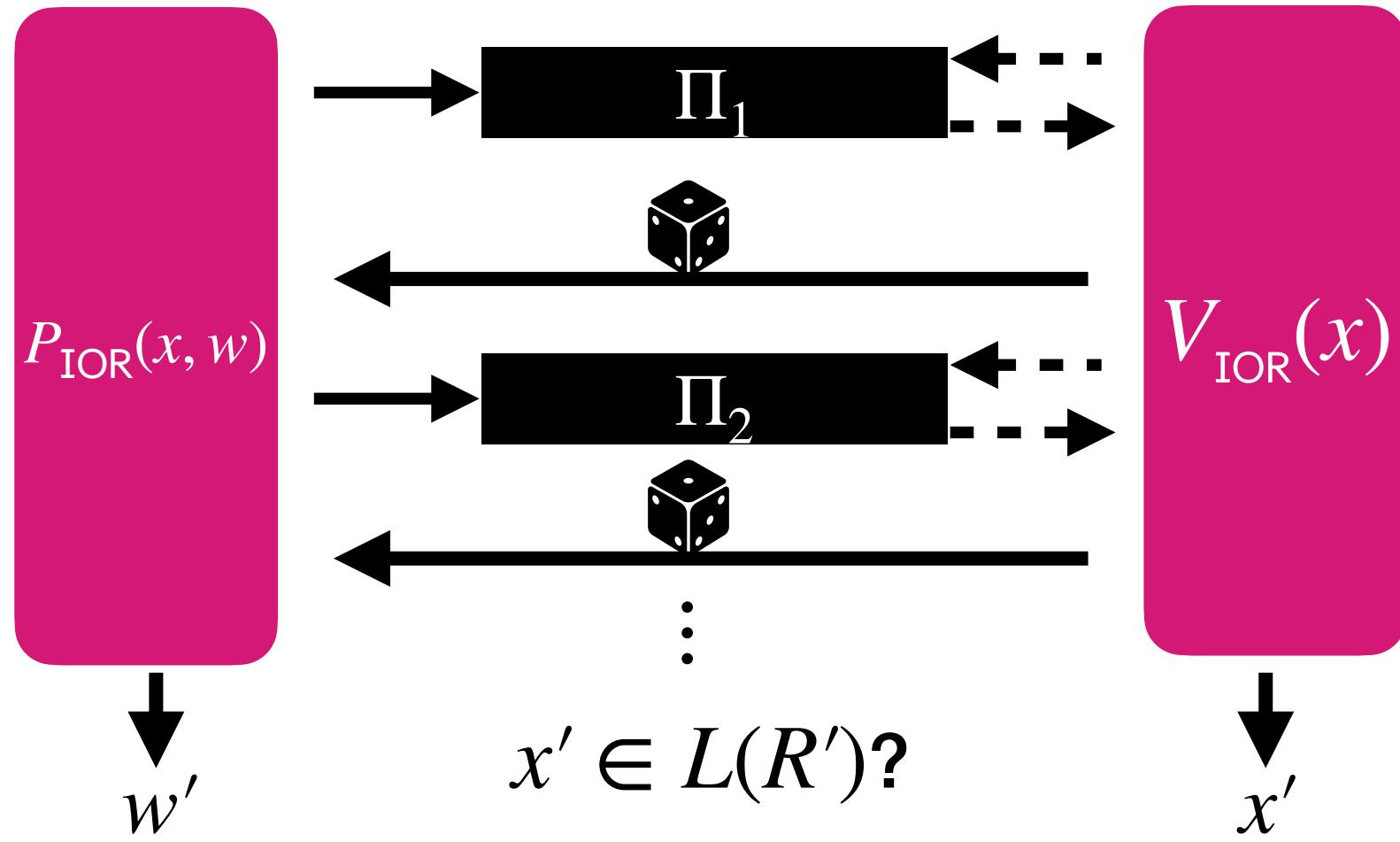


Omitted: instances x, x' can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



Non-interactive

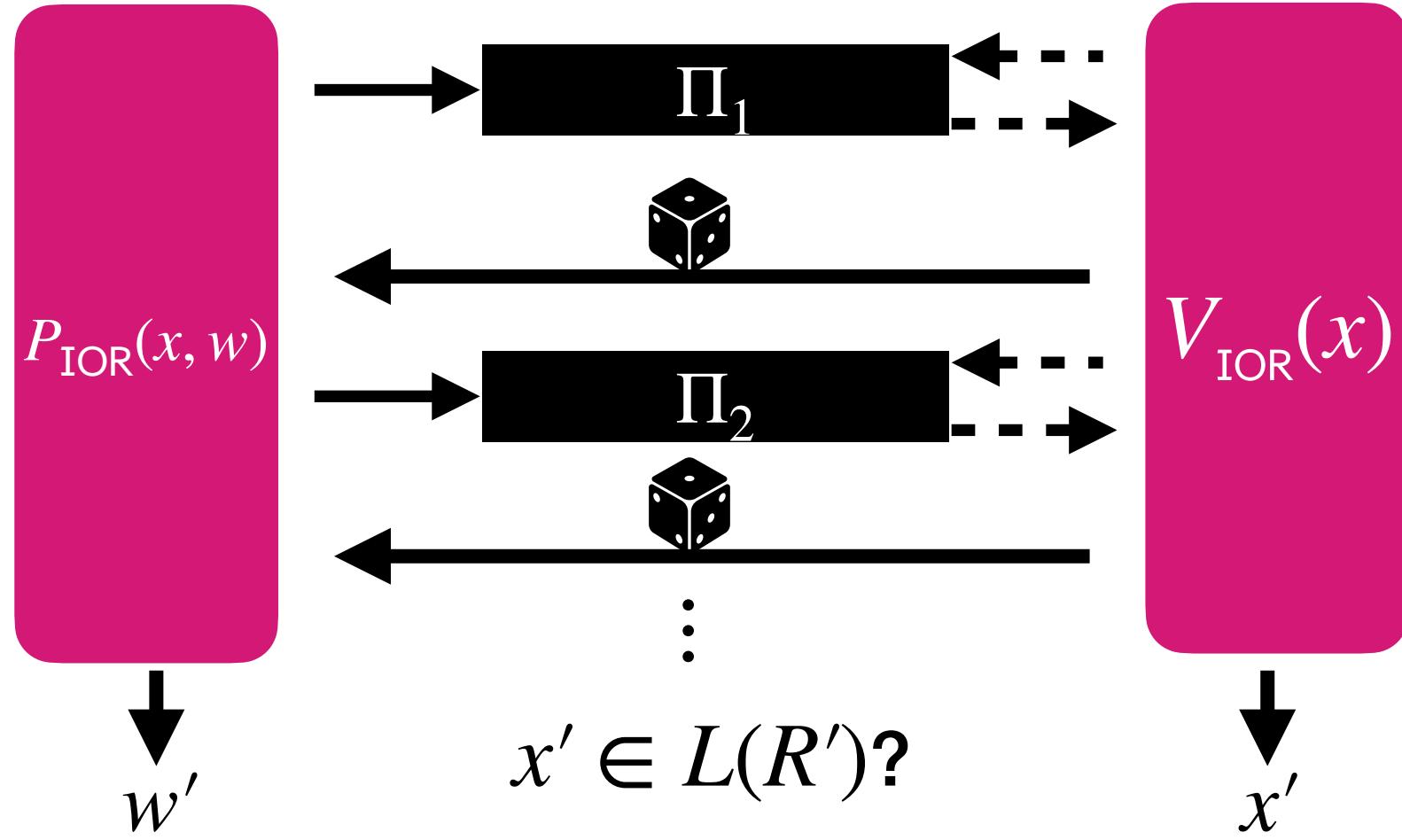
Use random function to derive randomness

Omitted: instances x, x' can also include oracles.

How to remove interaction?

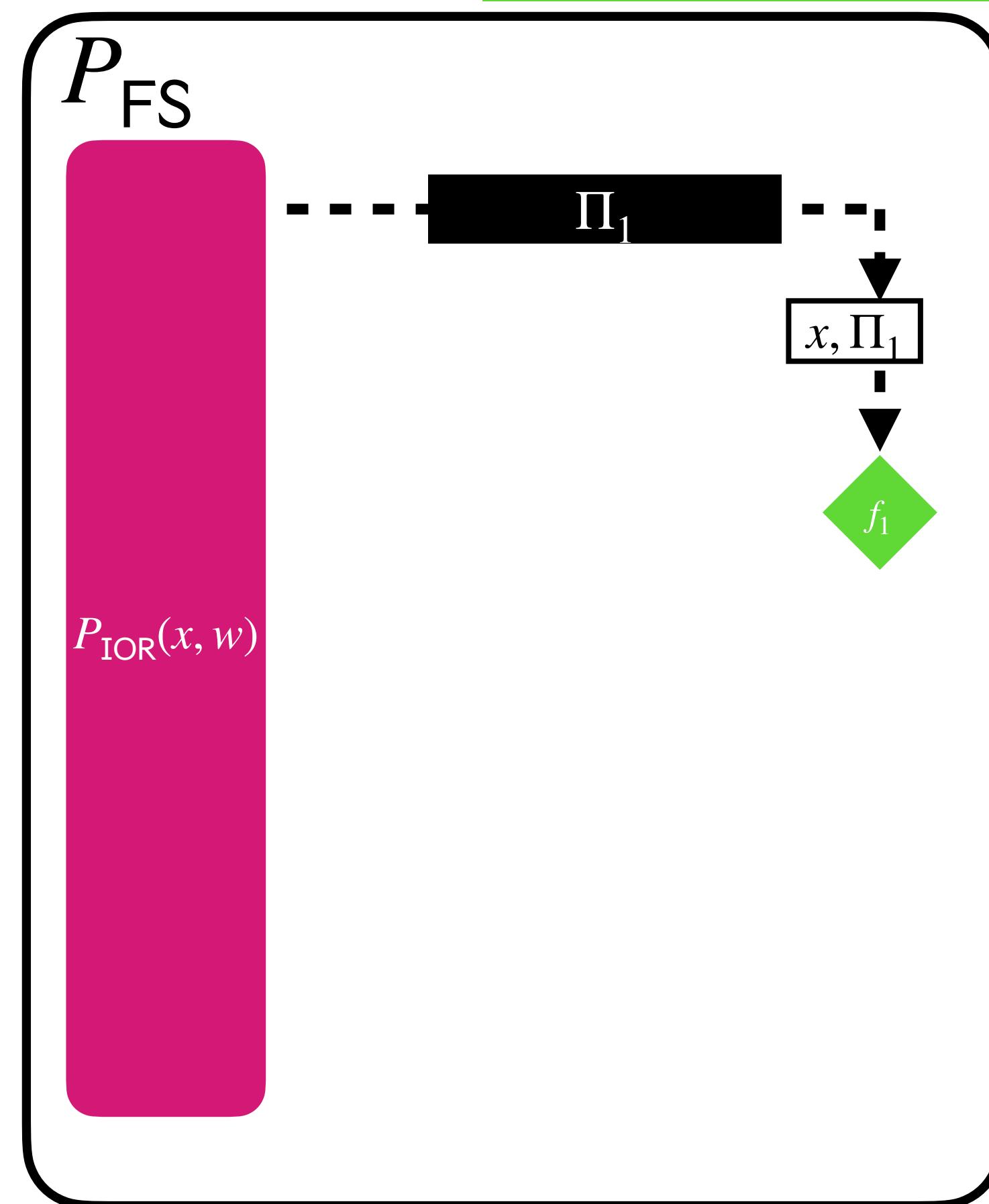
Interactive oracle reduction (IOR) **Interactive**

$x \in L(R)?$



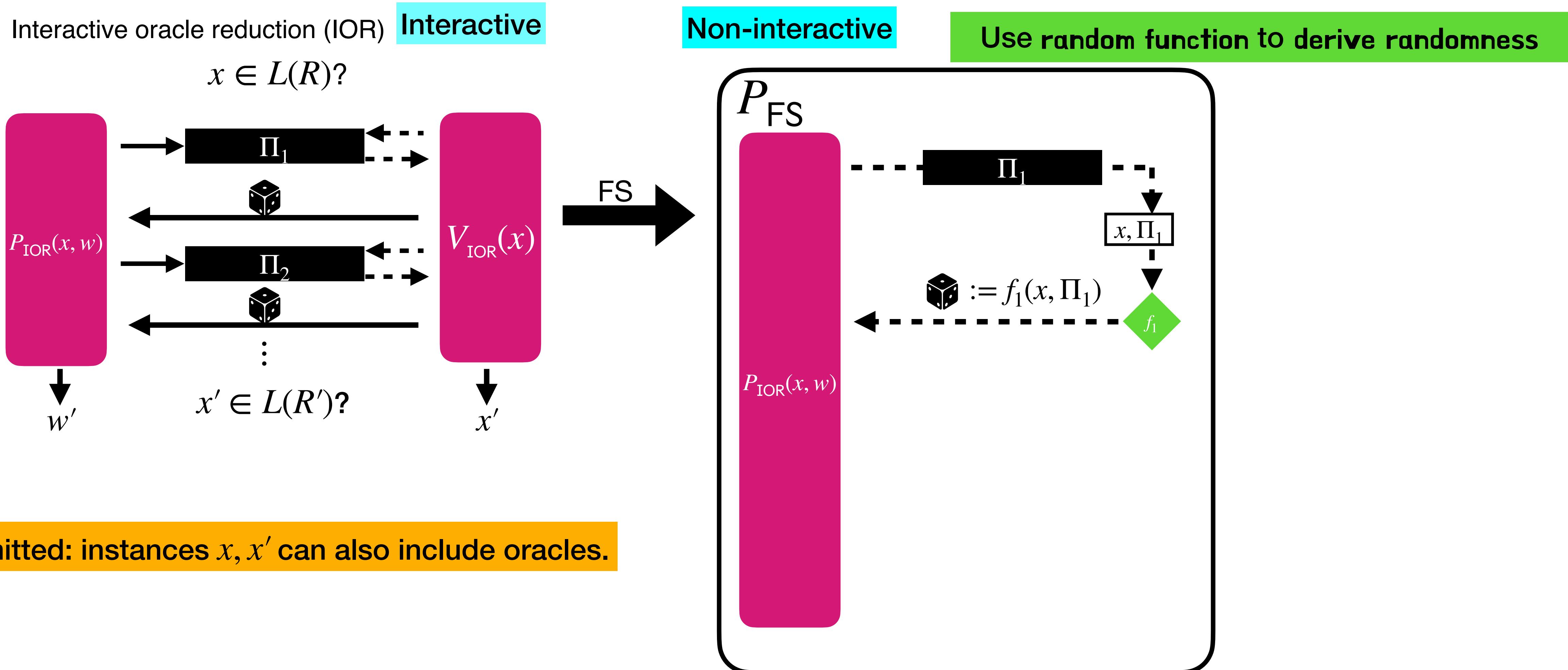
Non-interactive

Use random function to derive randomness



Omitted: instances x, x' can also include oracles.

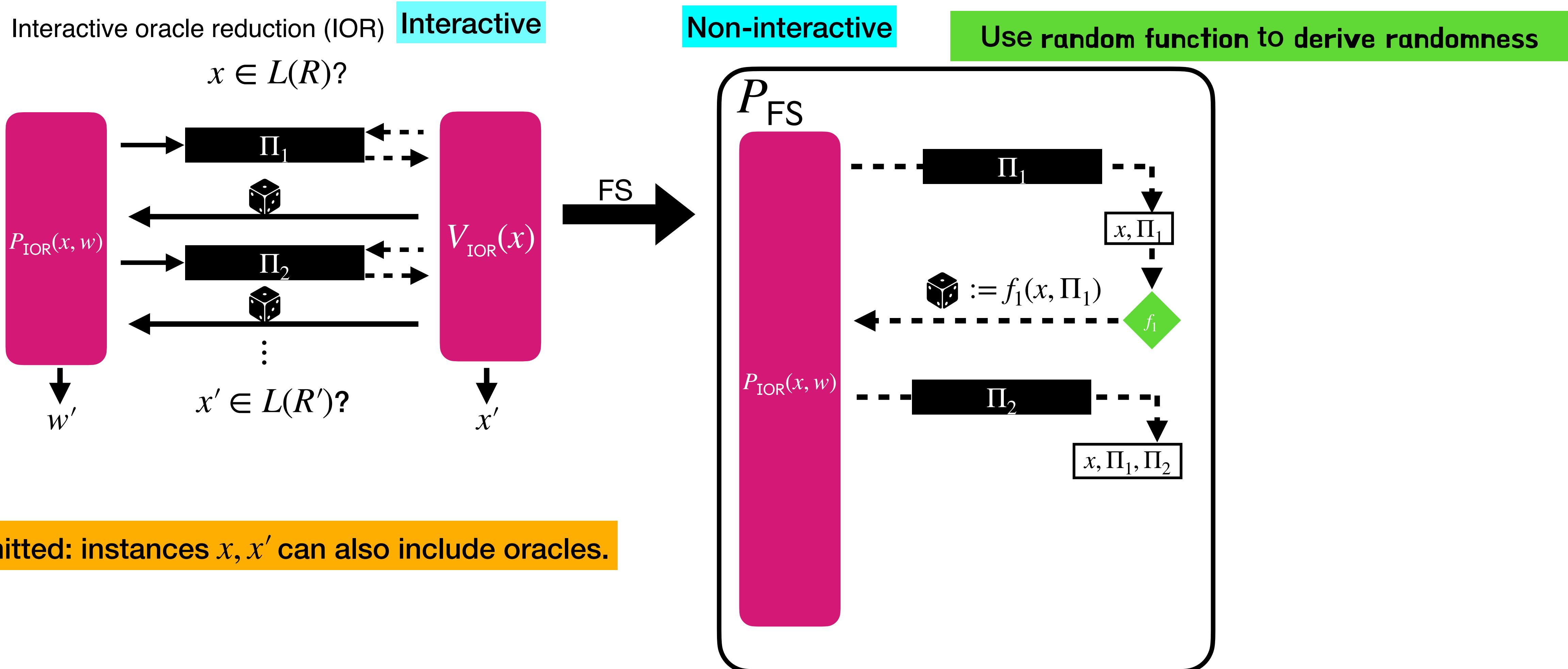
How to remove interaction?



How to remove interaction?

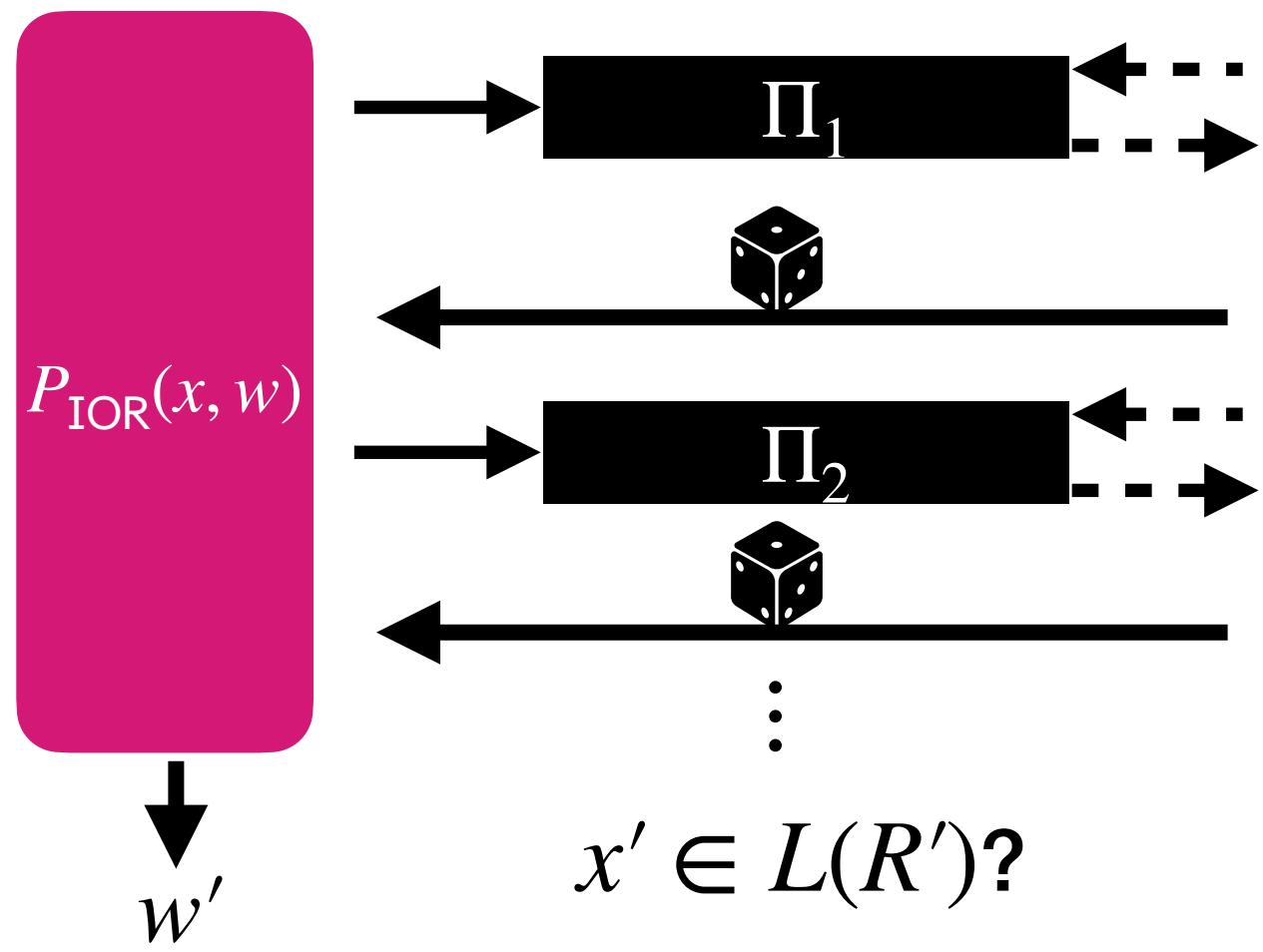


How to remove interaction?

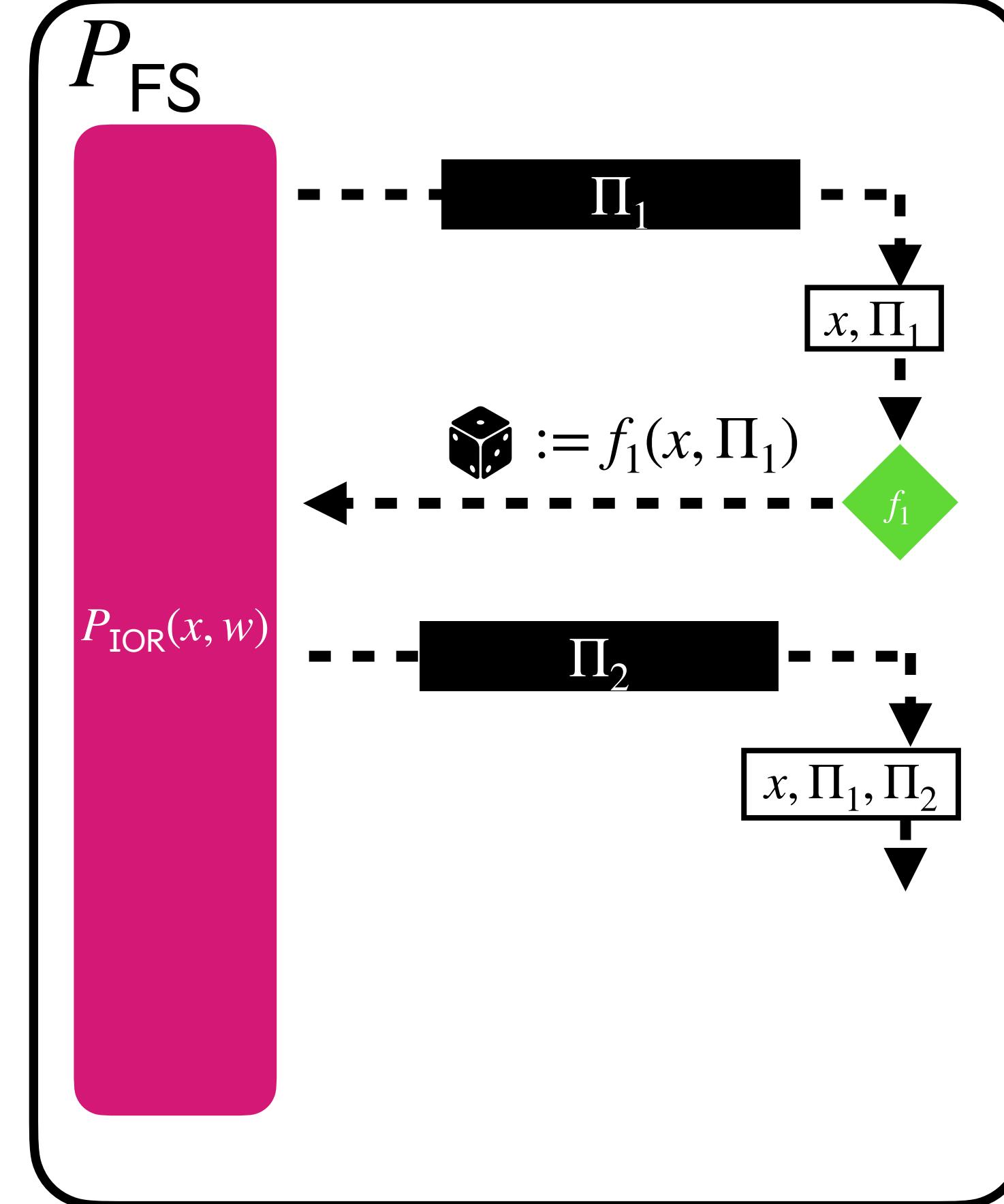


How to remove interaction?

Interactive oracle reduction (IOR) **Interactive**
 $x \in L(R)?$



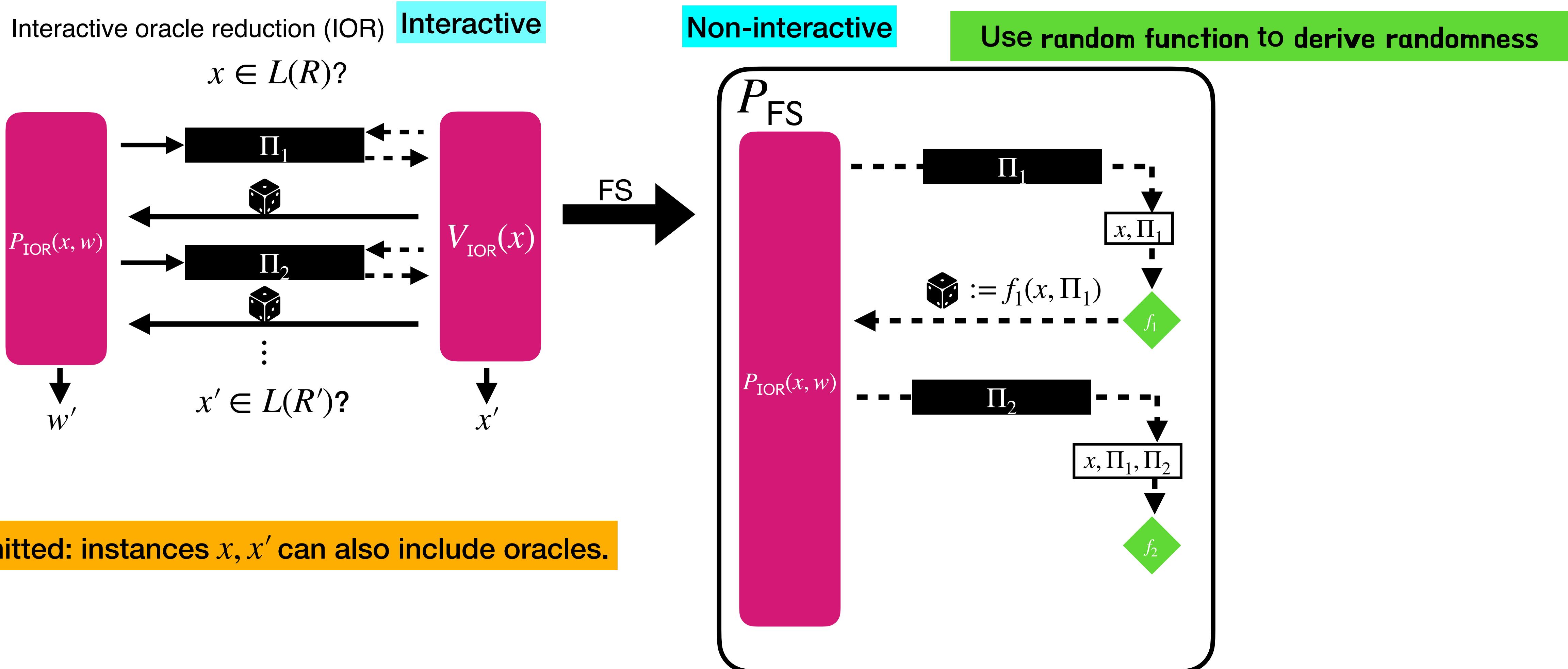
Non-interactive



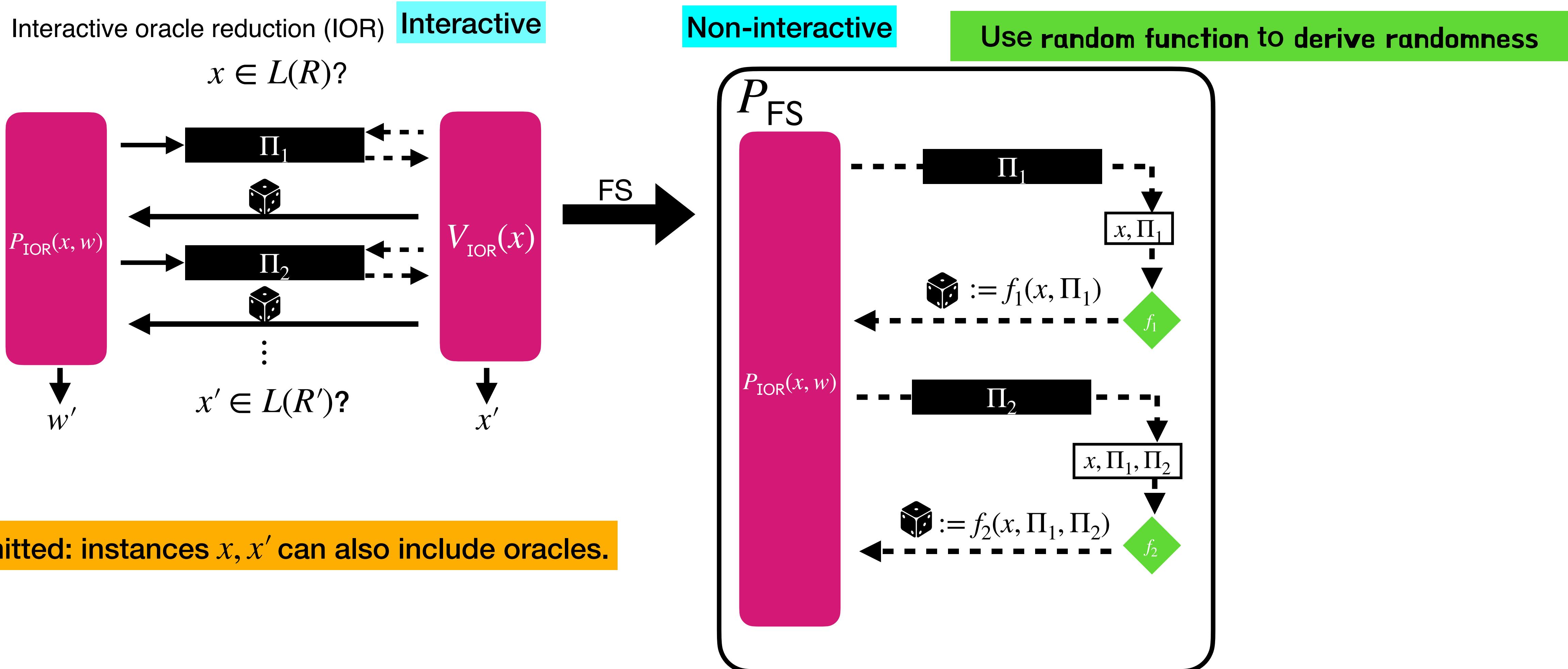
Use random function to derive randomness

Omitted: instances x, x' can also include oracles.

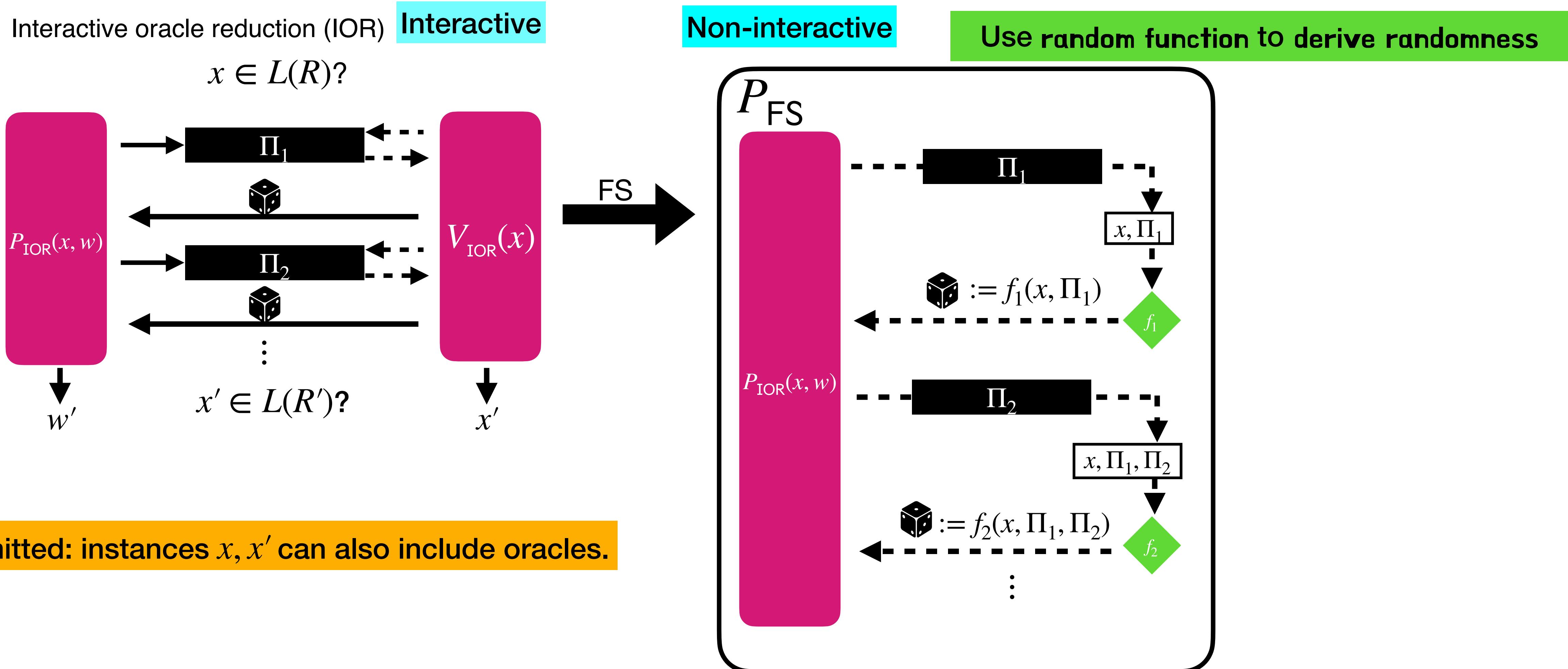
How to remove interaction?



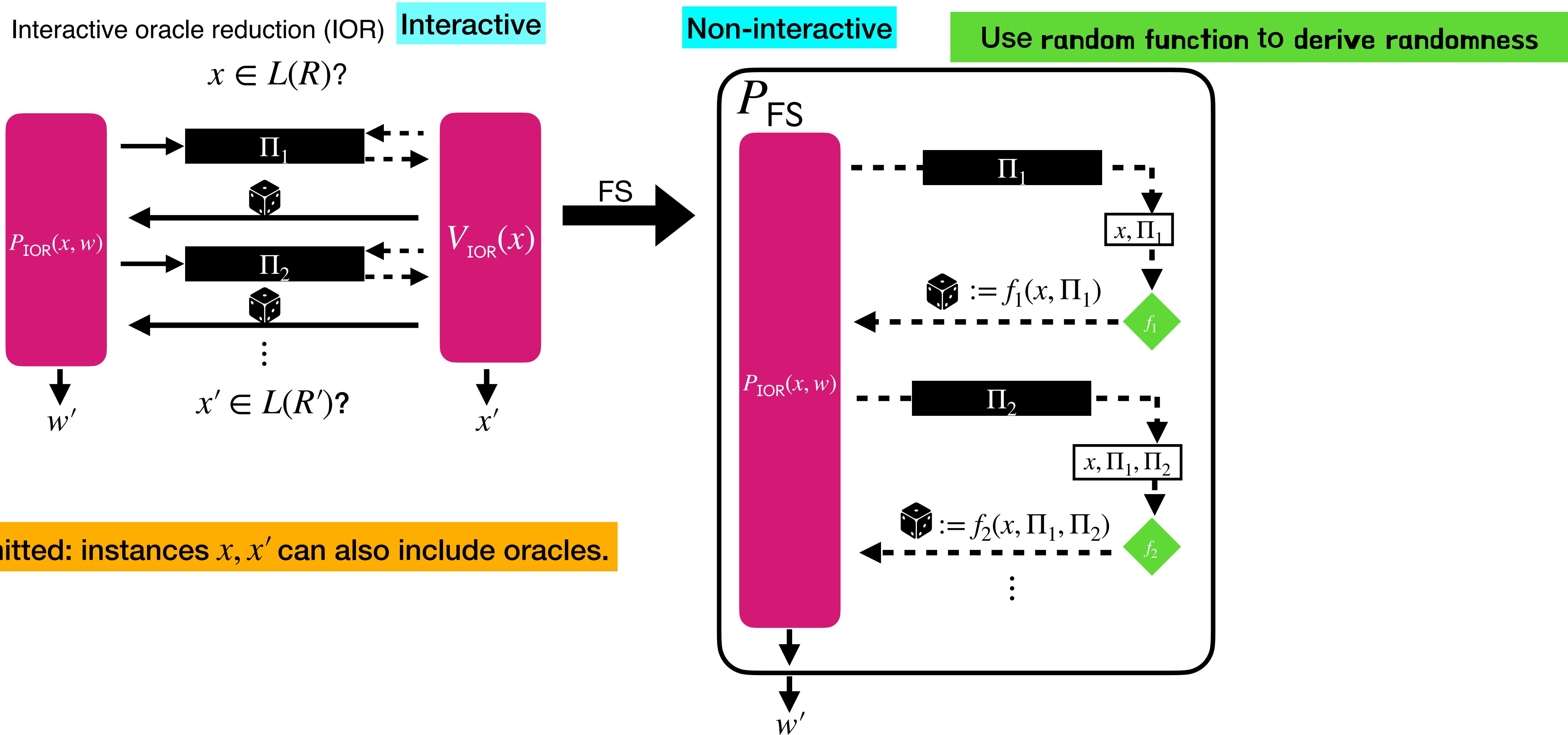
How to remove interaction?



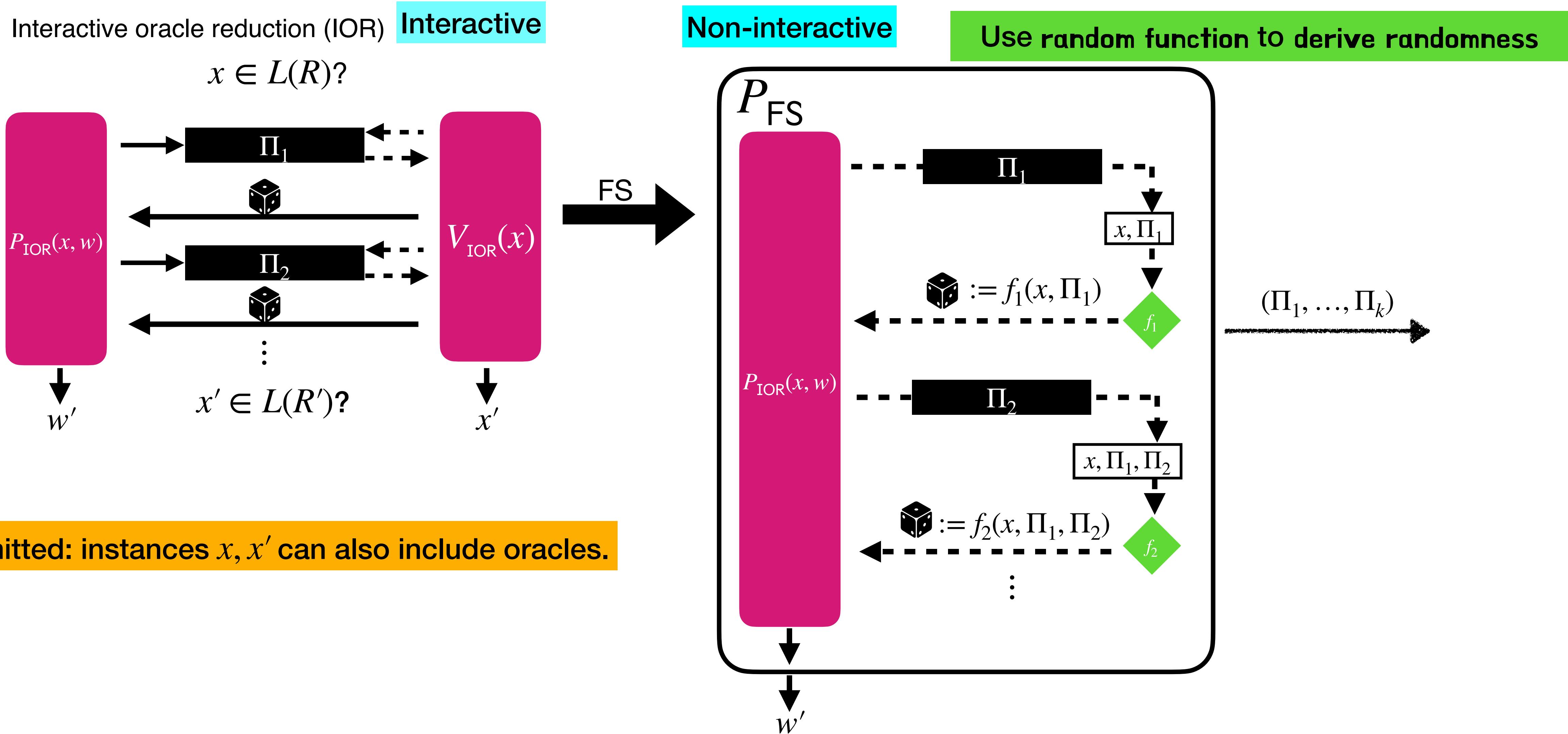
How to remove interaction?



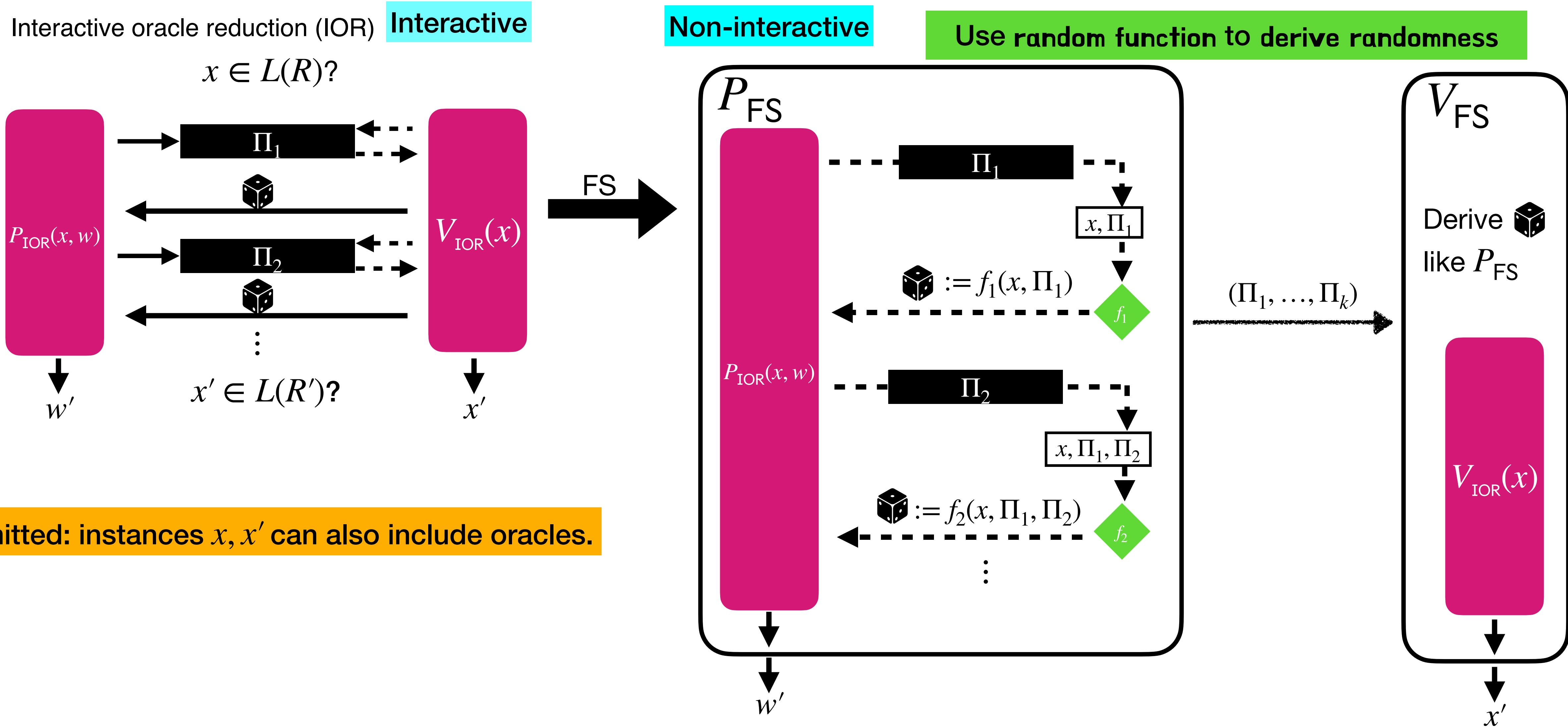
How to remove interaction?



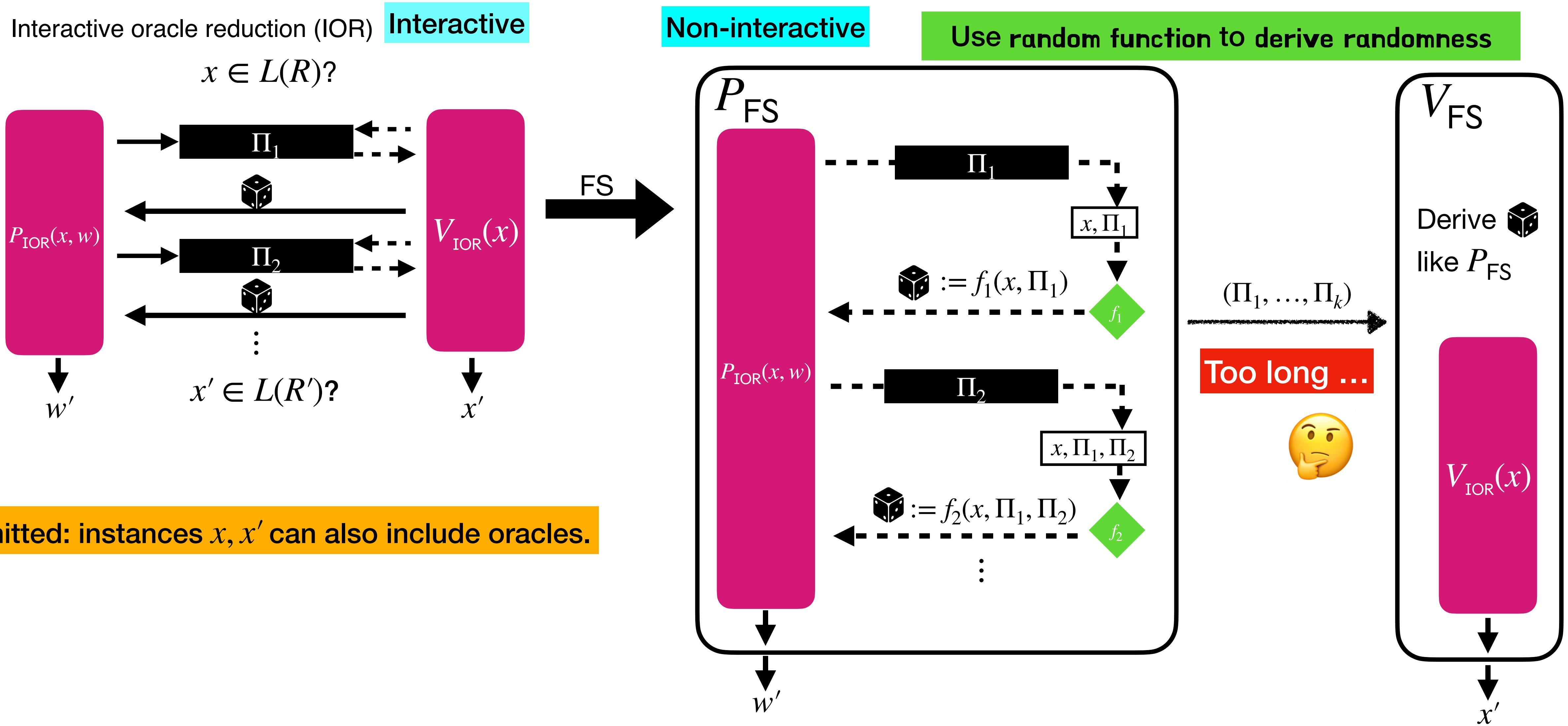
How to remove interaction?



How to remove interaction?



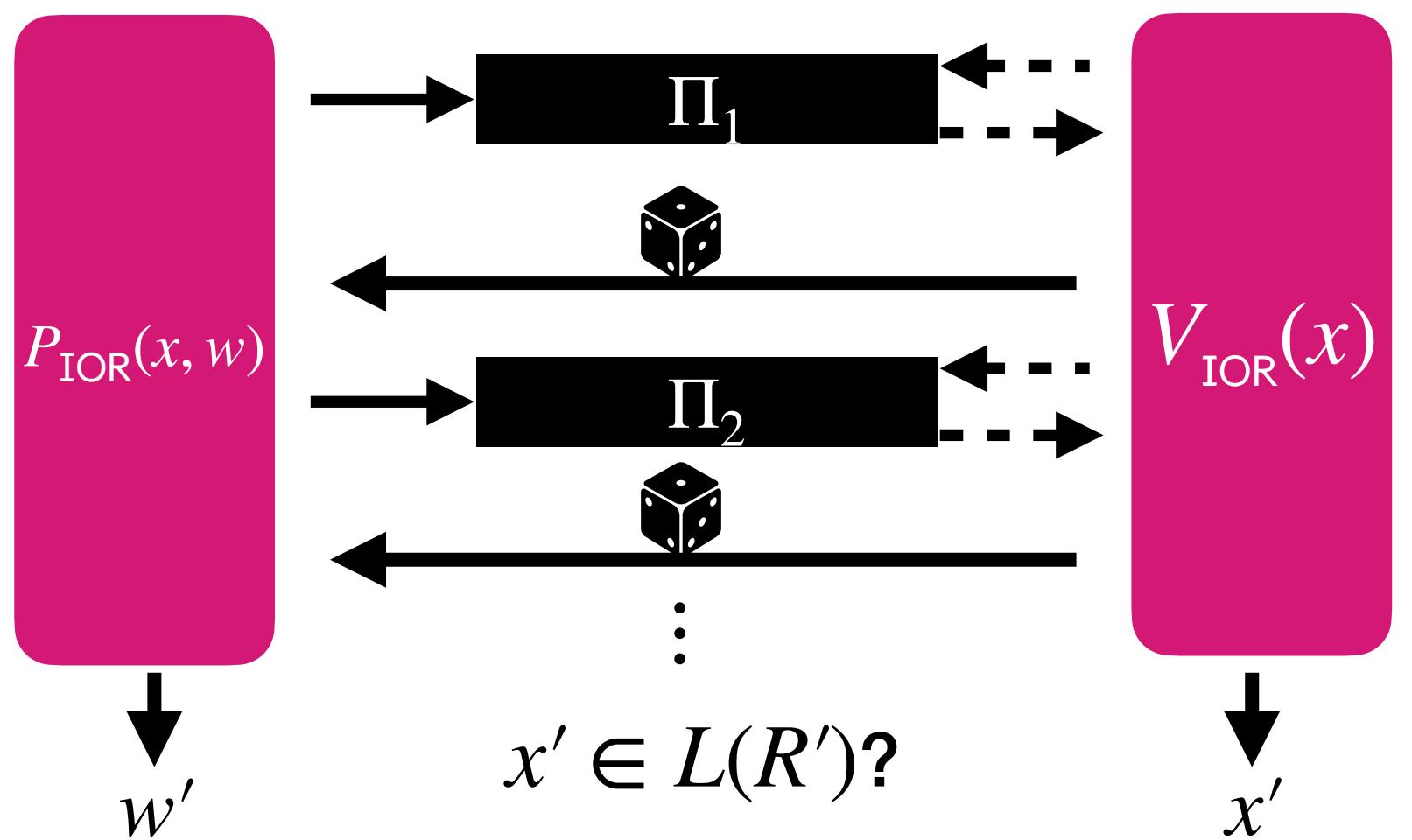
How to remove interaction?



Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR)

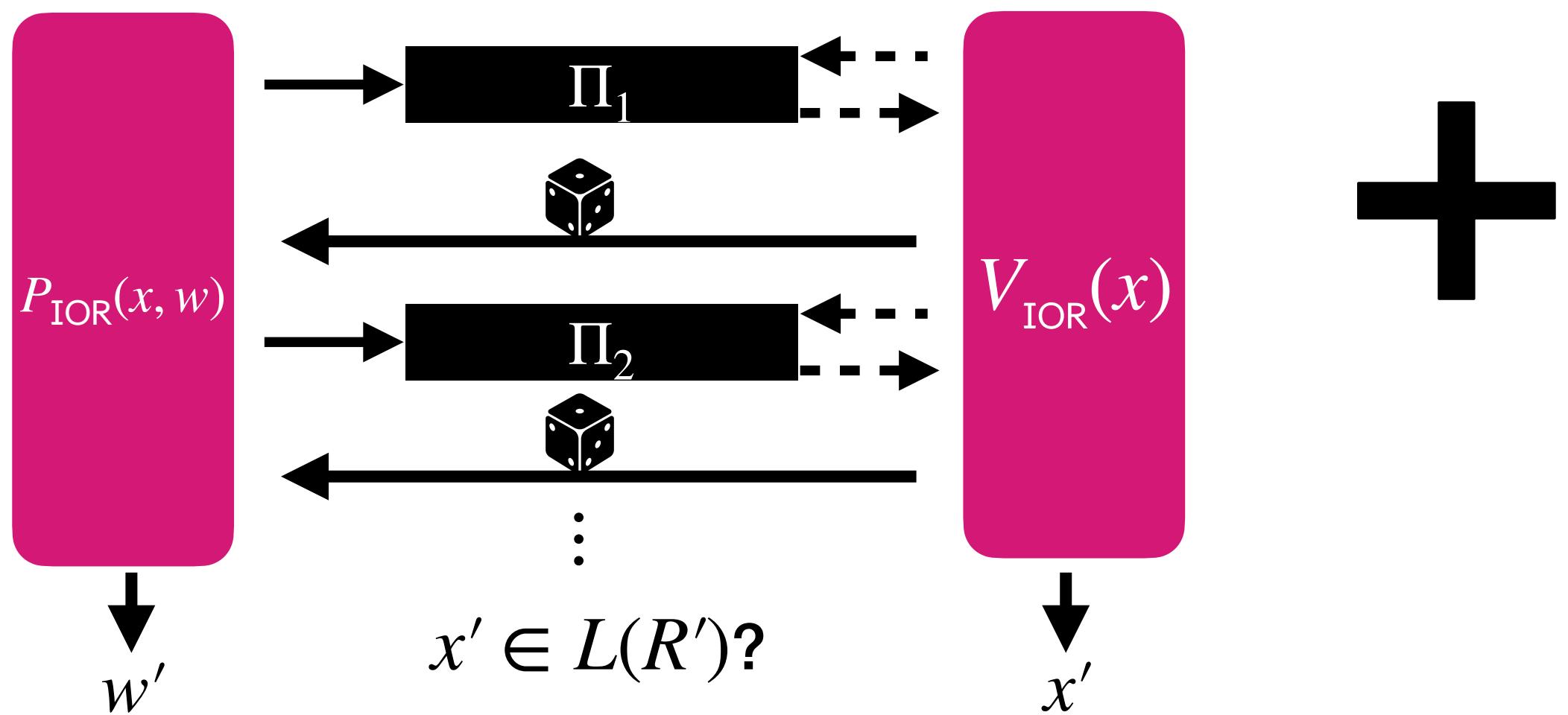
$$x \in L(R) ?$$



Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR)

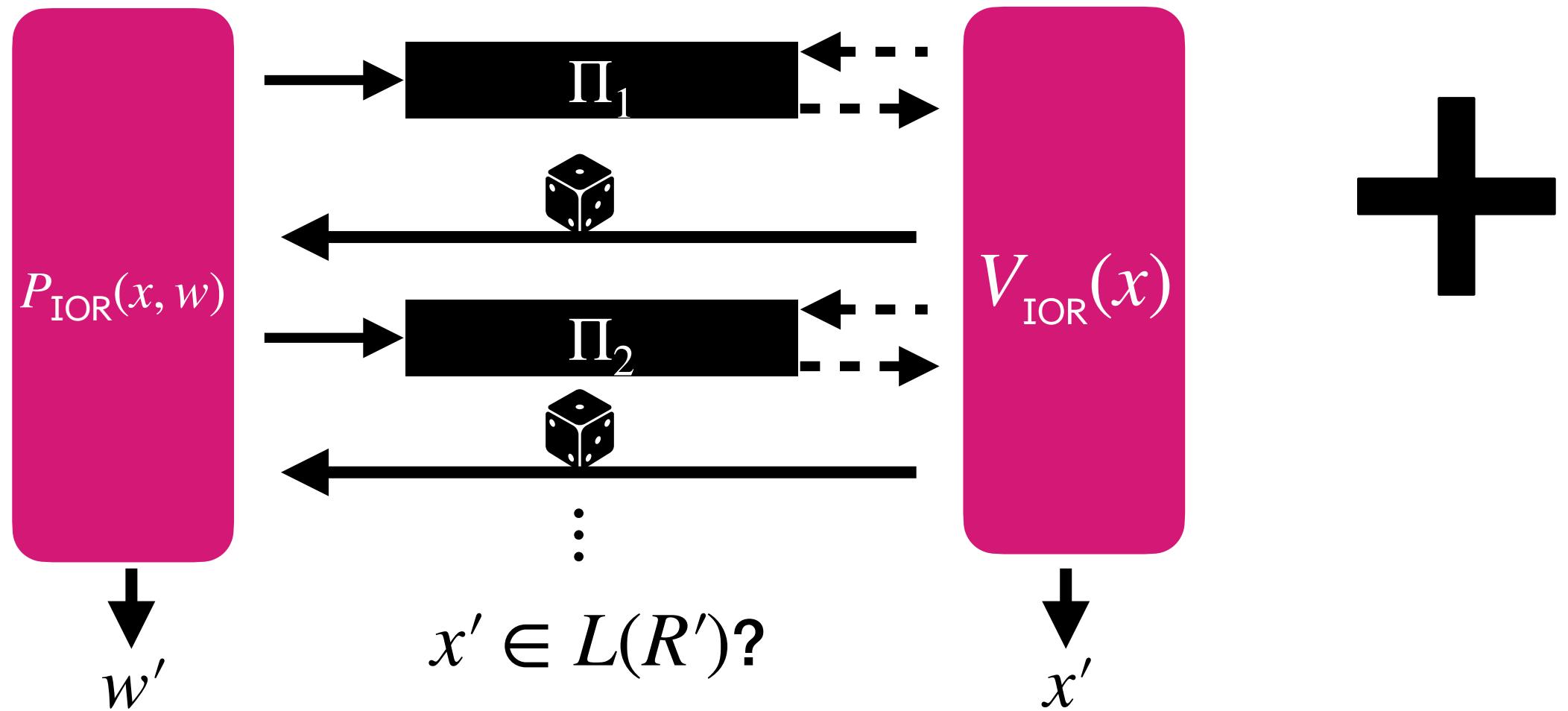
$x \in L(R) ?$



Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR)

$$x \in L(R)?$$



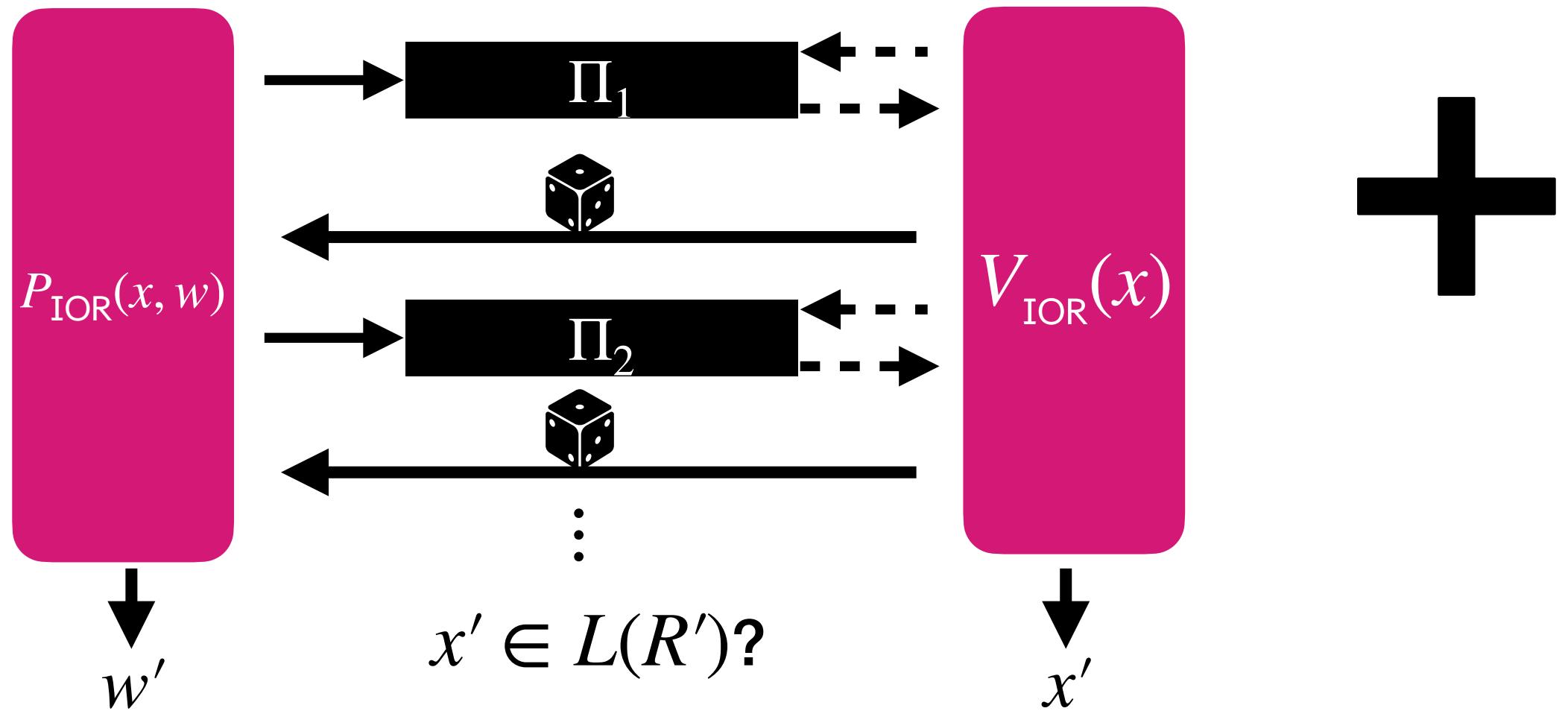
Ingredient #2: Vector commitment scheme (VC)

Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)

$$x \in L(R)?$$

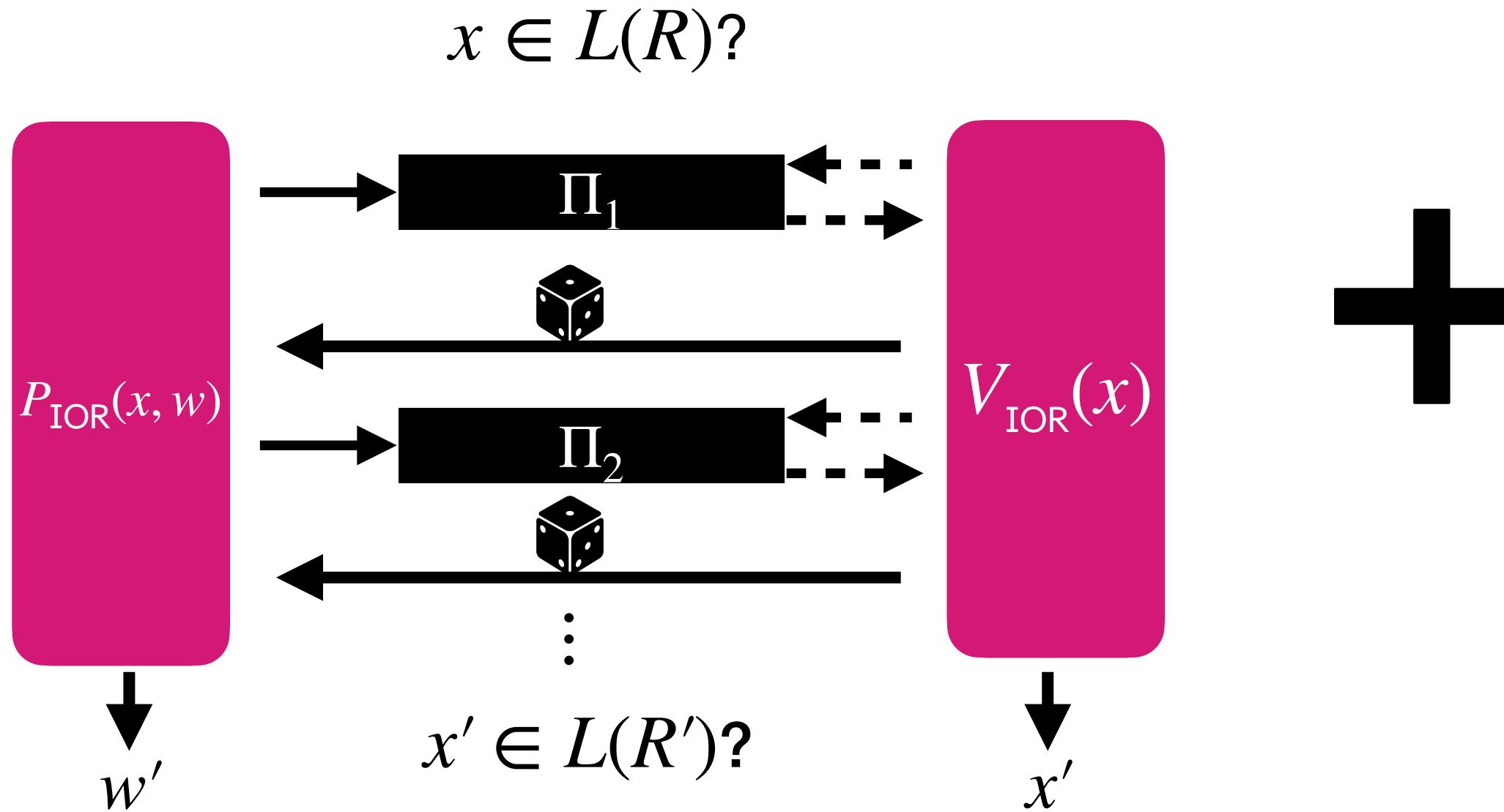


Ingredient #2: Vector commitment scheme (VC)

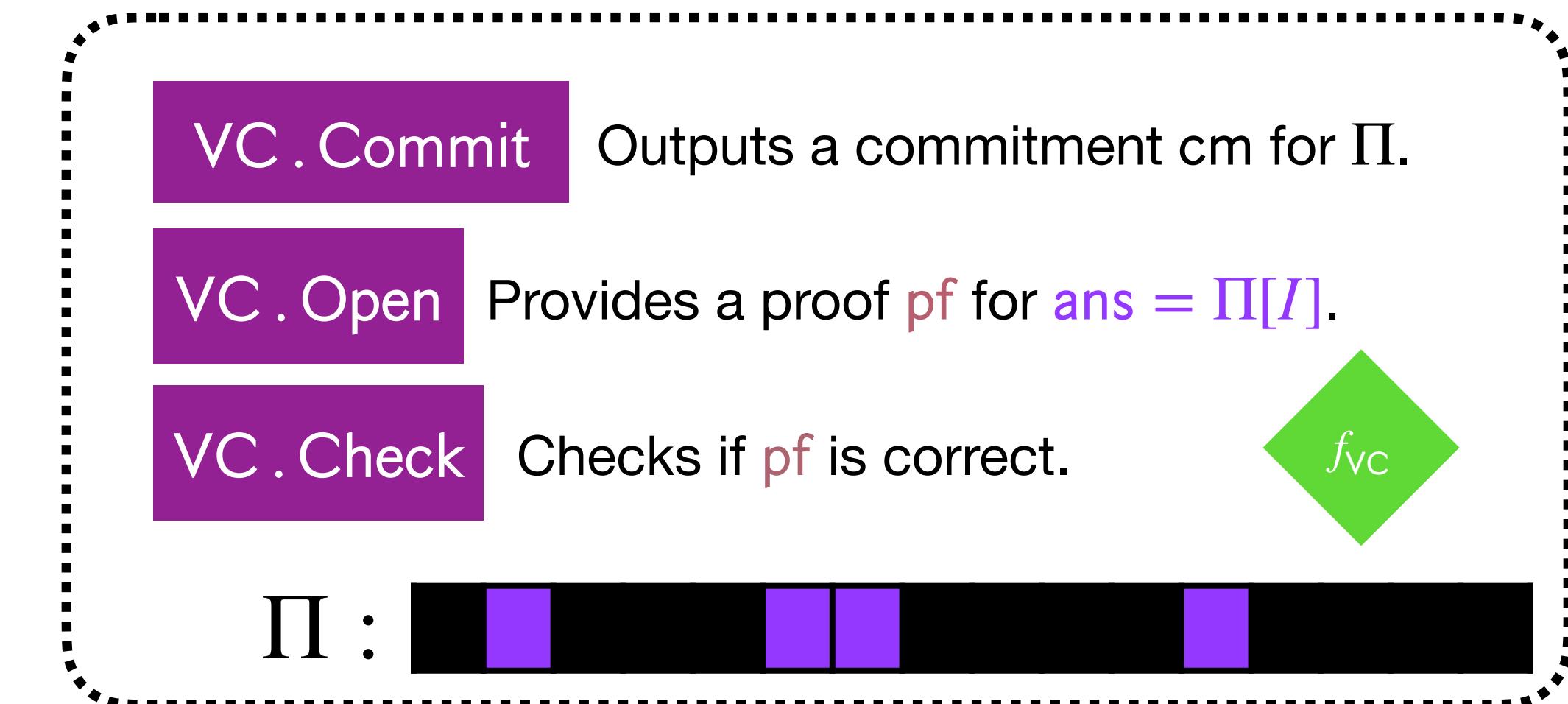
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



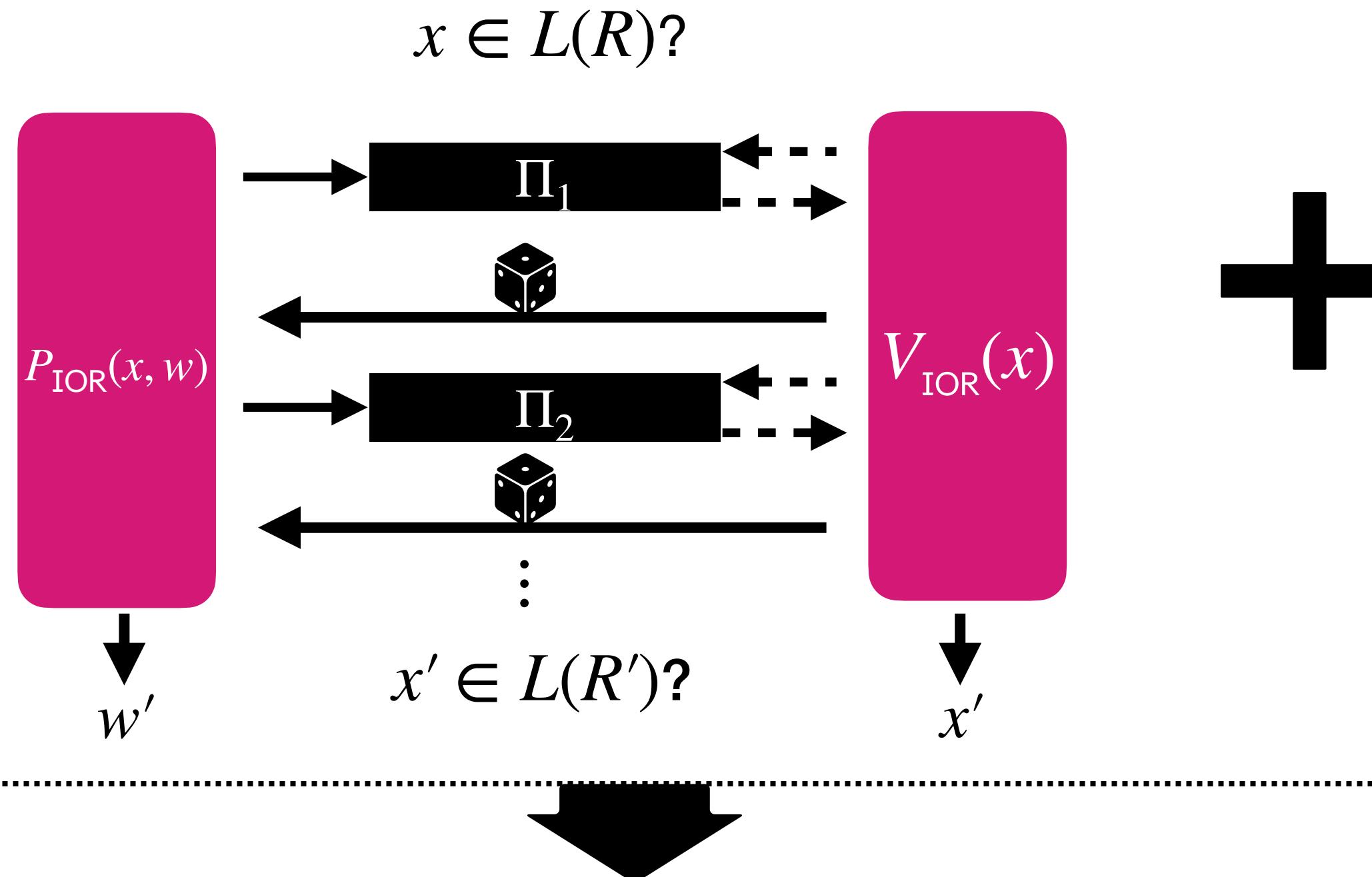
Ingredient #2: Vector commitment scheme (VC)



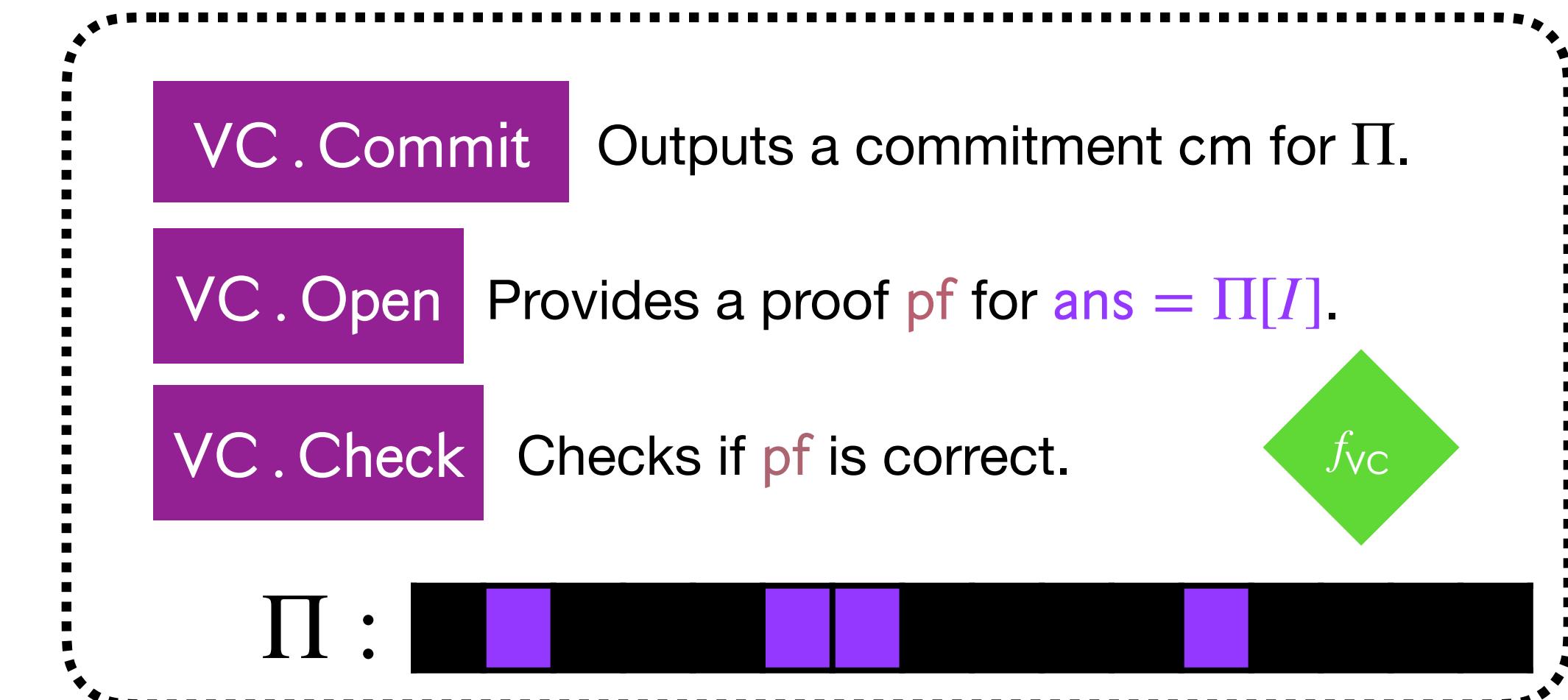
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



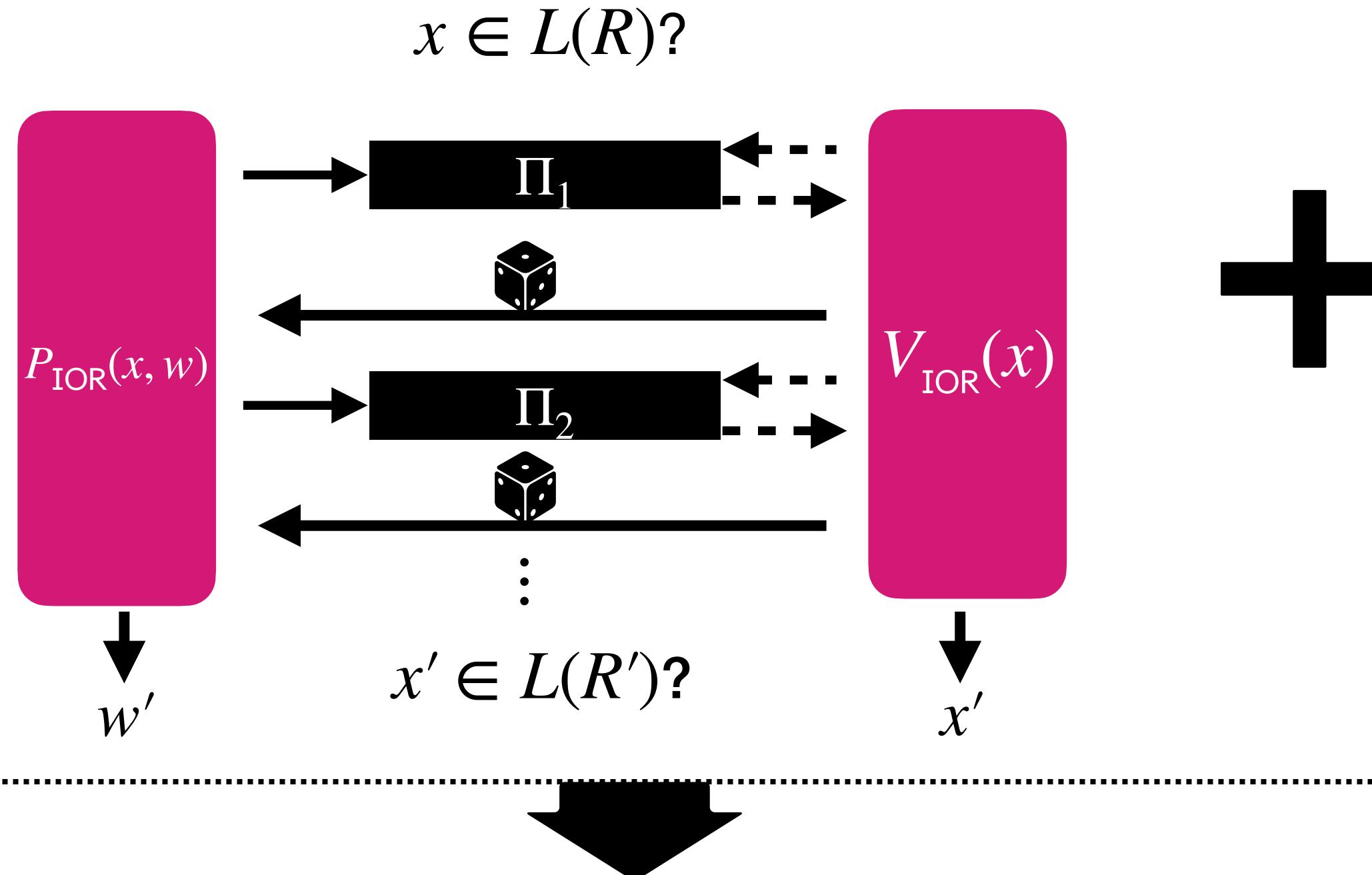
Ingredient #2: Vector commitment scheme (VC)



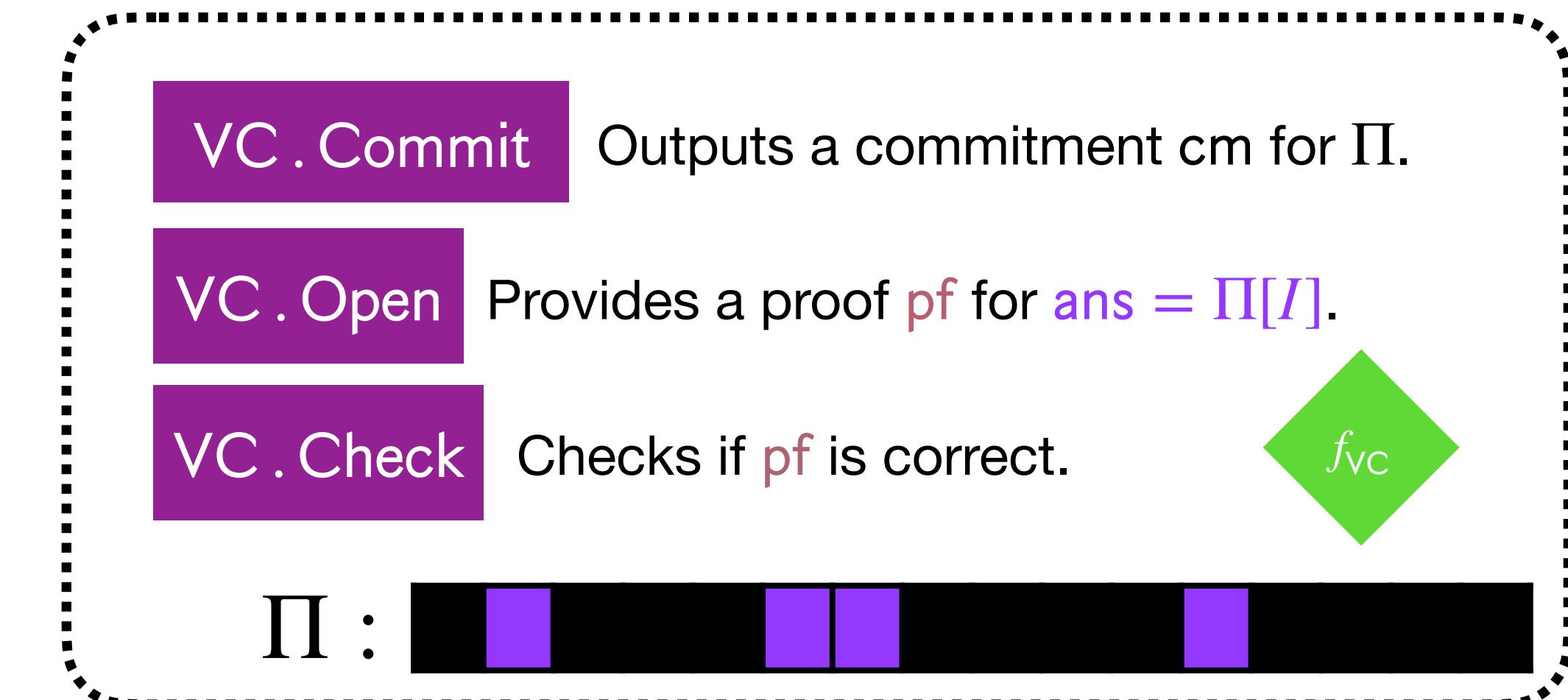
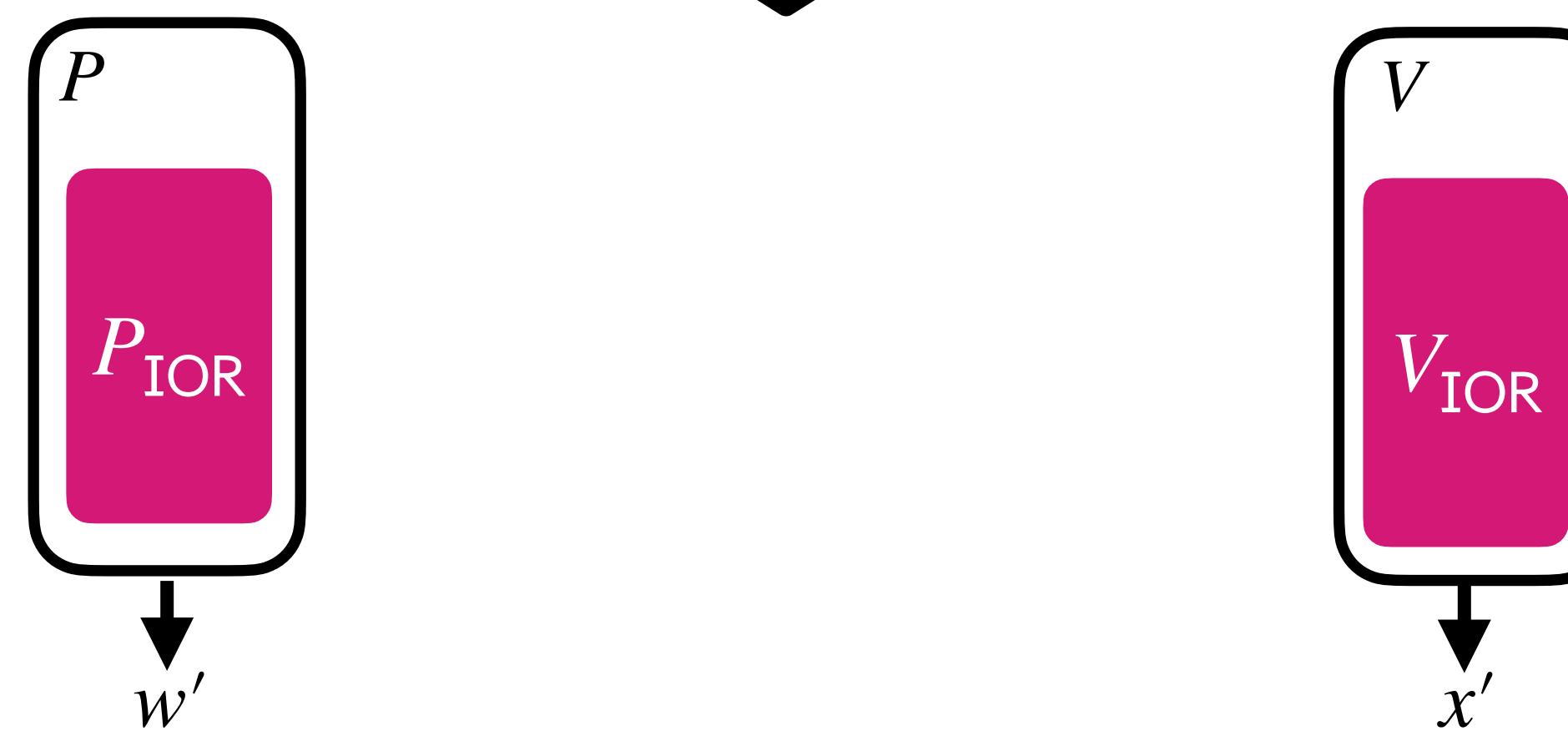
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



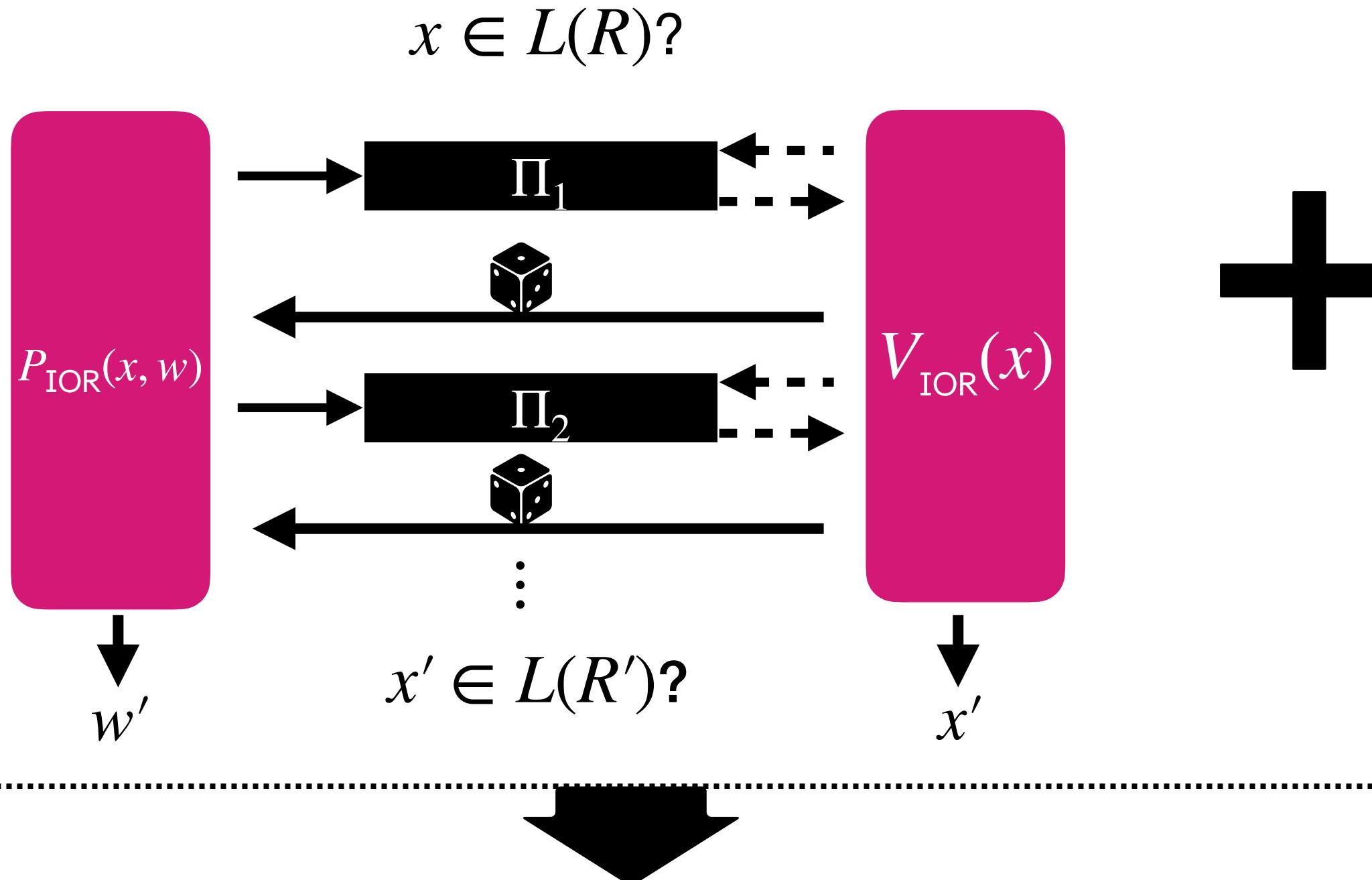
Ingredient #2: Vector commitment scheme (VC)



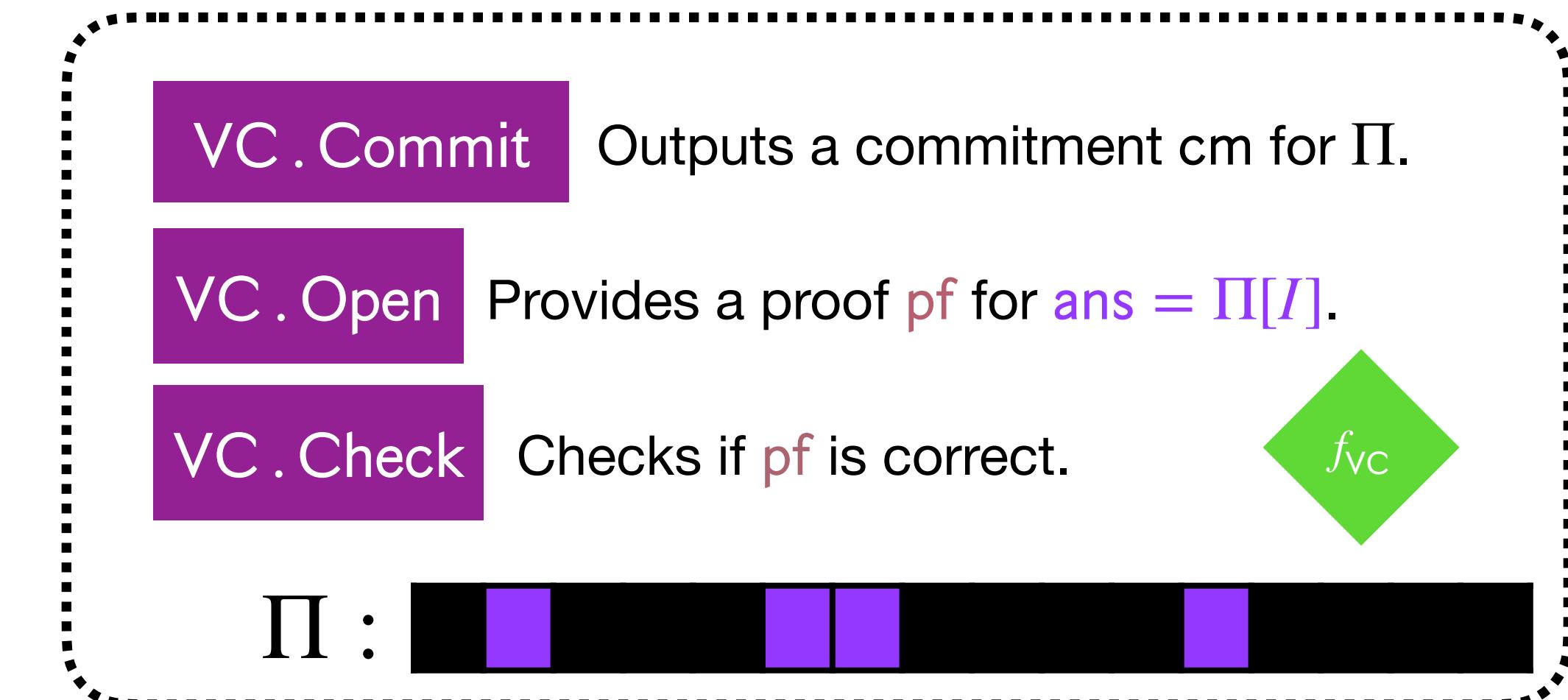
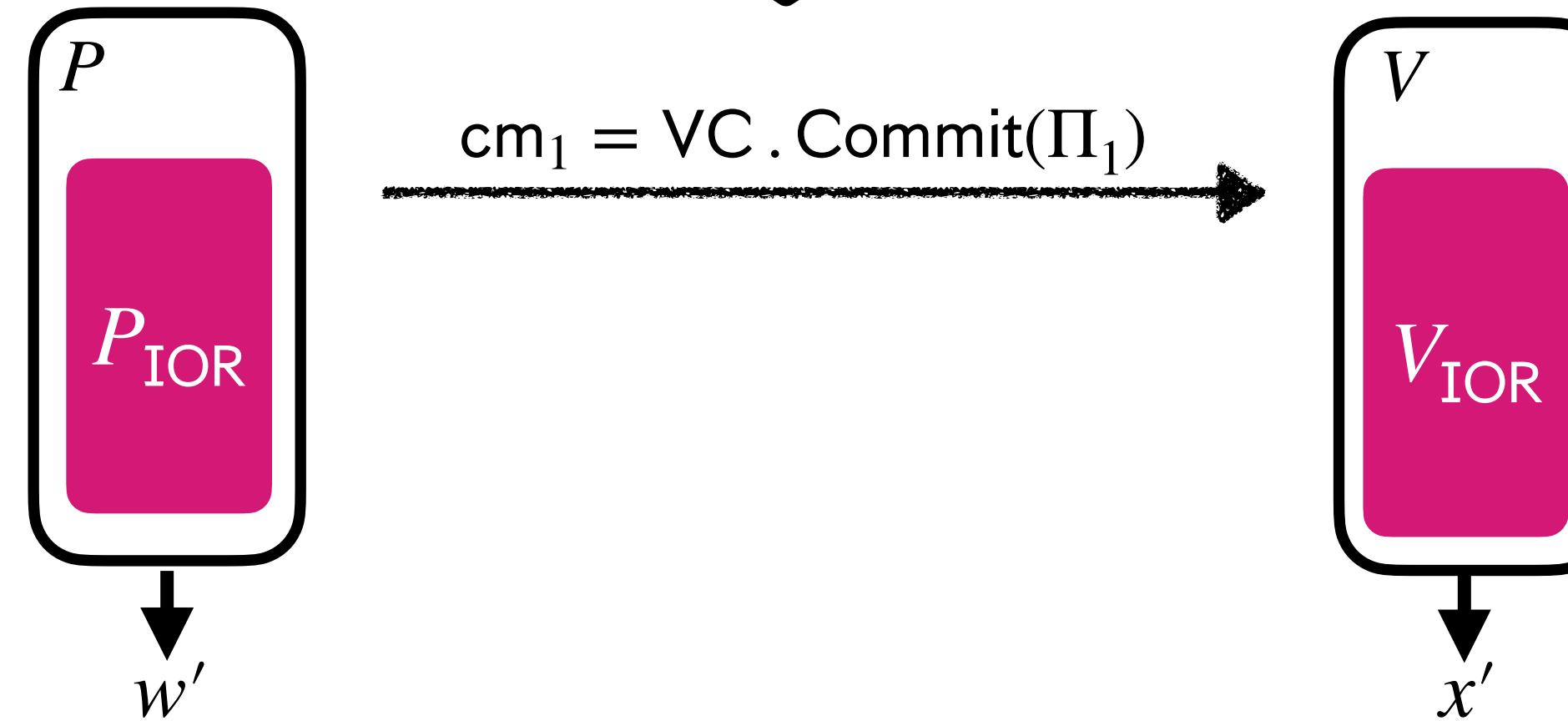
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



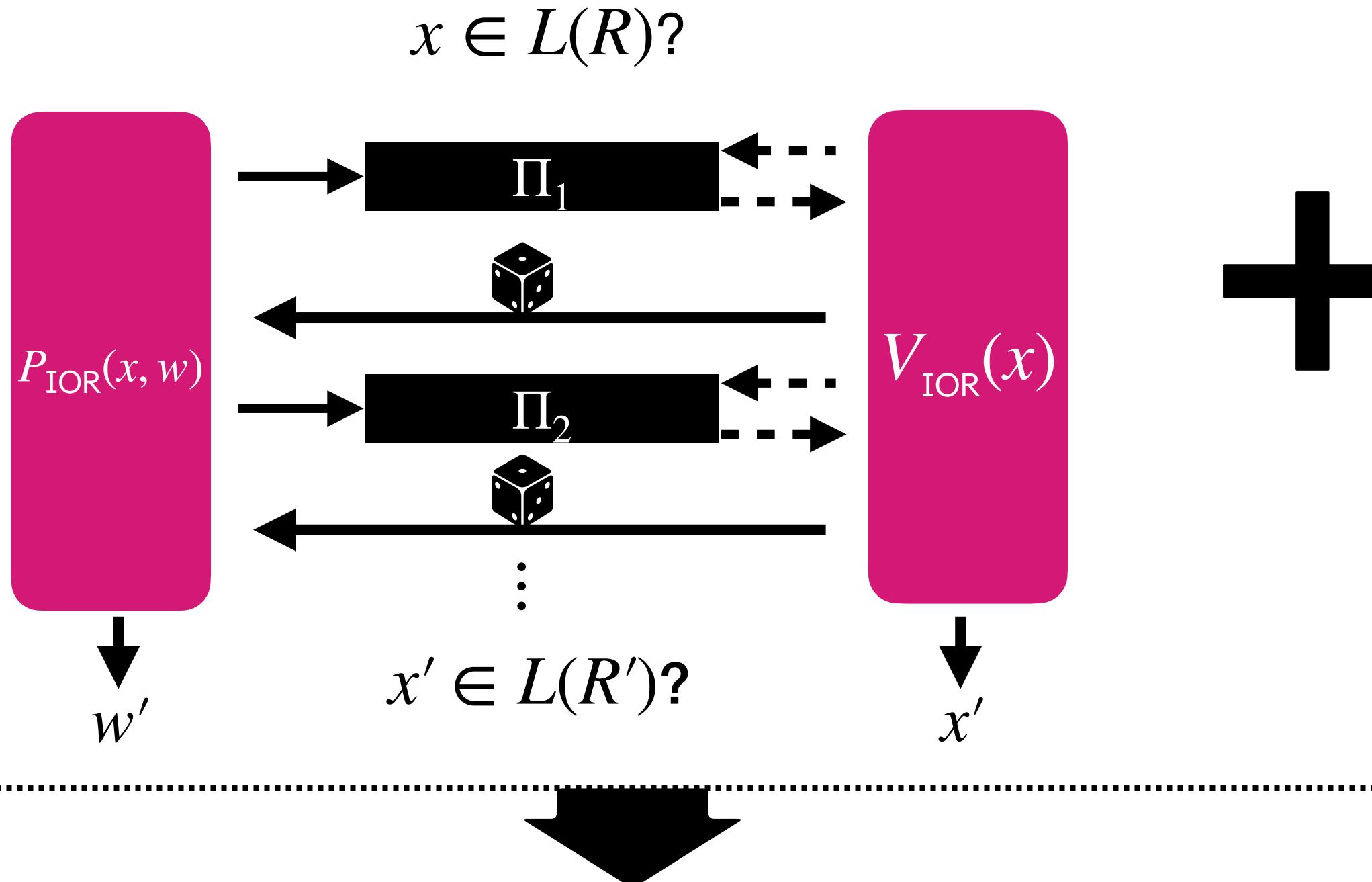
Ingredient #2: Vector commitment scheme (VC)



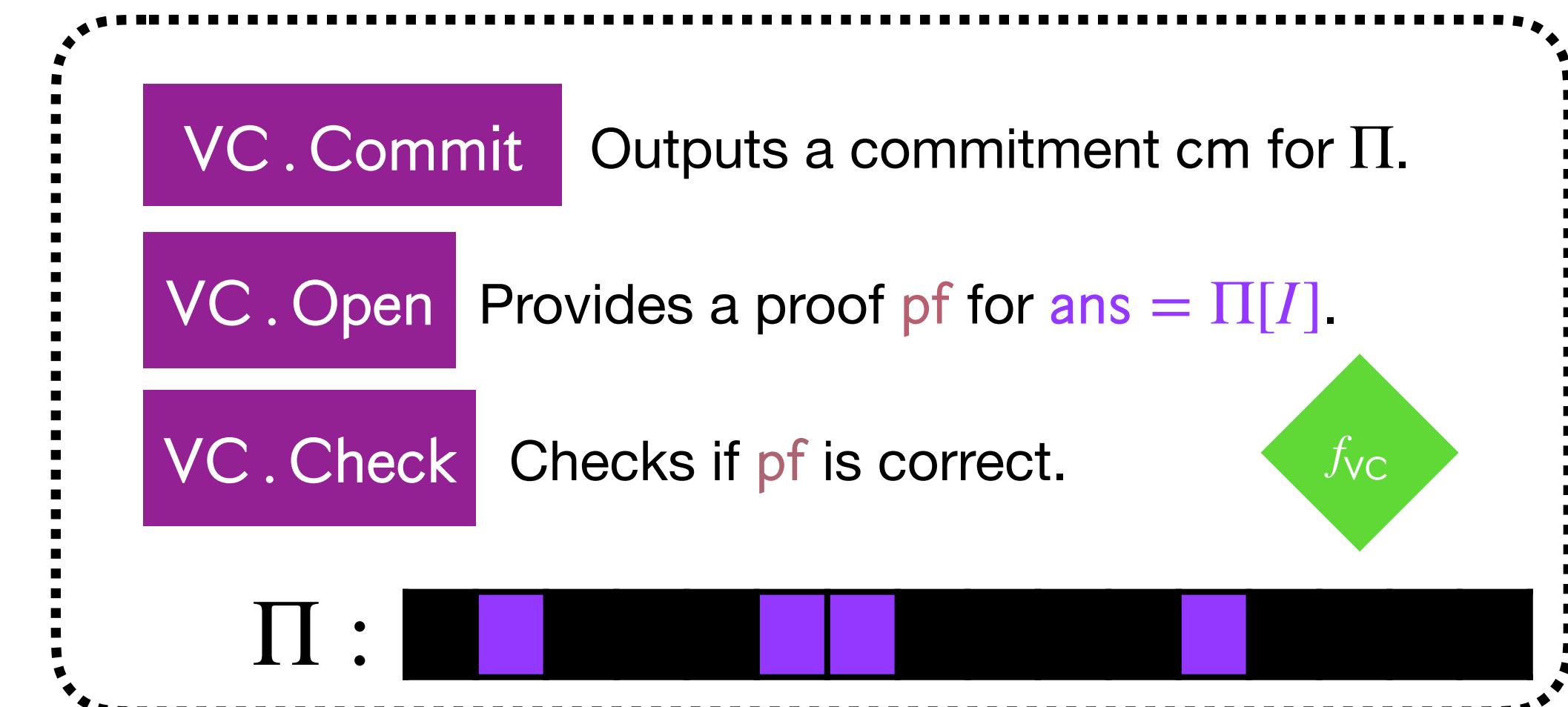
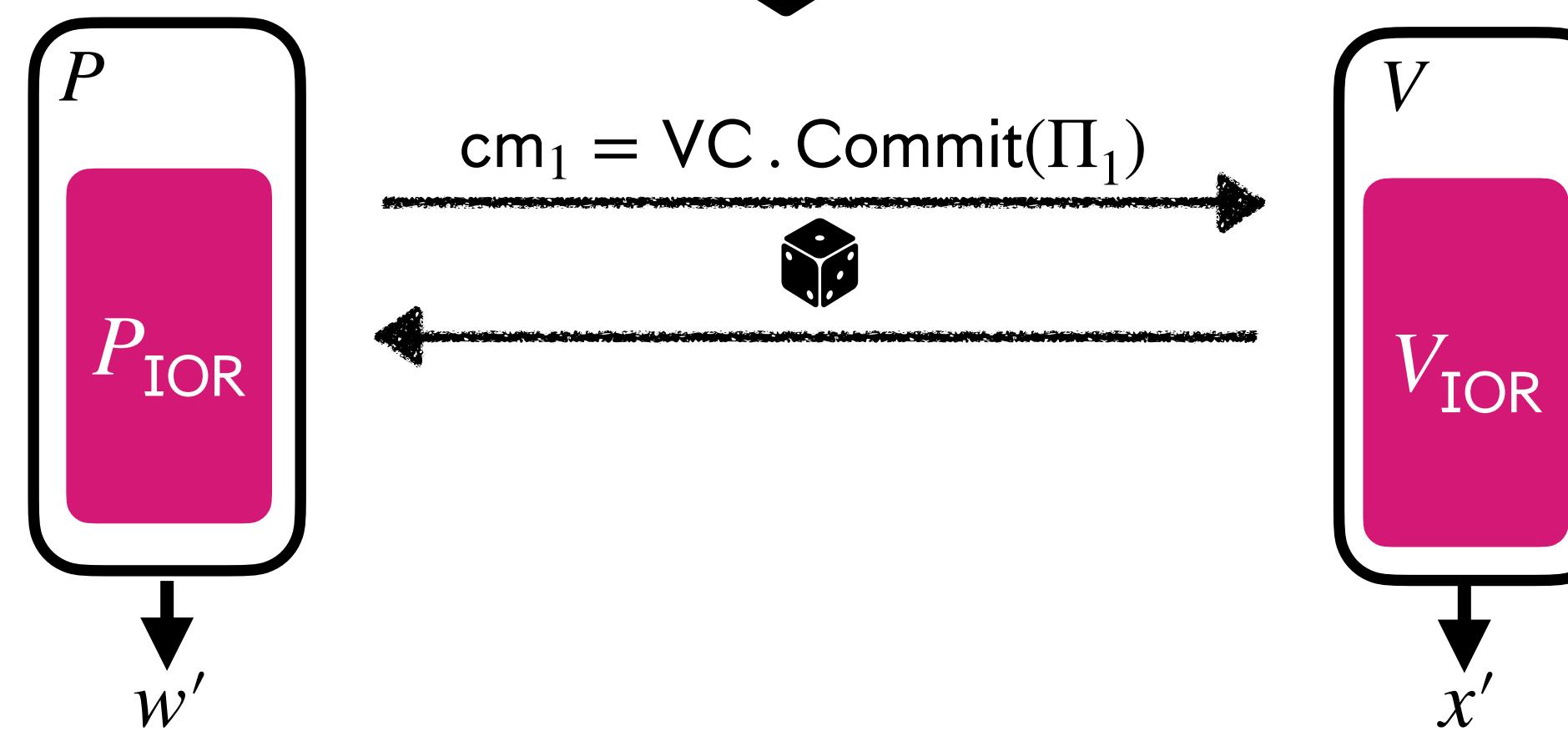
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



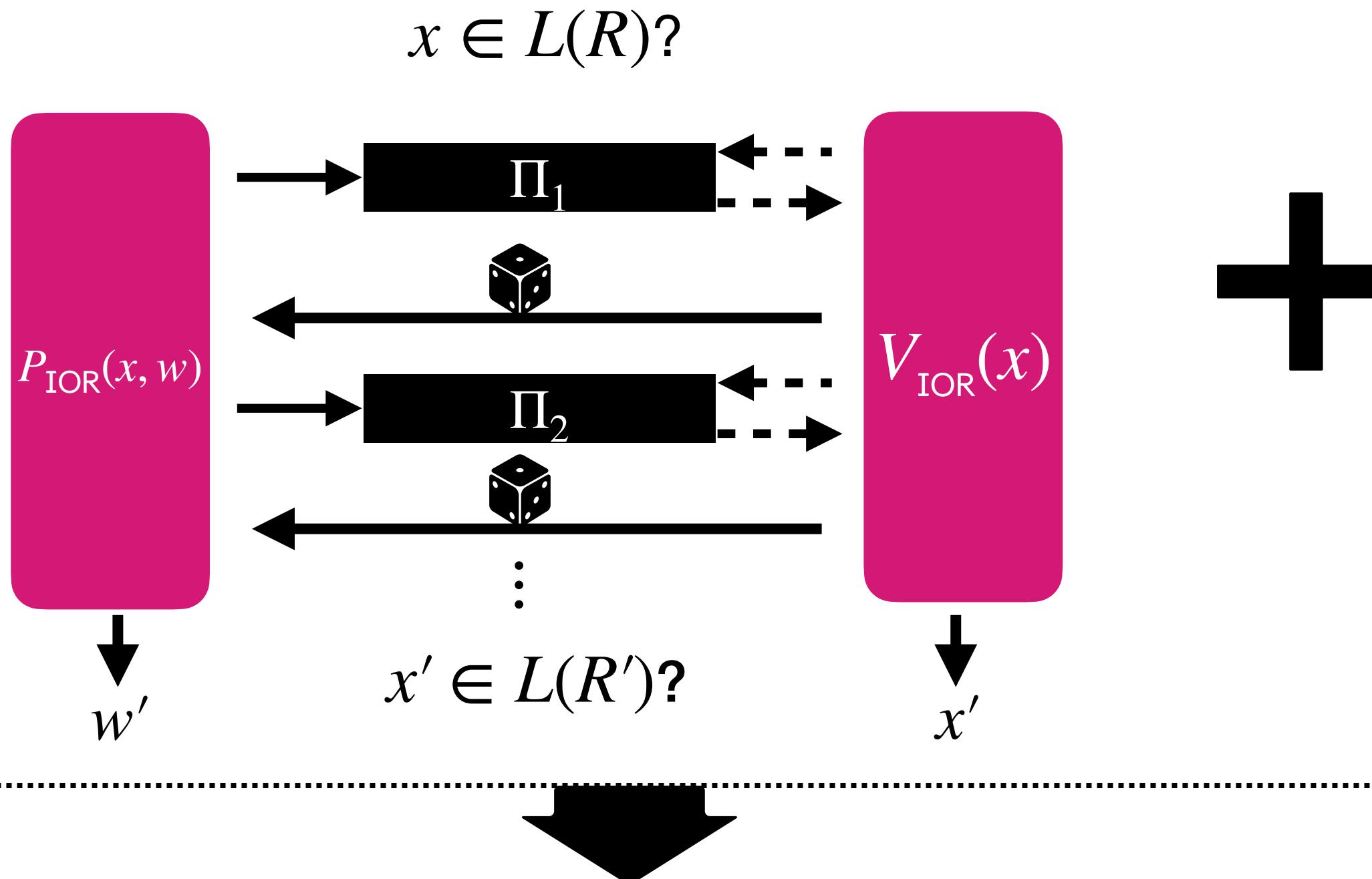
Ingredient #2: Vector commitment scheme (VC)



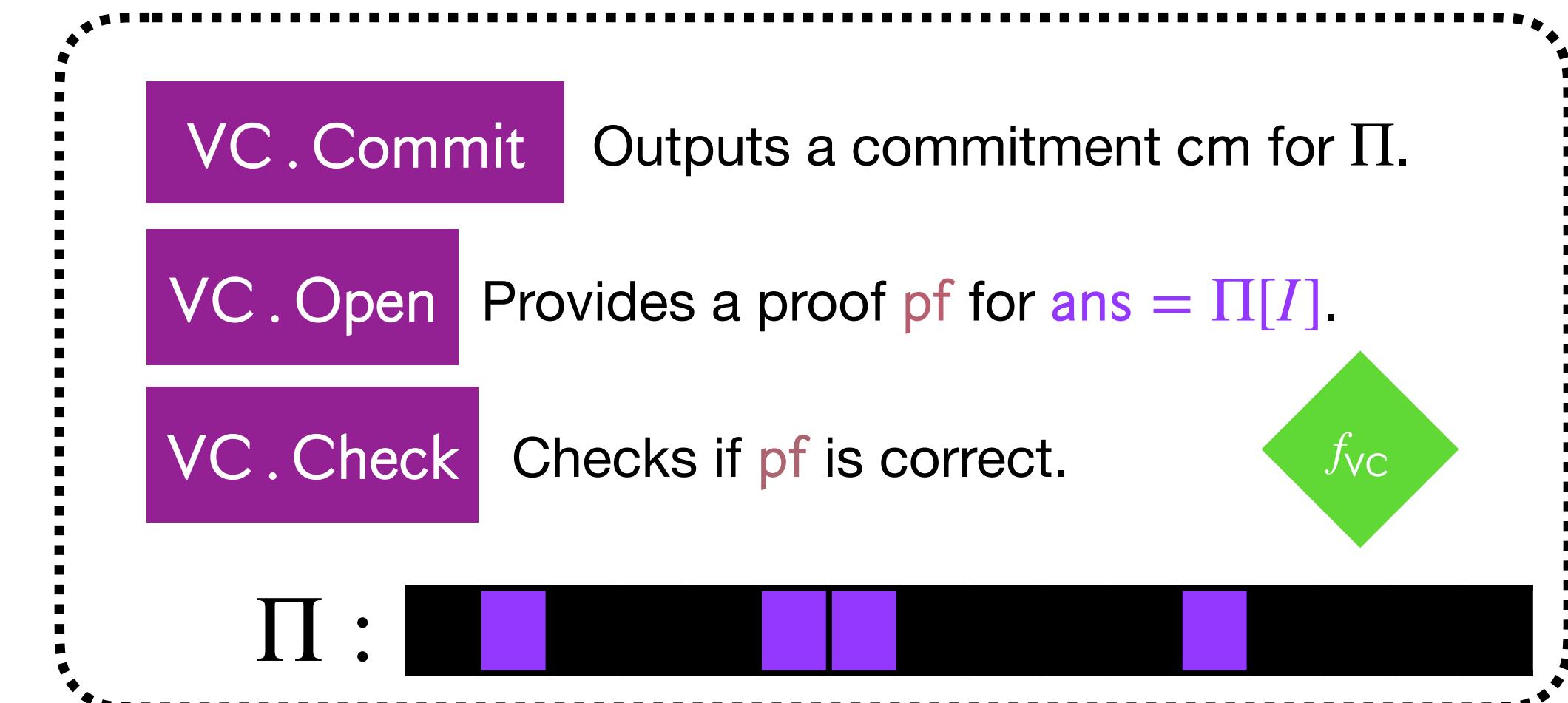
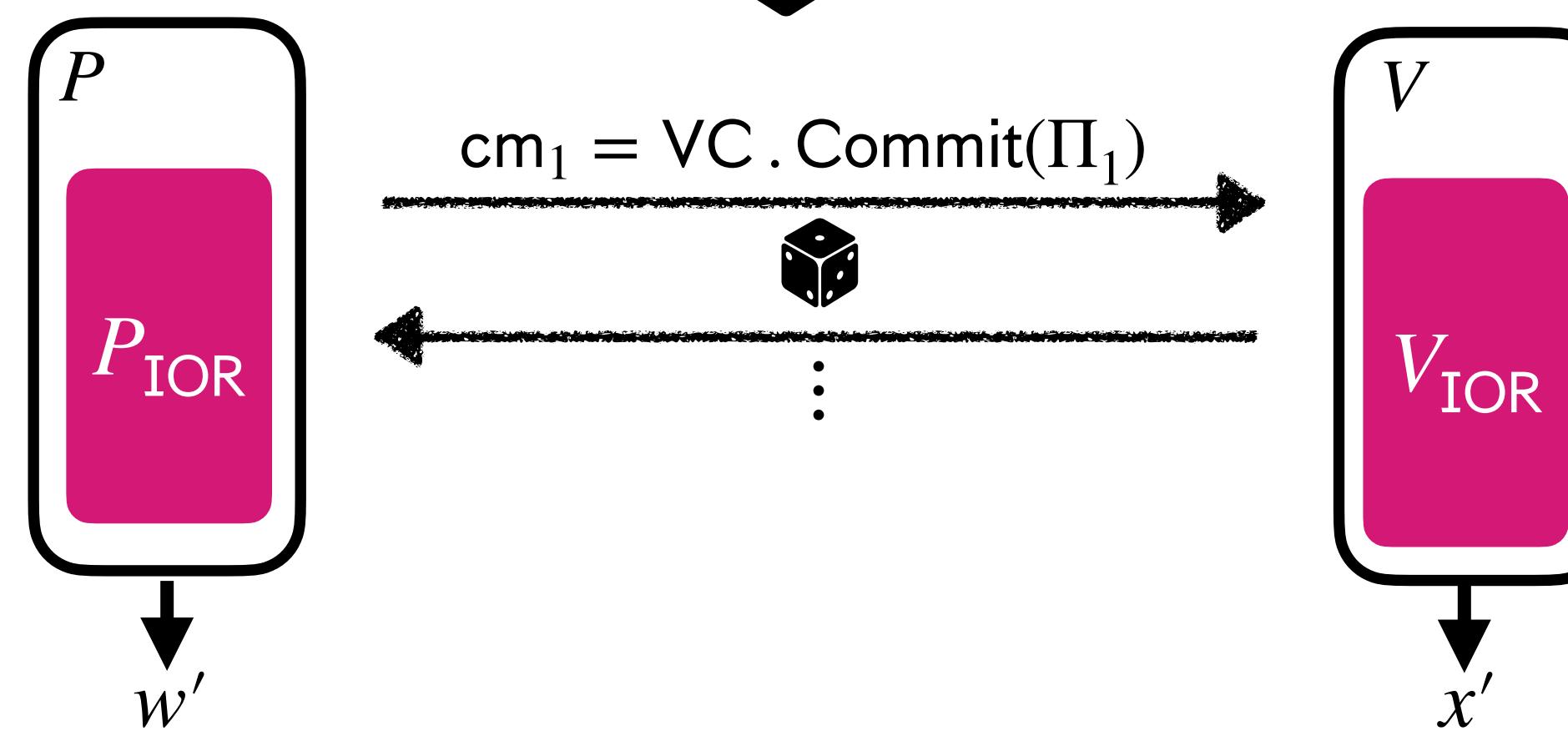
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



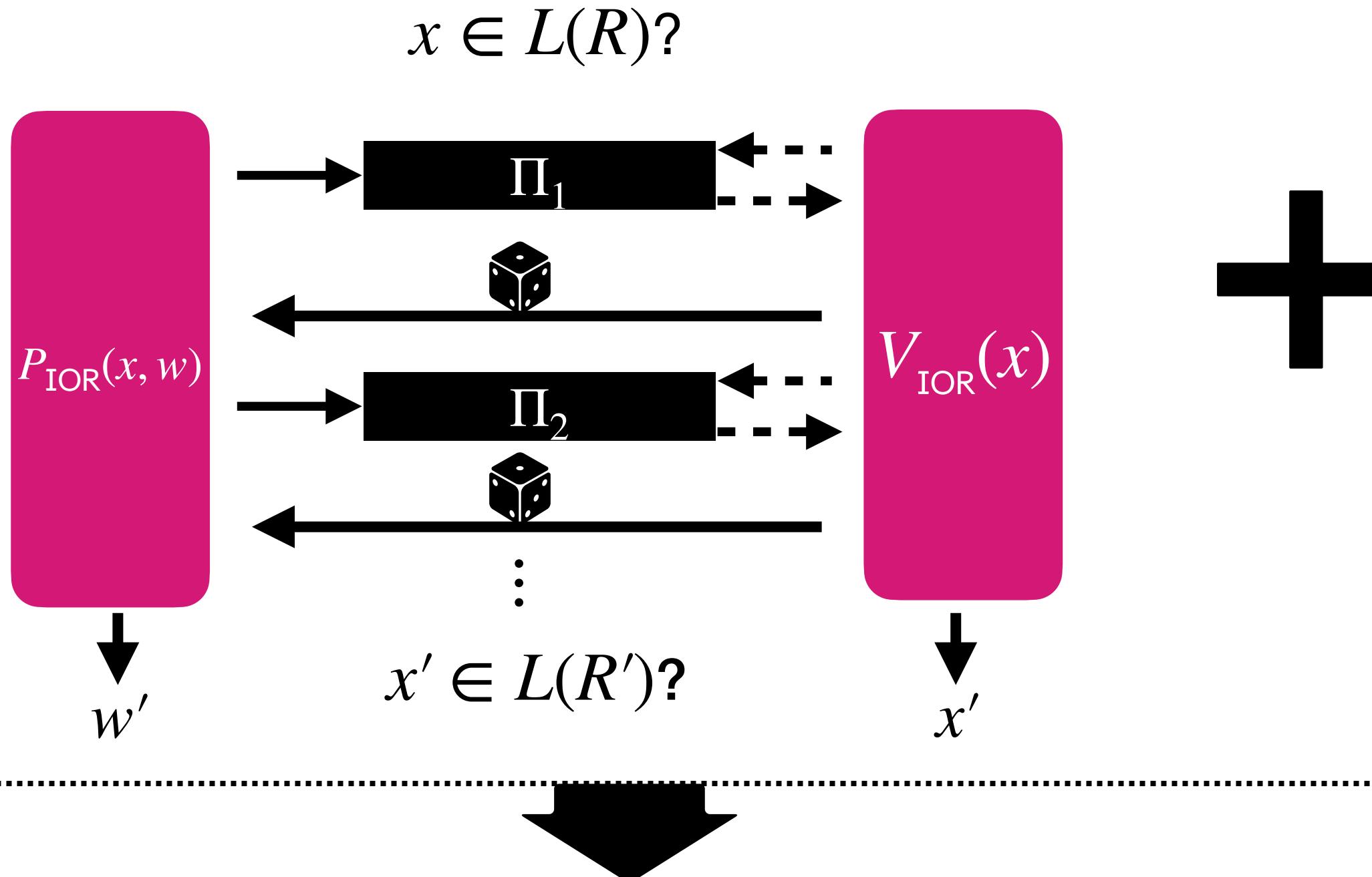
Ingredient #2: Vector commitment scheme (VC)



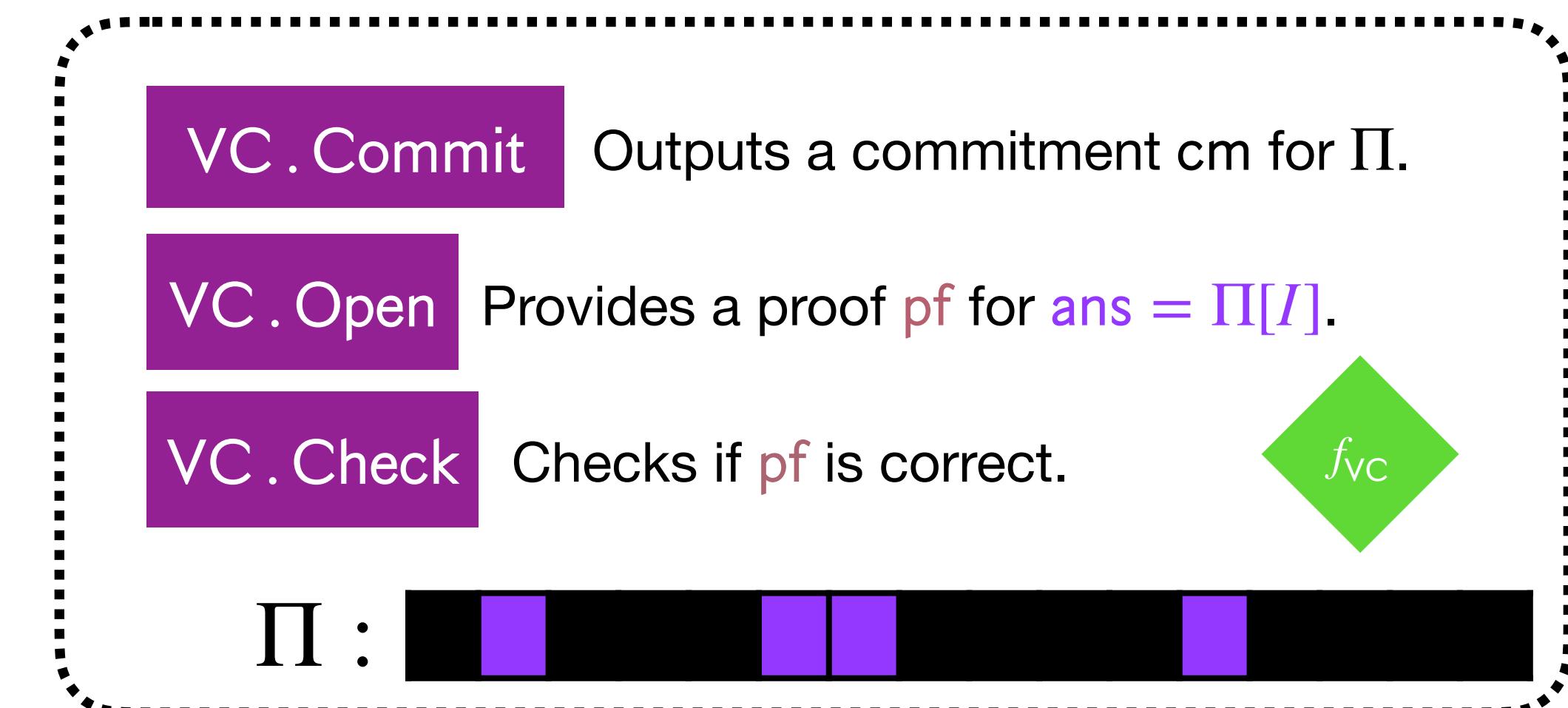
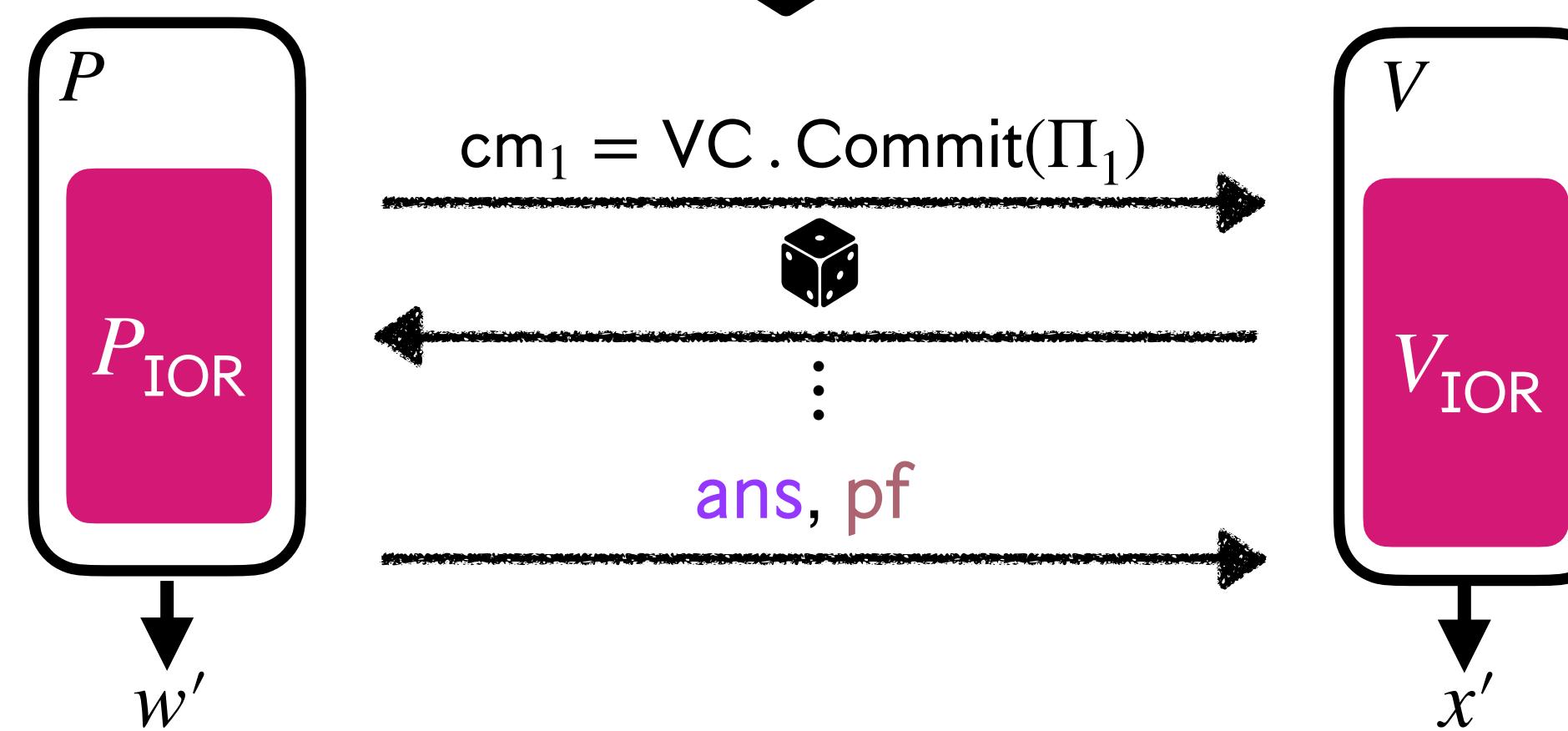
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



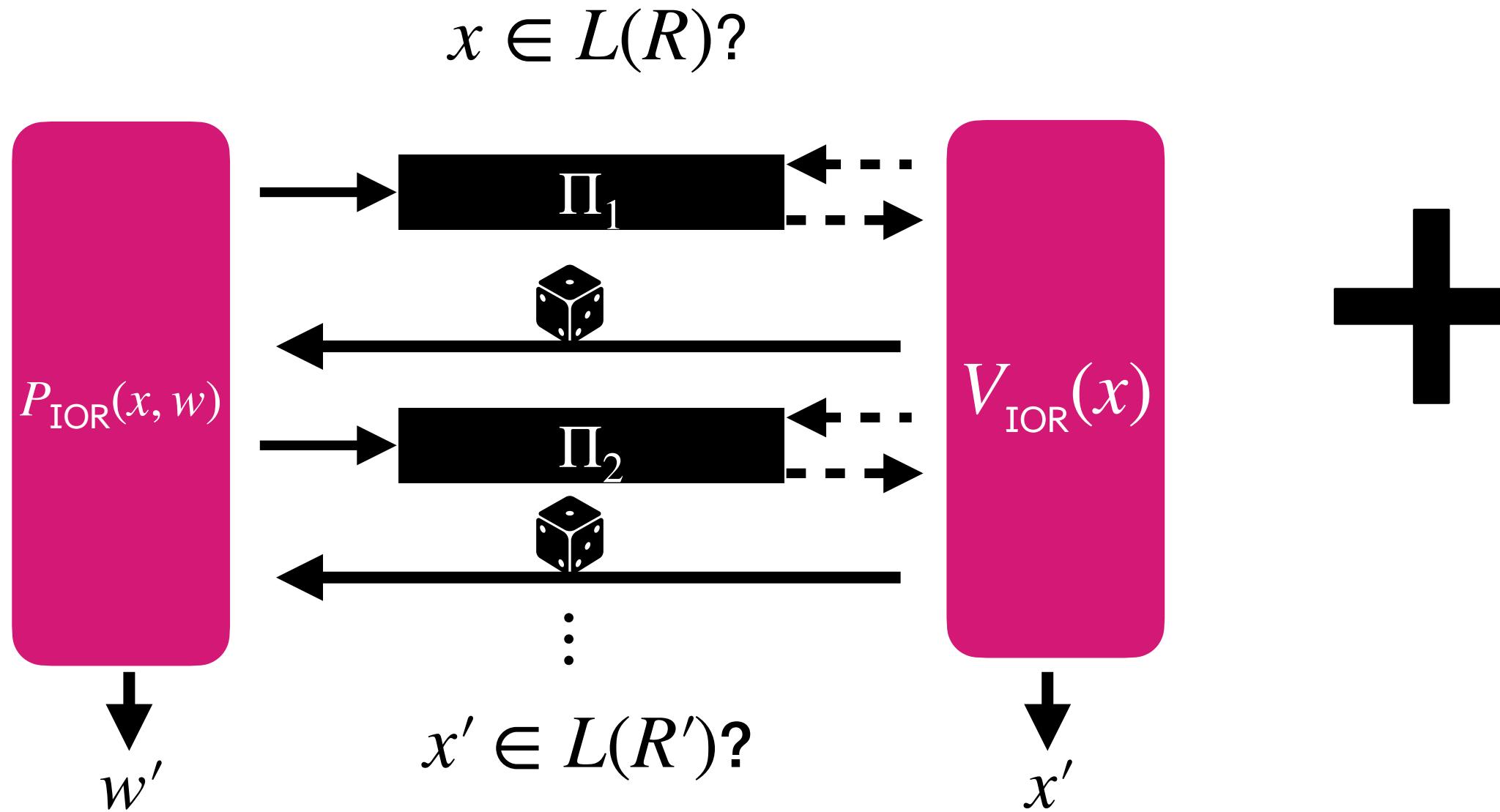
Ingredient #2: Vector commitment scheme (VC)



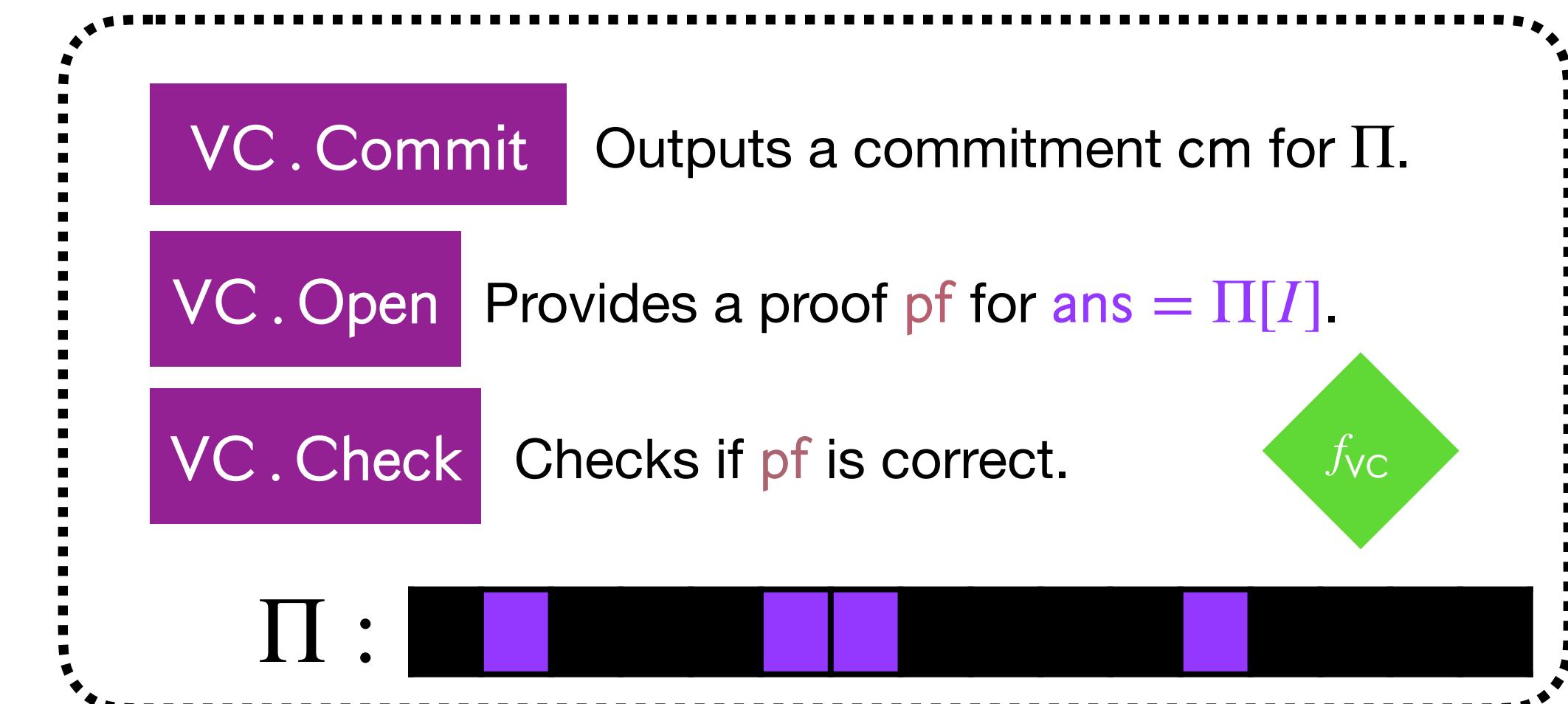
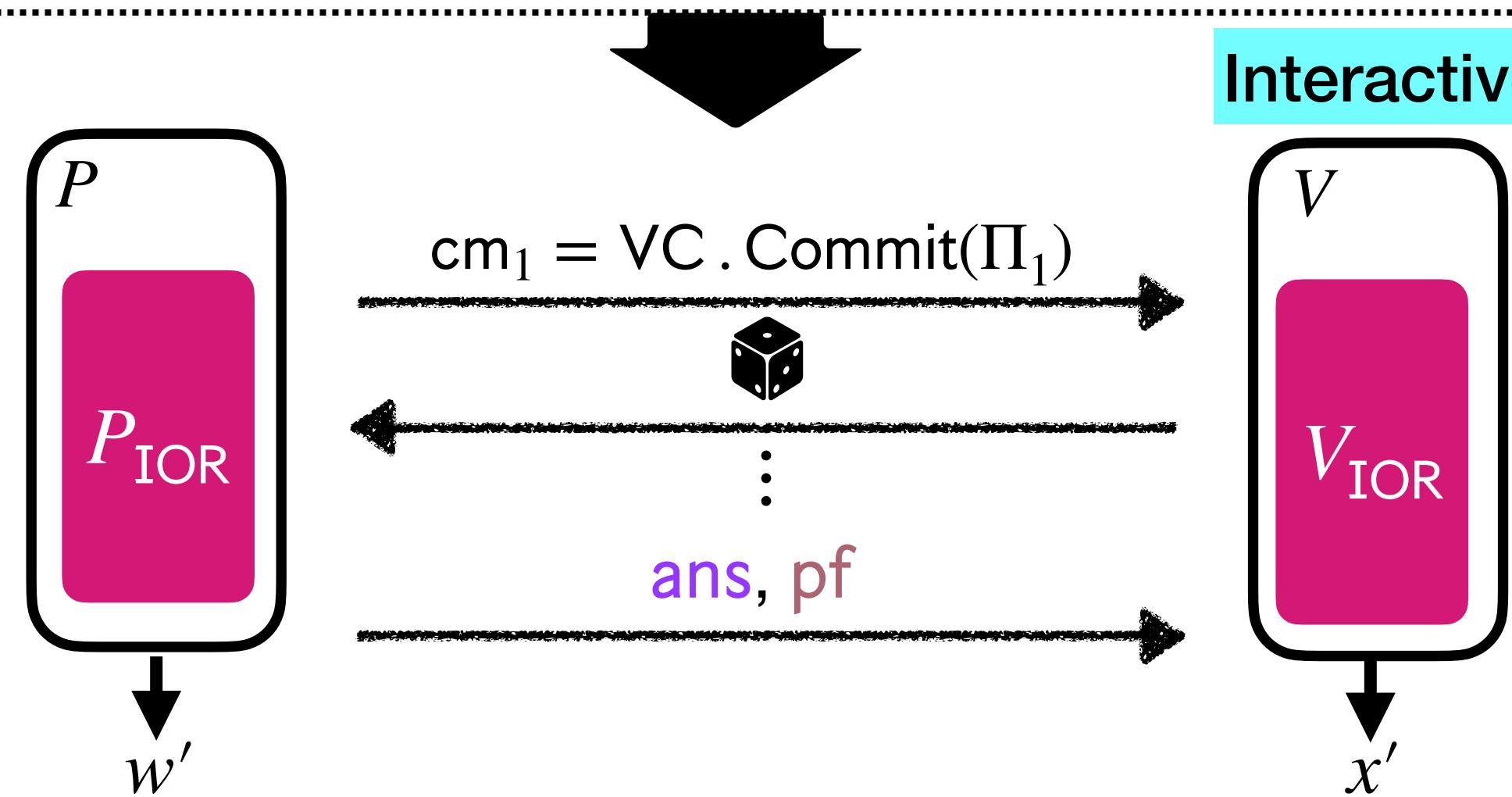
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



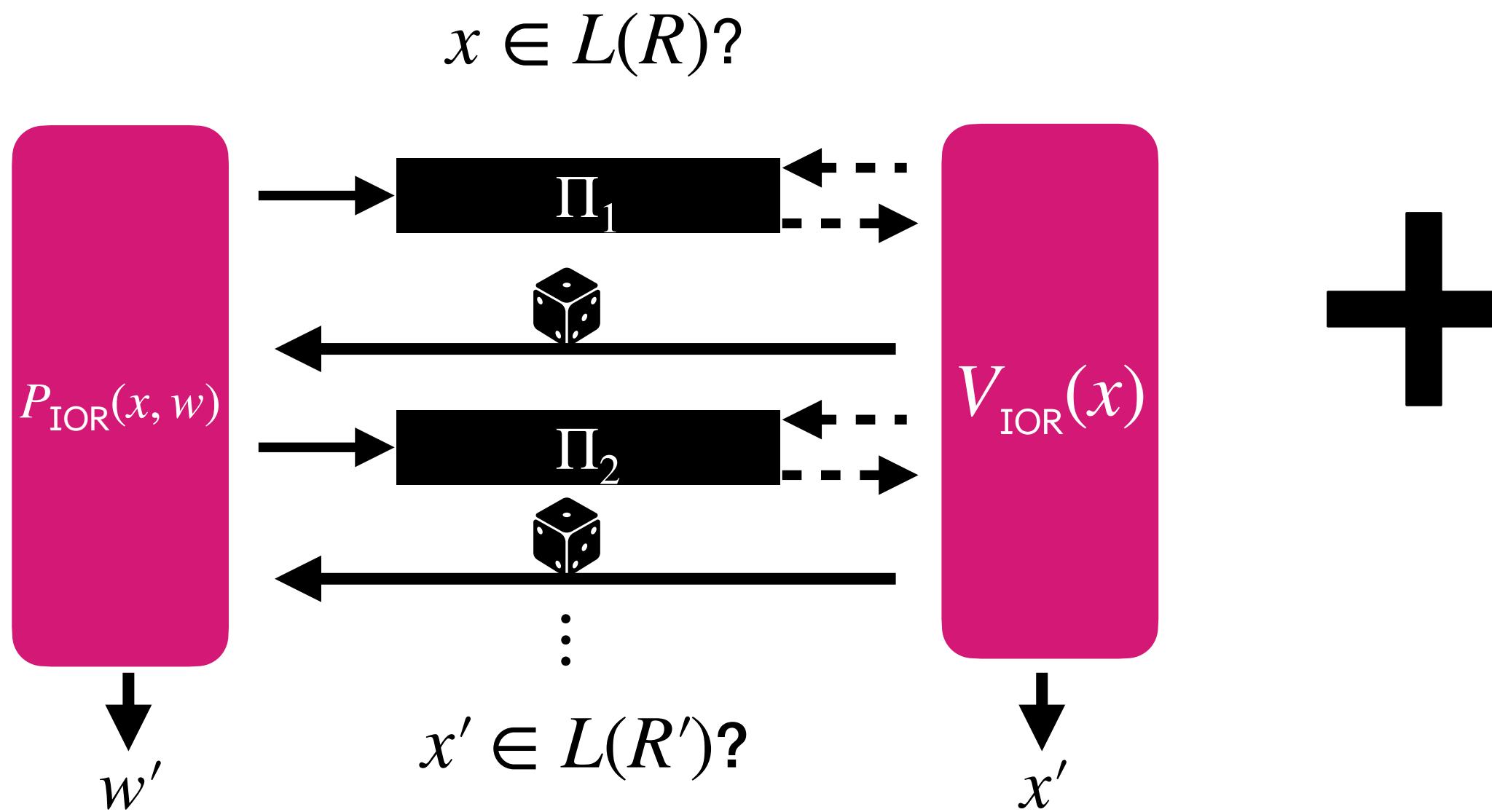
Ingredient #2: Vector commitment scheme (VC)



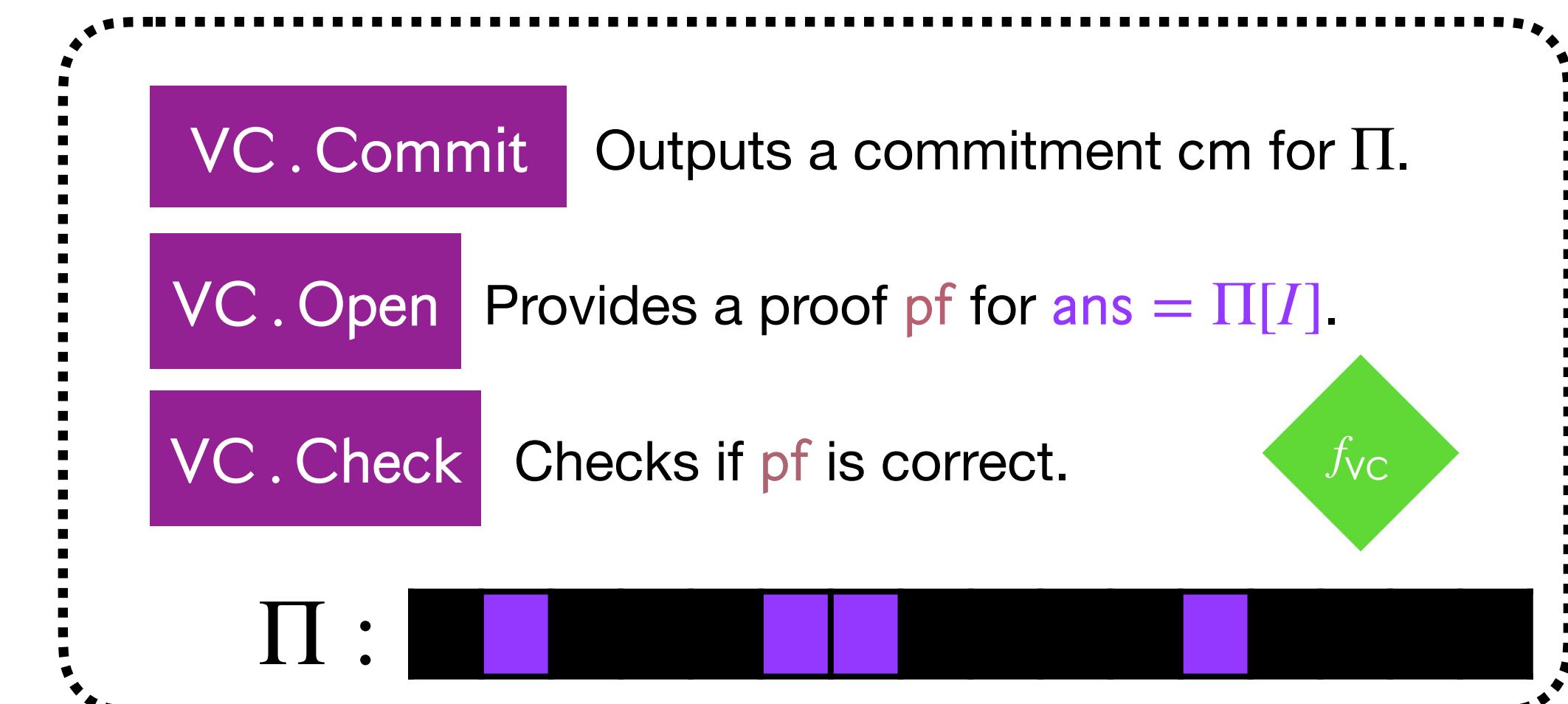
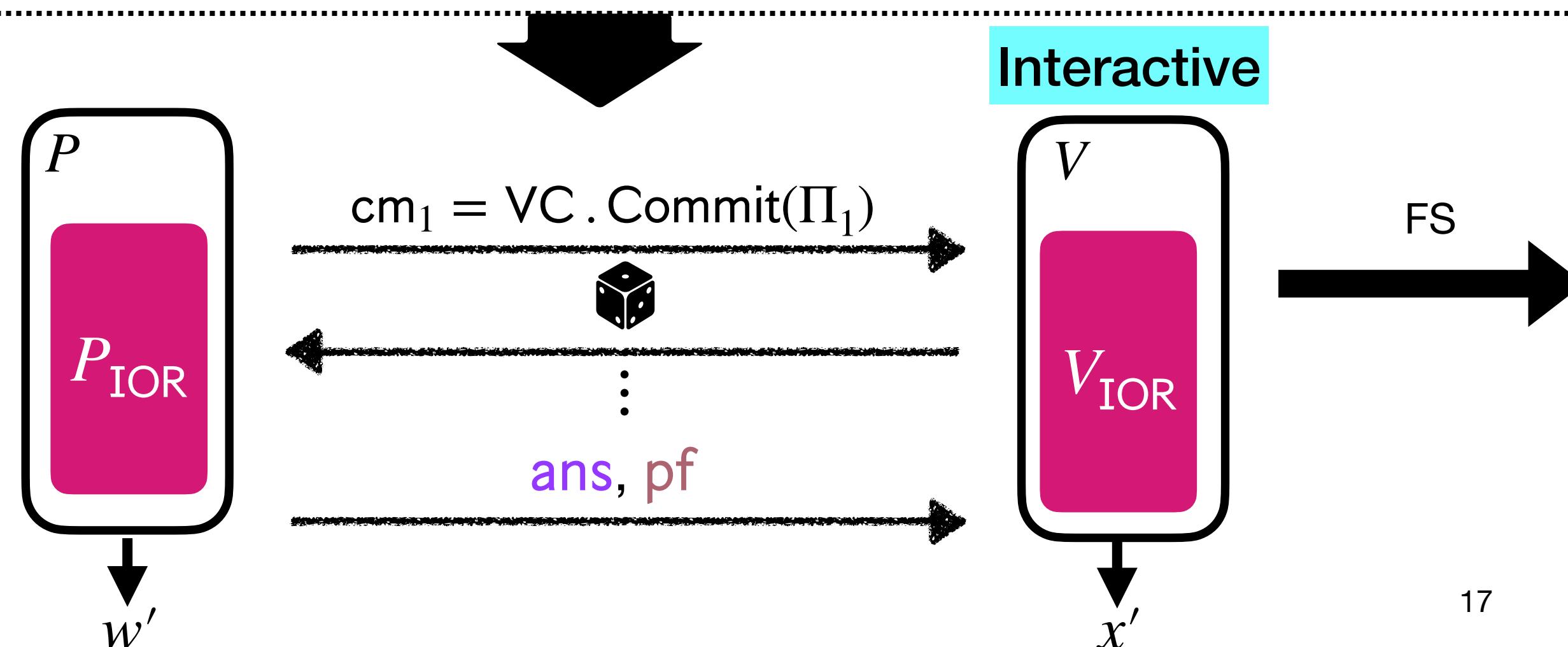
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



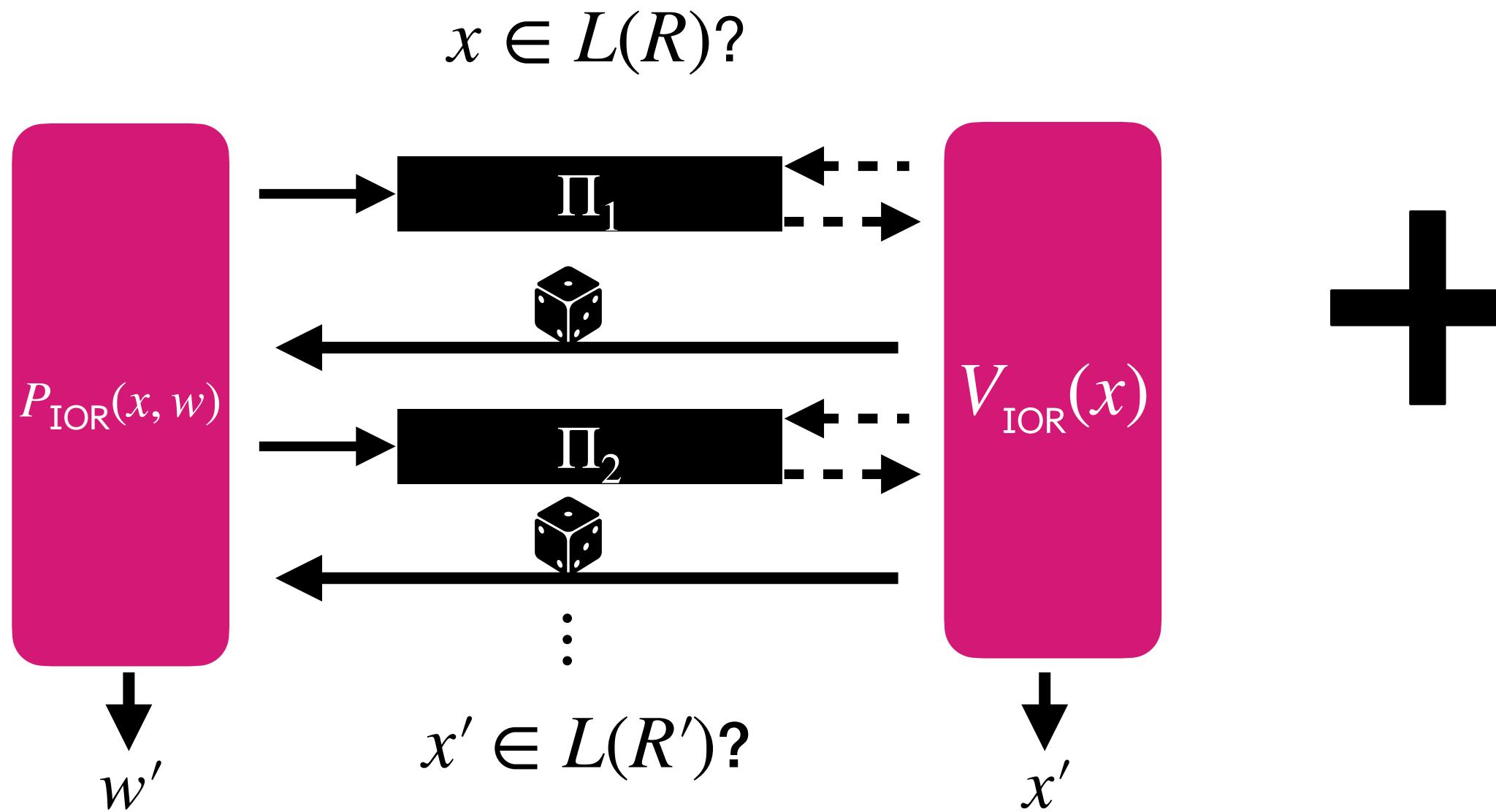
Ingredient #2: Vector commitment scheme (VC)



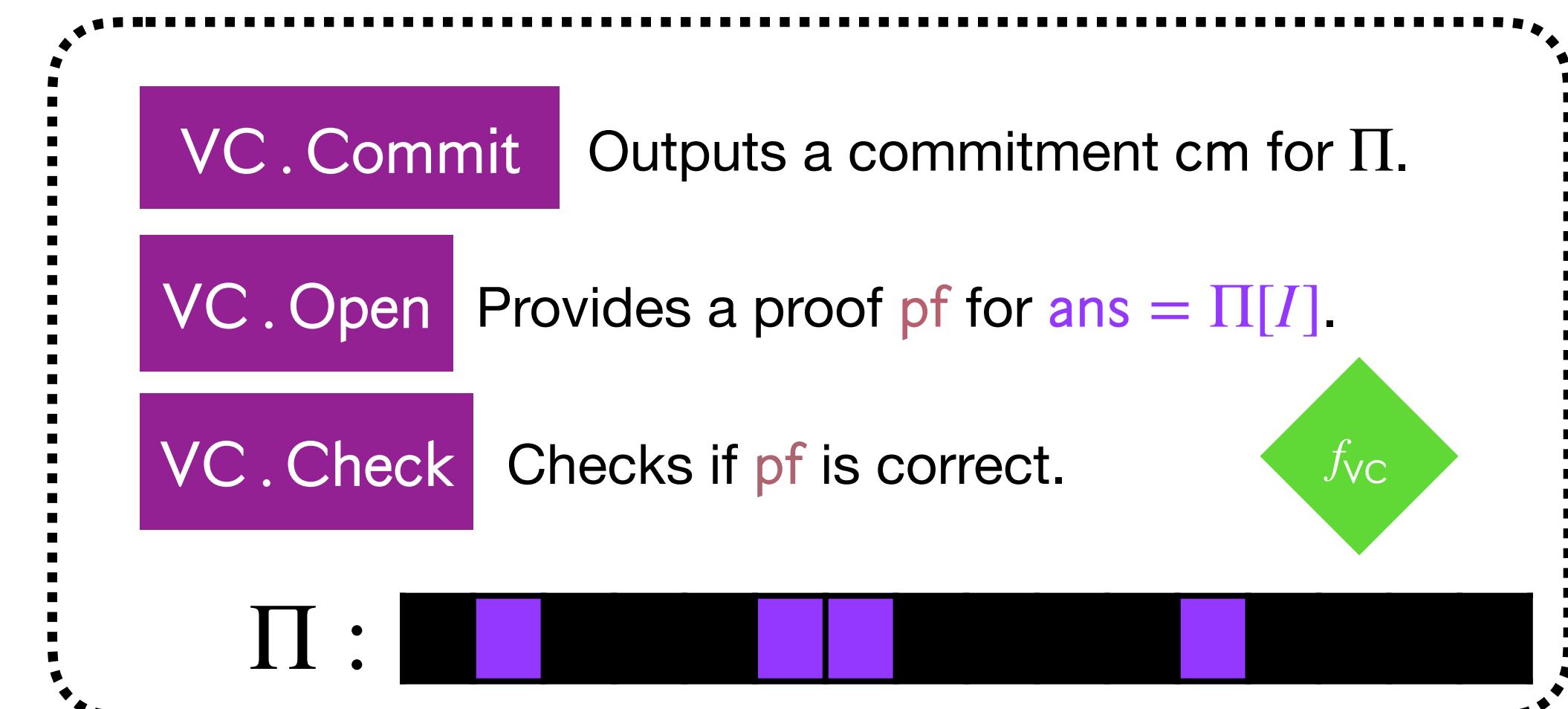
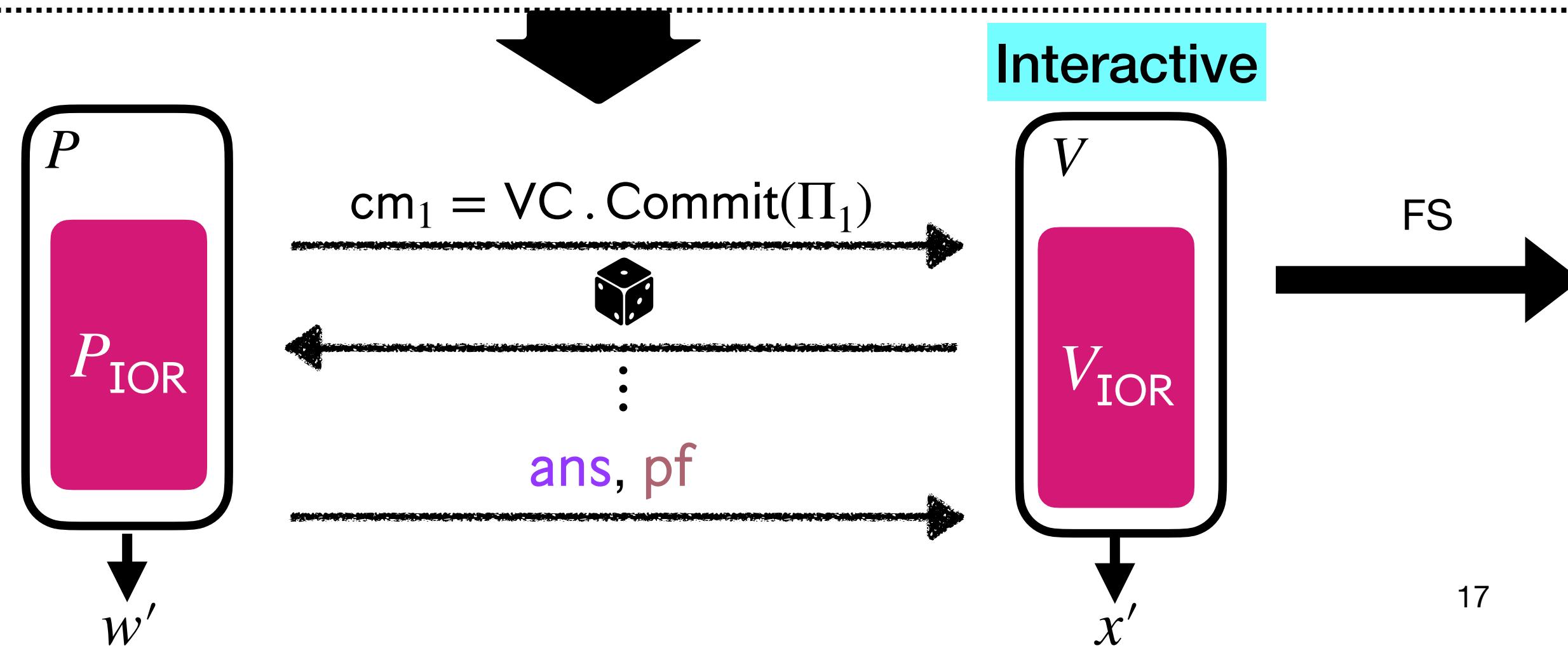
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



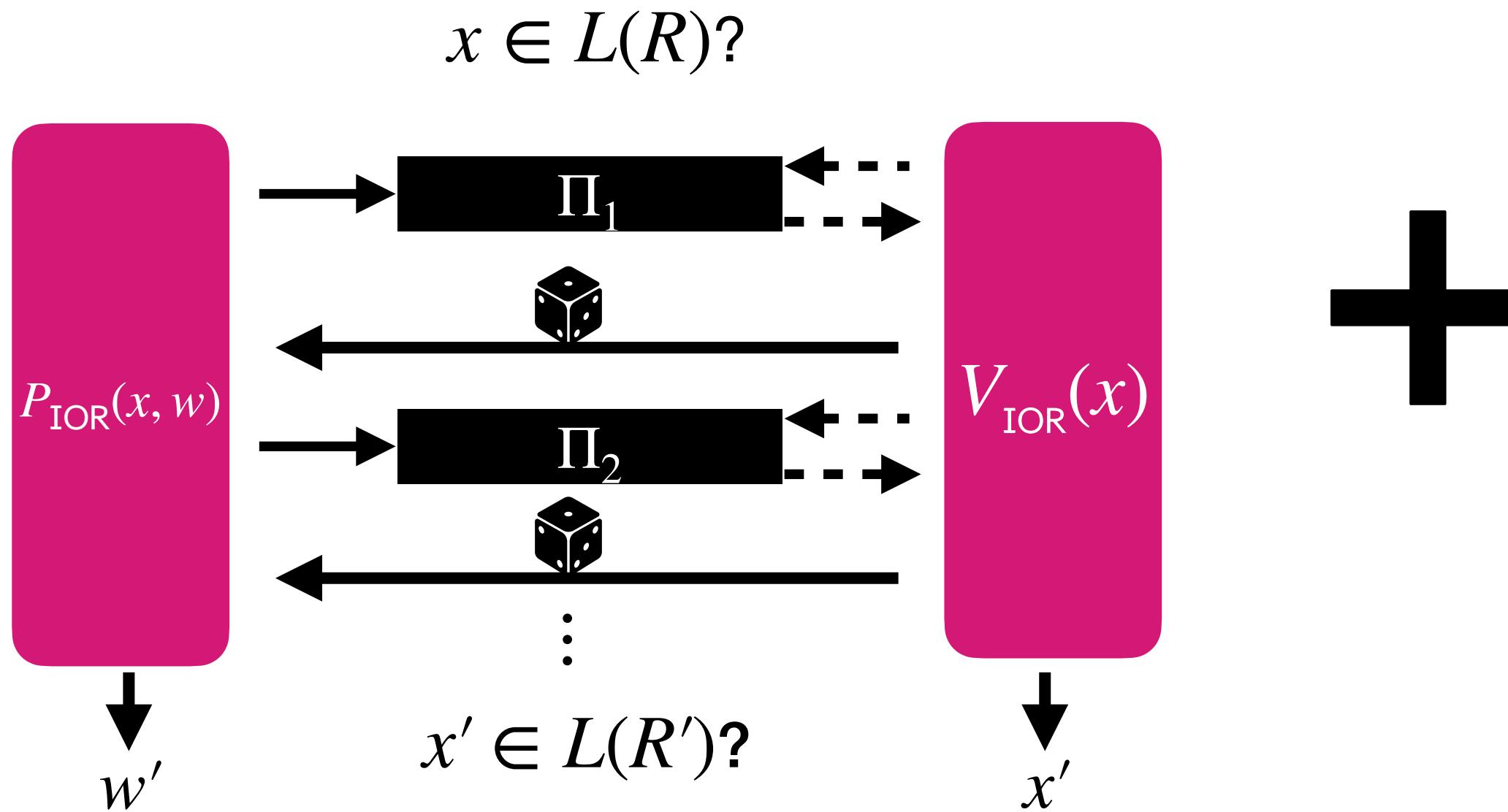
Ingredient #2: Vector commitment scheme (VC)



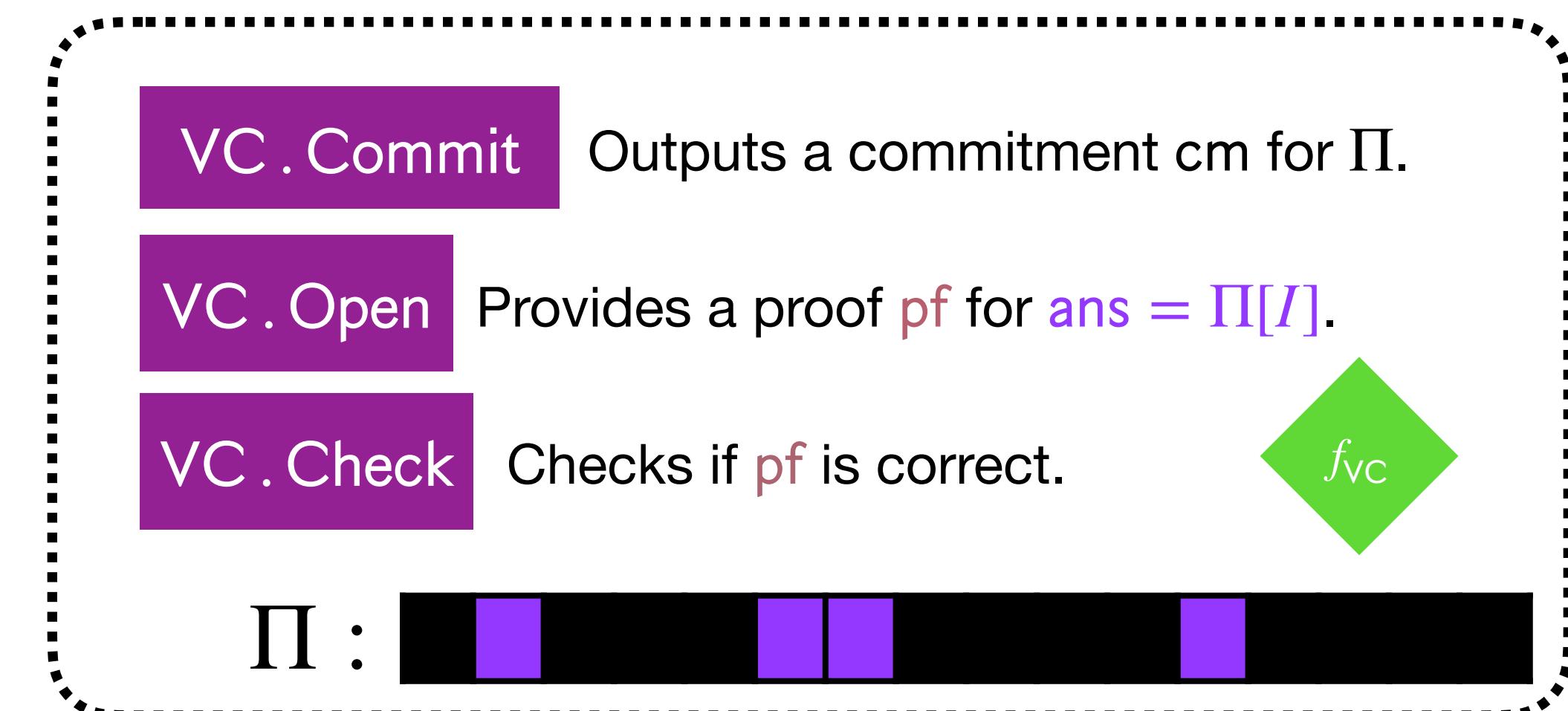
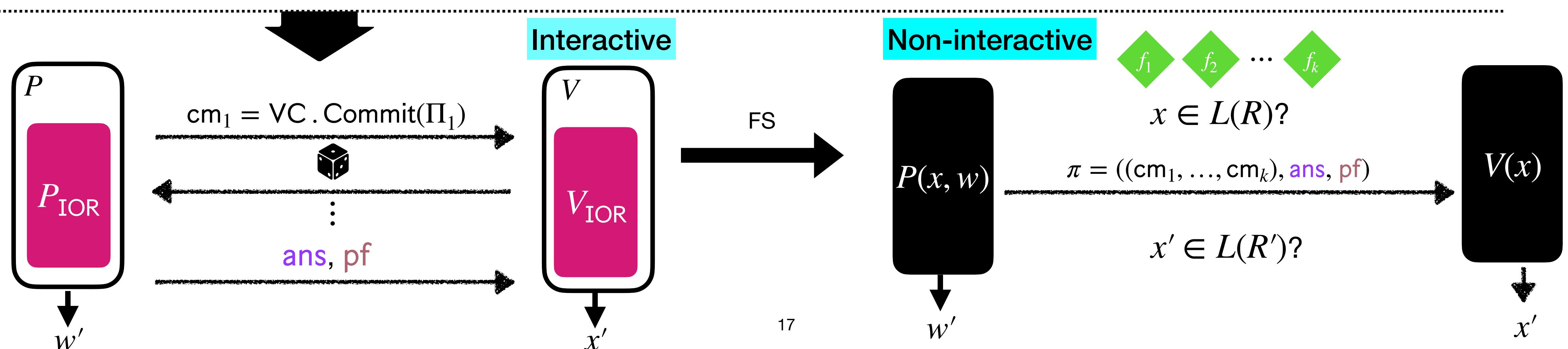
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)



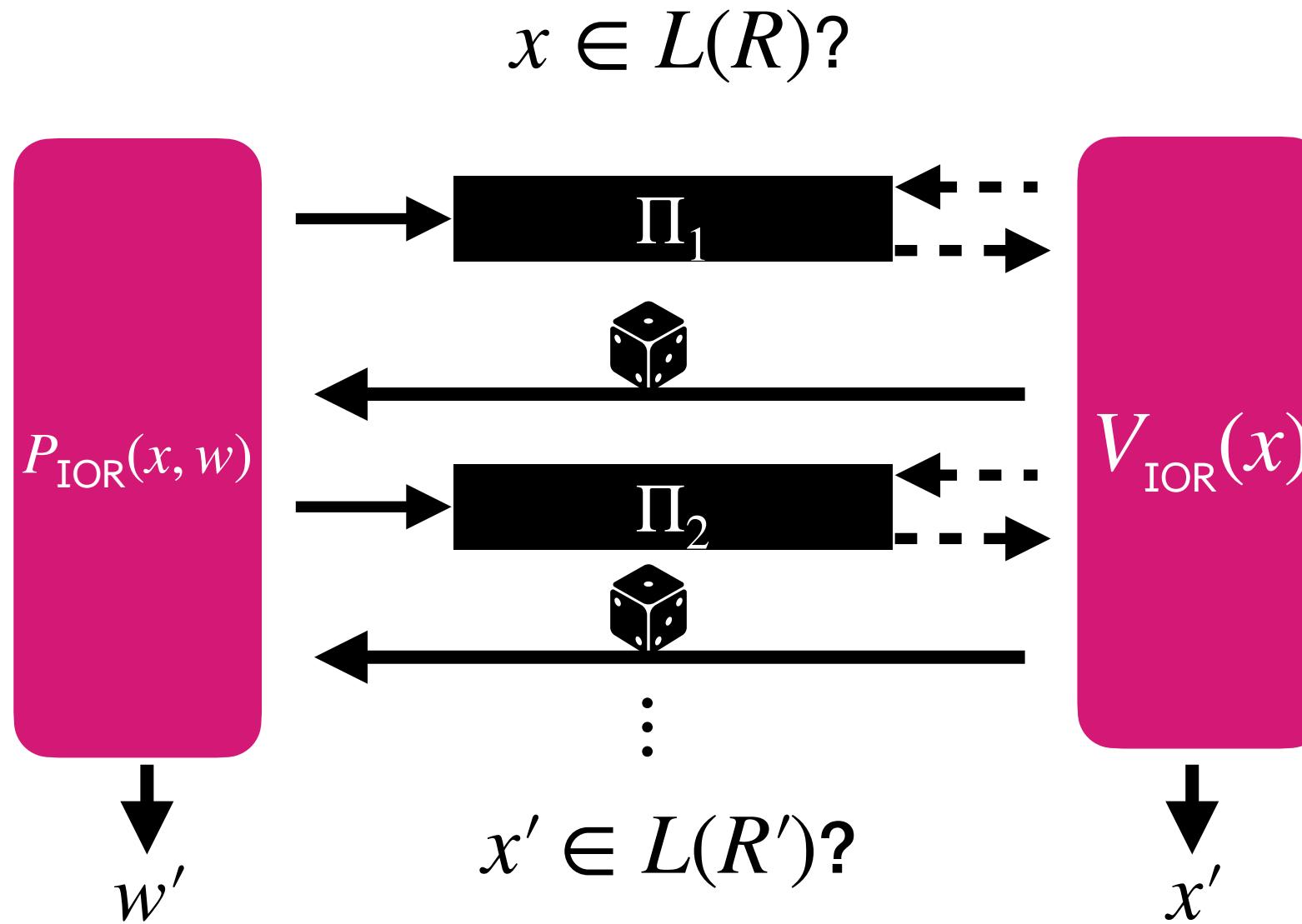
Ingredient #2: Vector commitment scheme (VC)



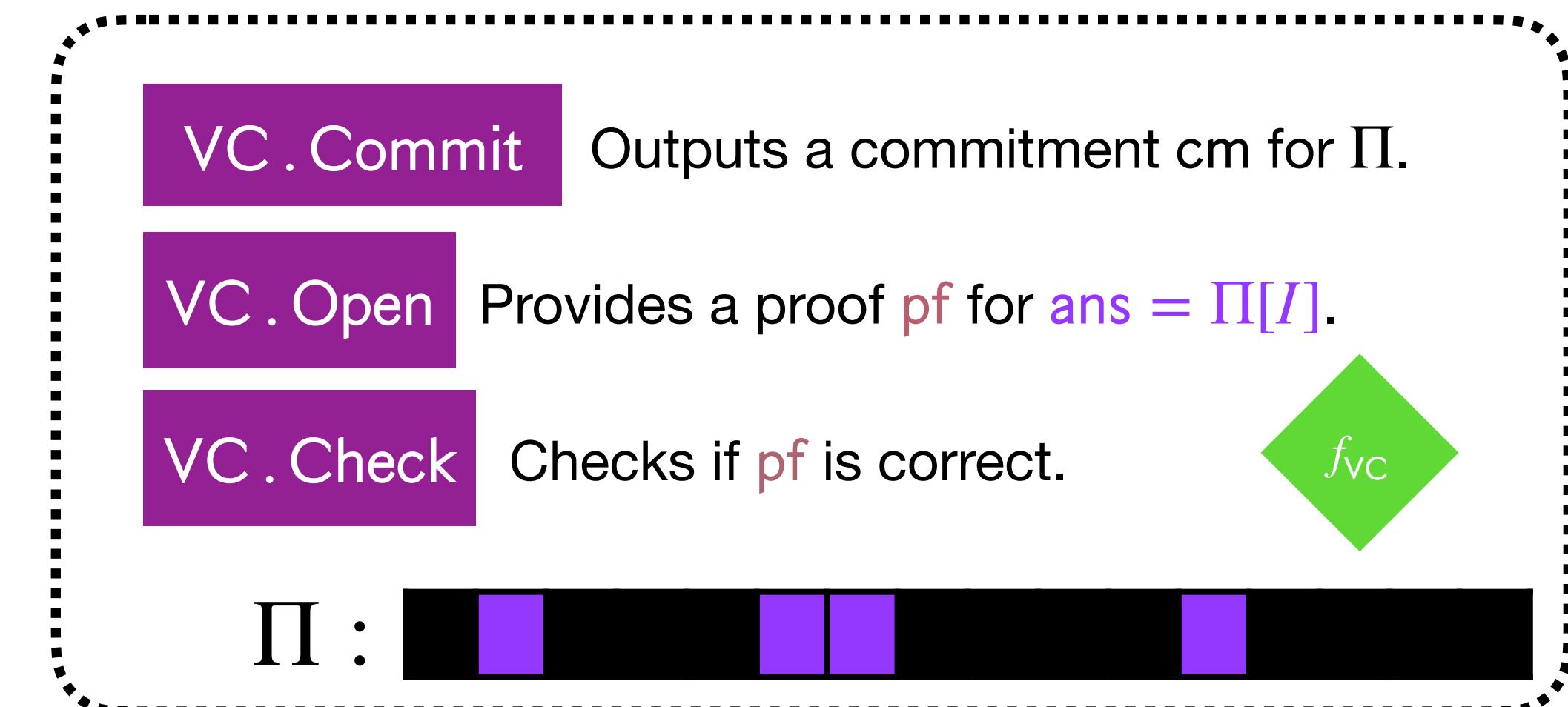
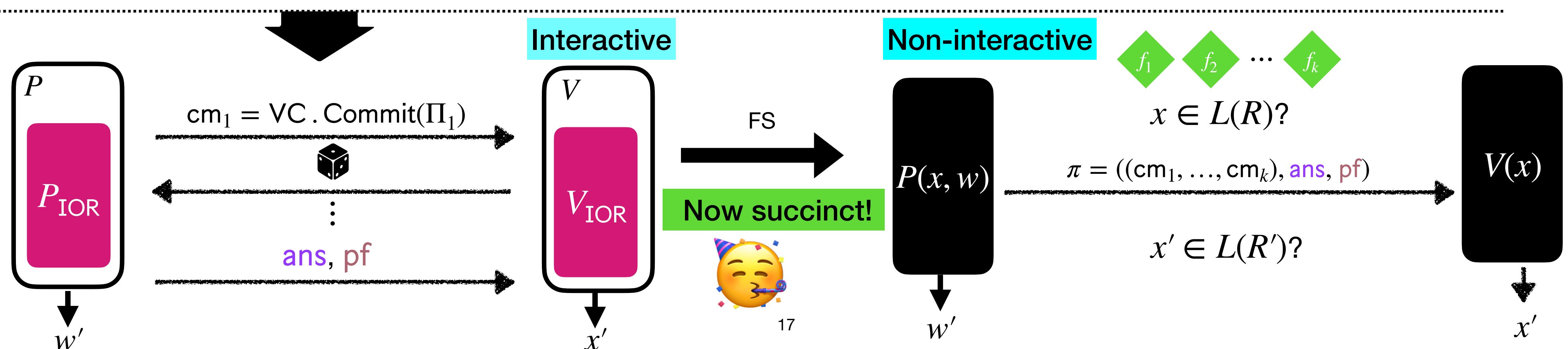
Review: the BCS protocol for IOR

an abstraction of MT

Ingredient #1: Interactive oracle reduction (IOR)

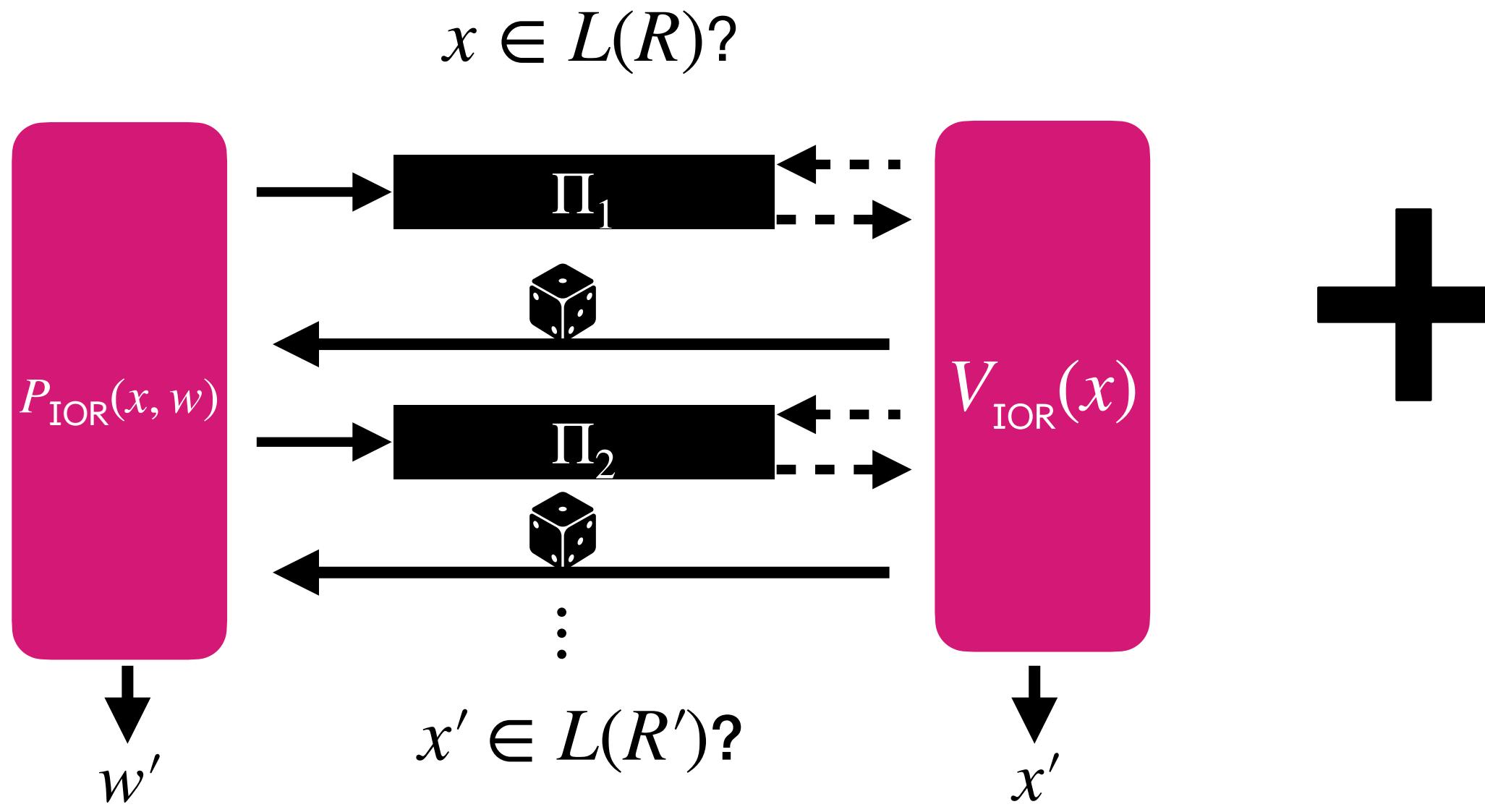


Ingredient #2: Vector commitment scheme (VC)

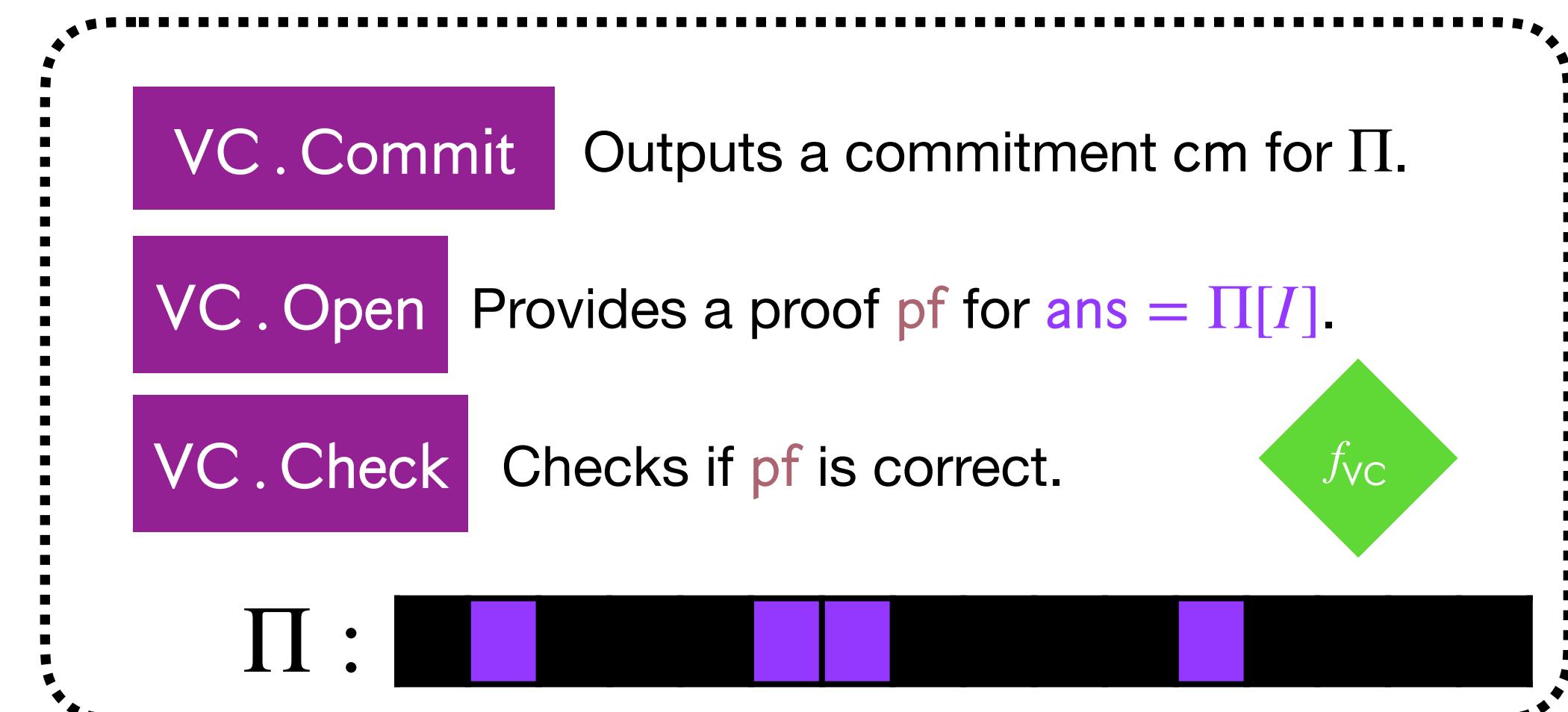
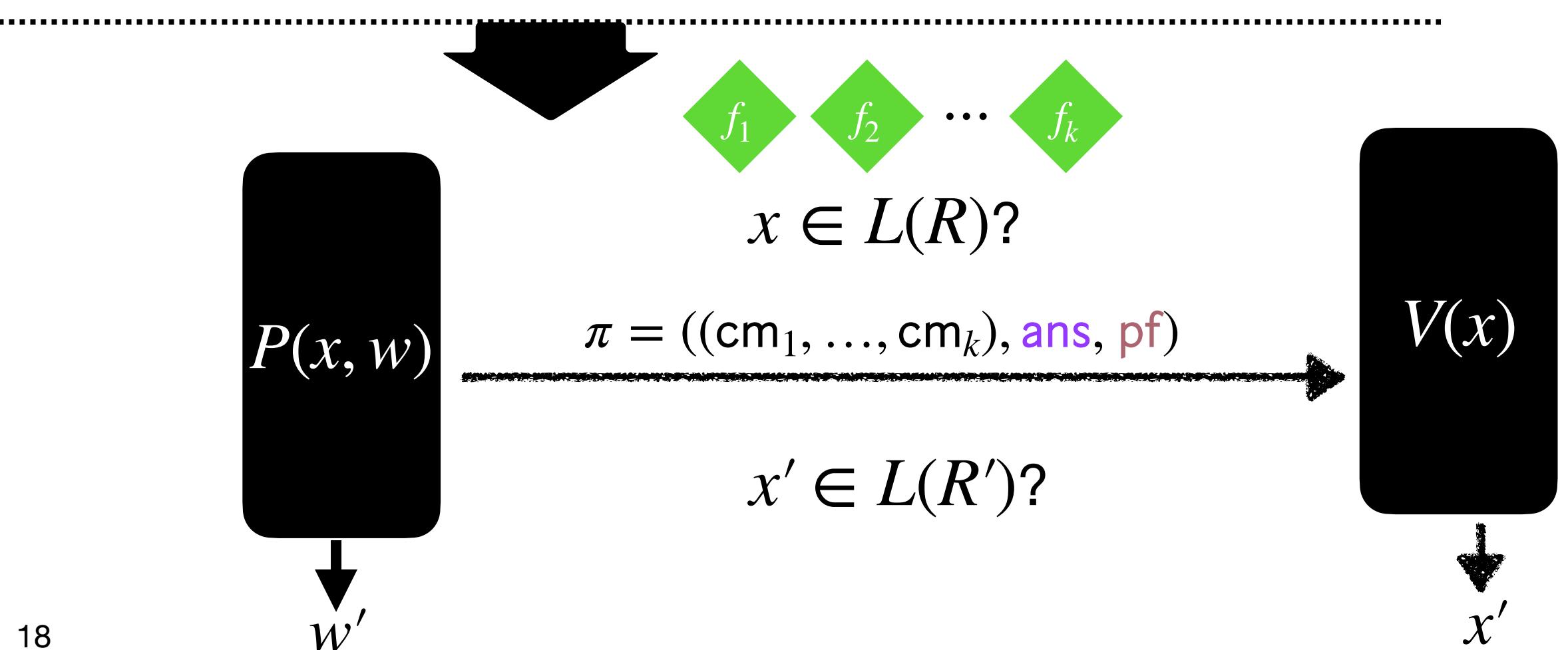


BCS[IOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)

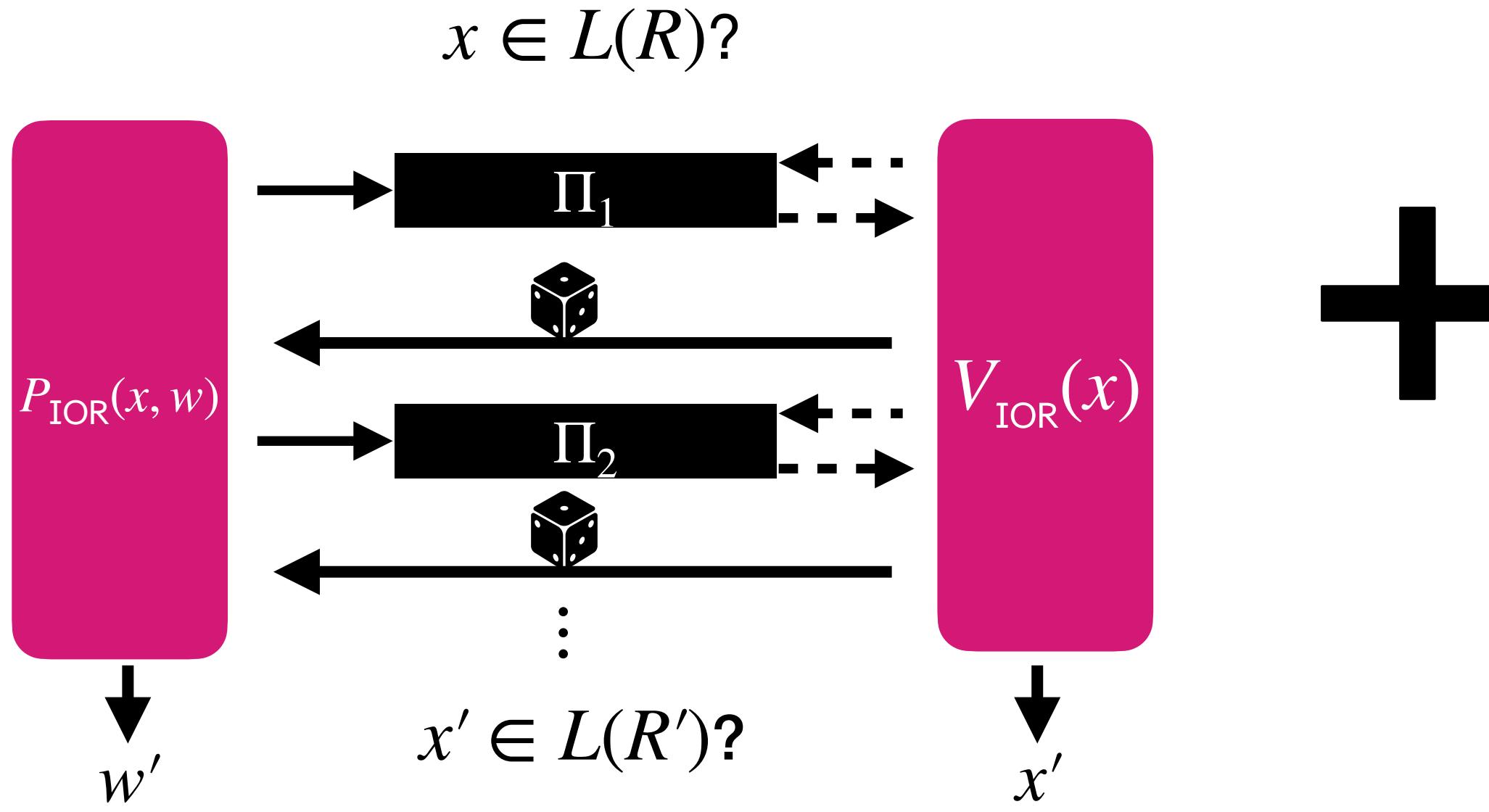


Ingredient #2: Vector commitment scheme (VC)

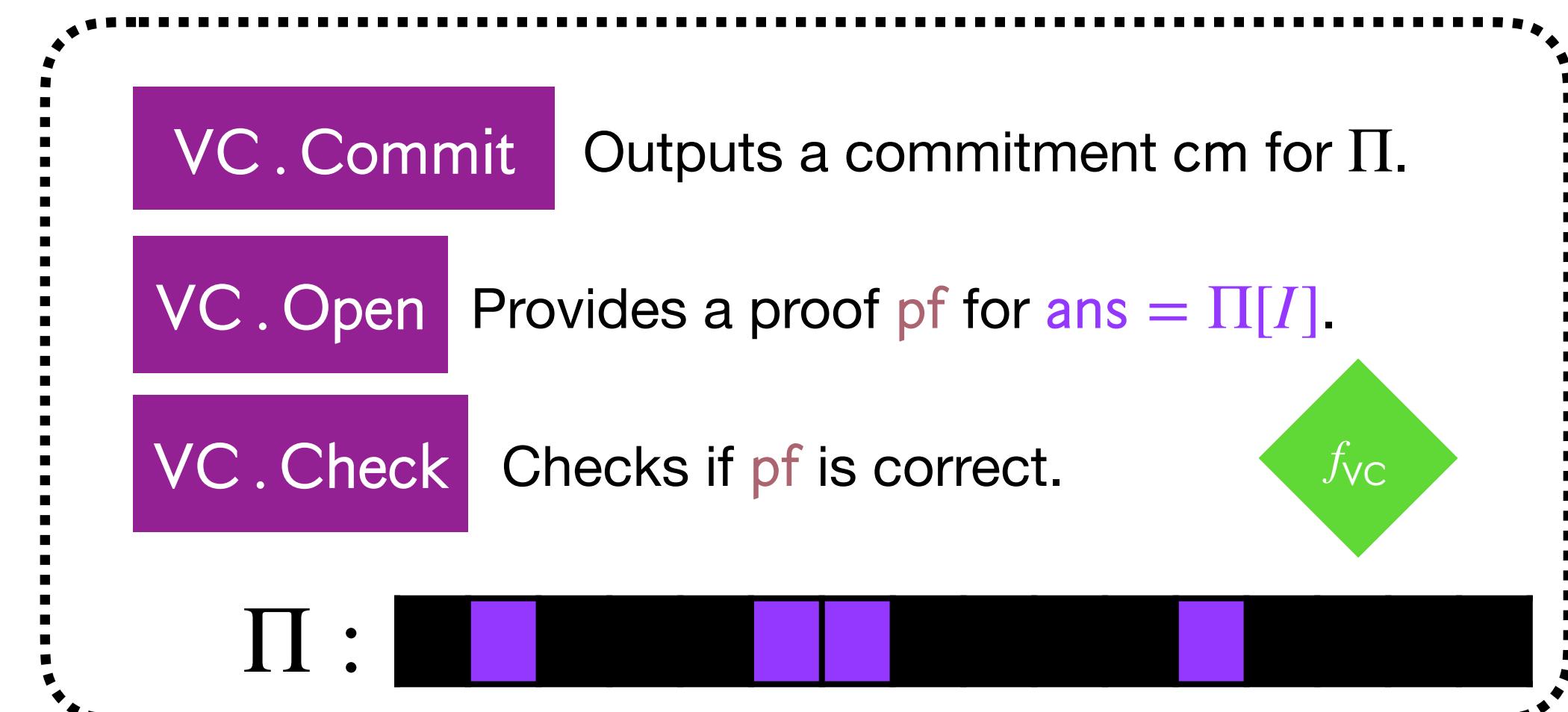


BCS[IOR, VC]

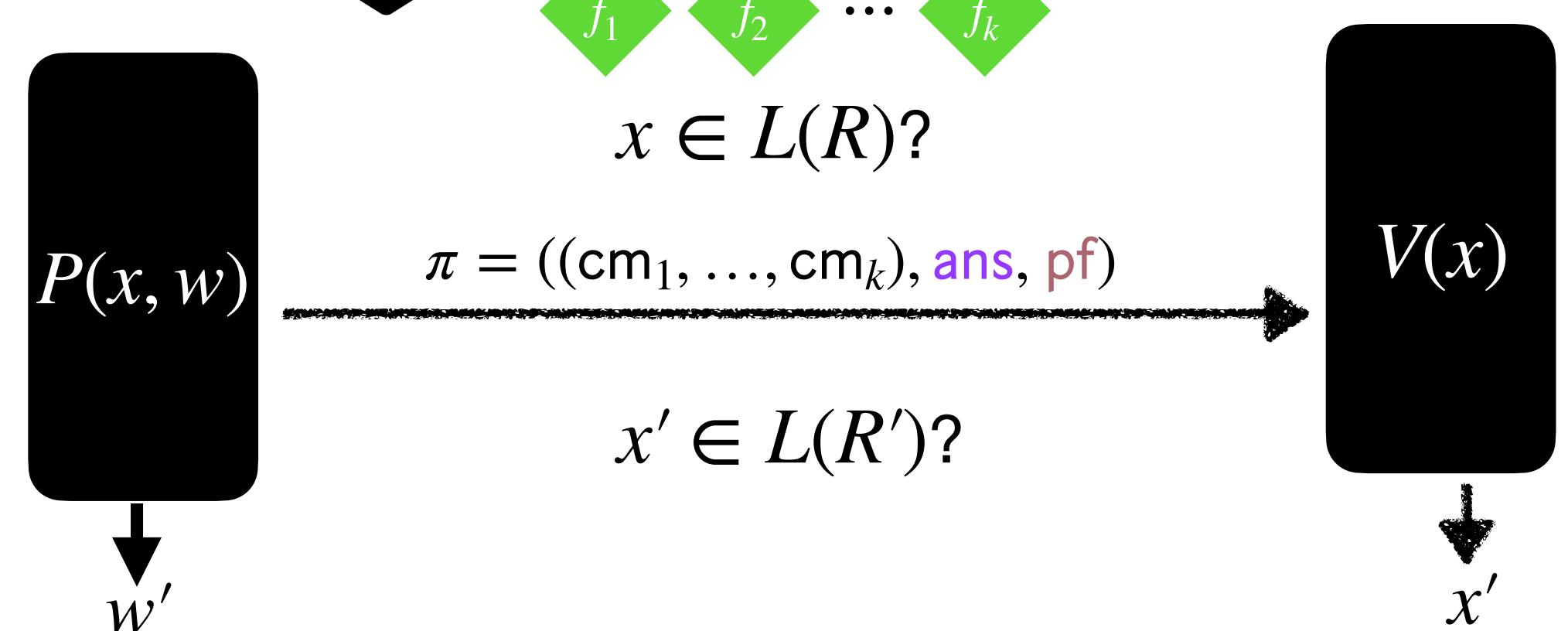
Ingredient #1: Interactive oracle reduction (IOR)



Ingredient #2: Vector commitment scheme (VC)

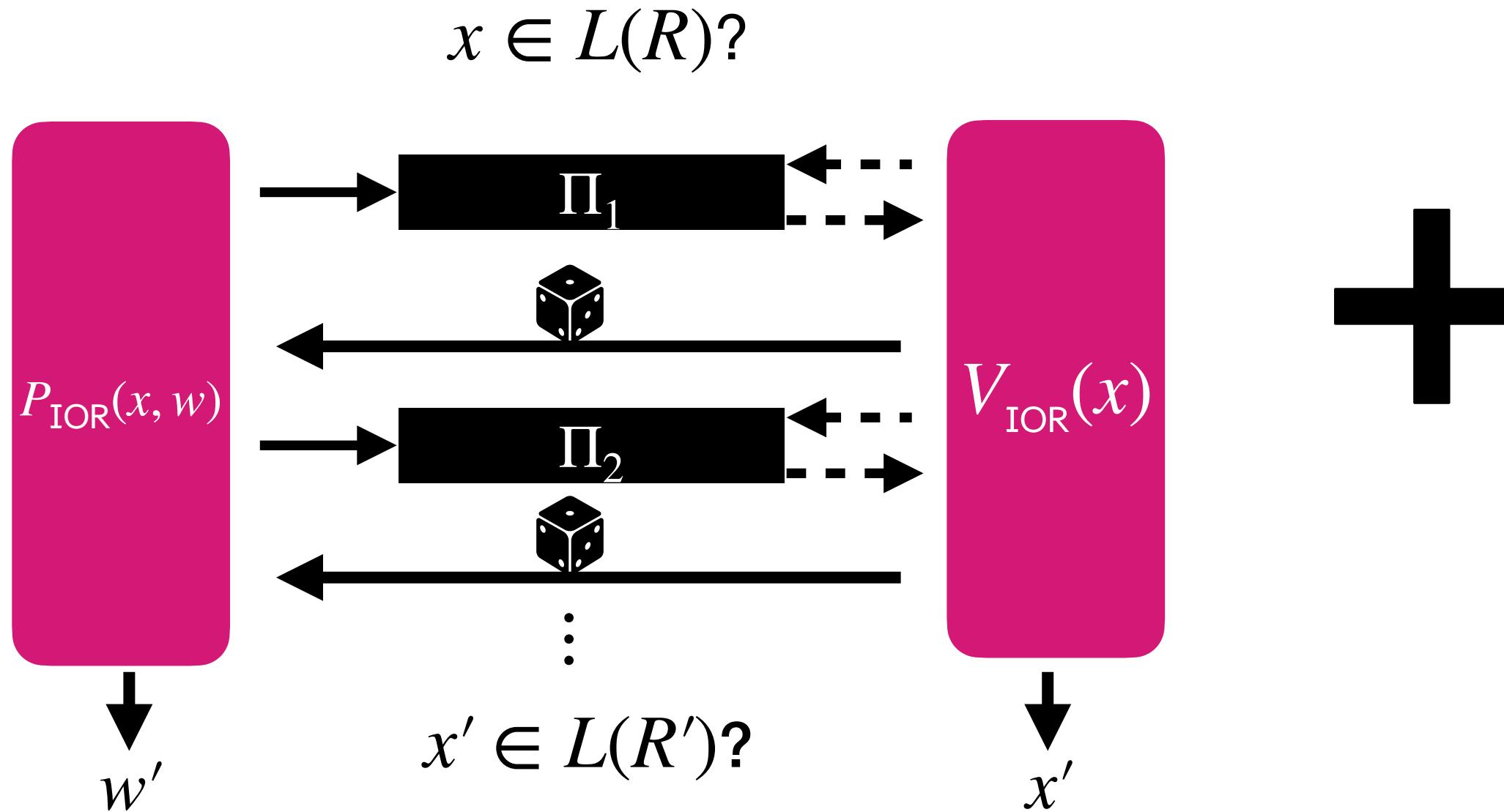


Two potential attacks to BCS[IOR, VC]:

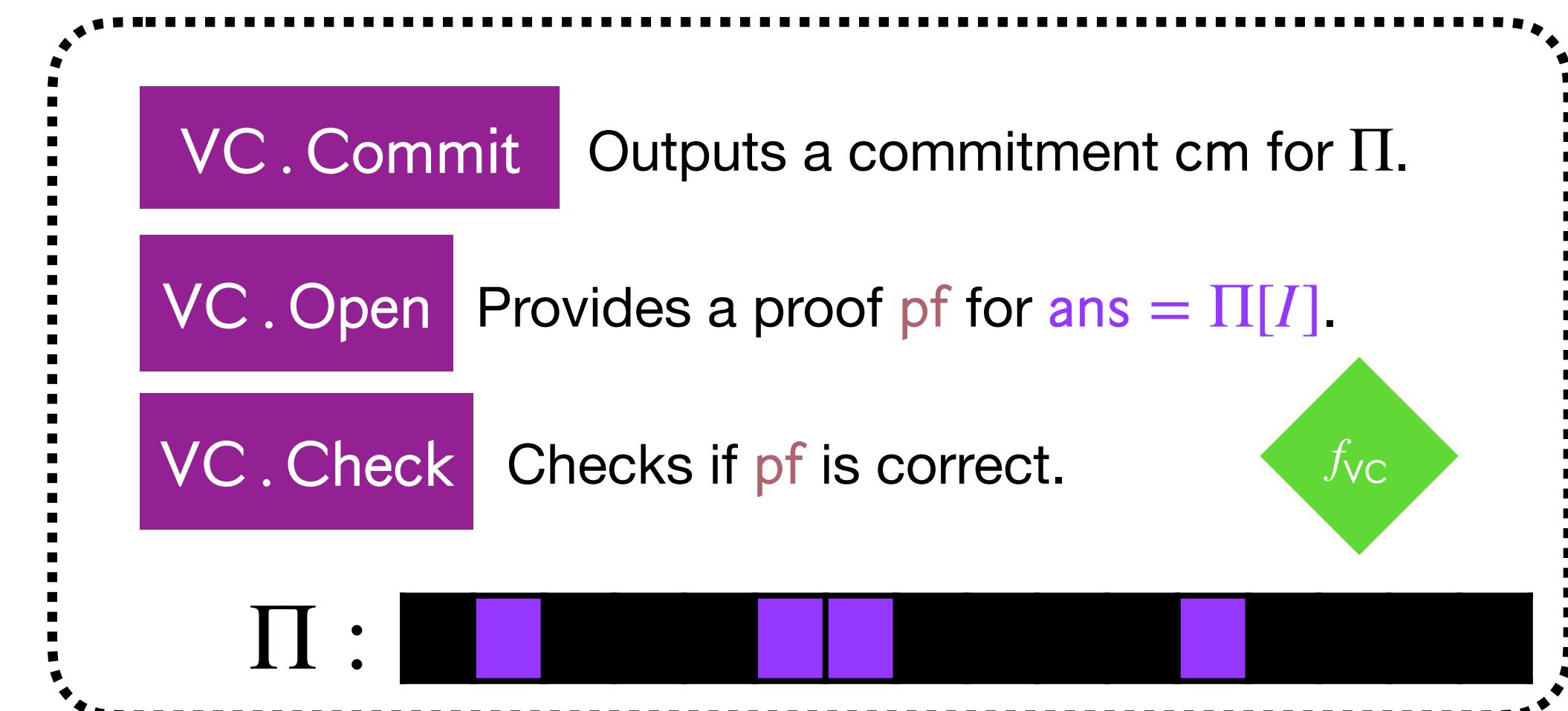


BCS[IOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)

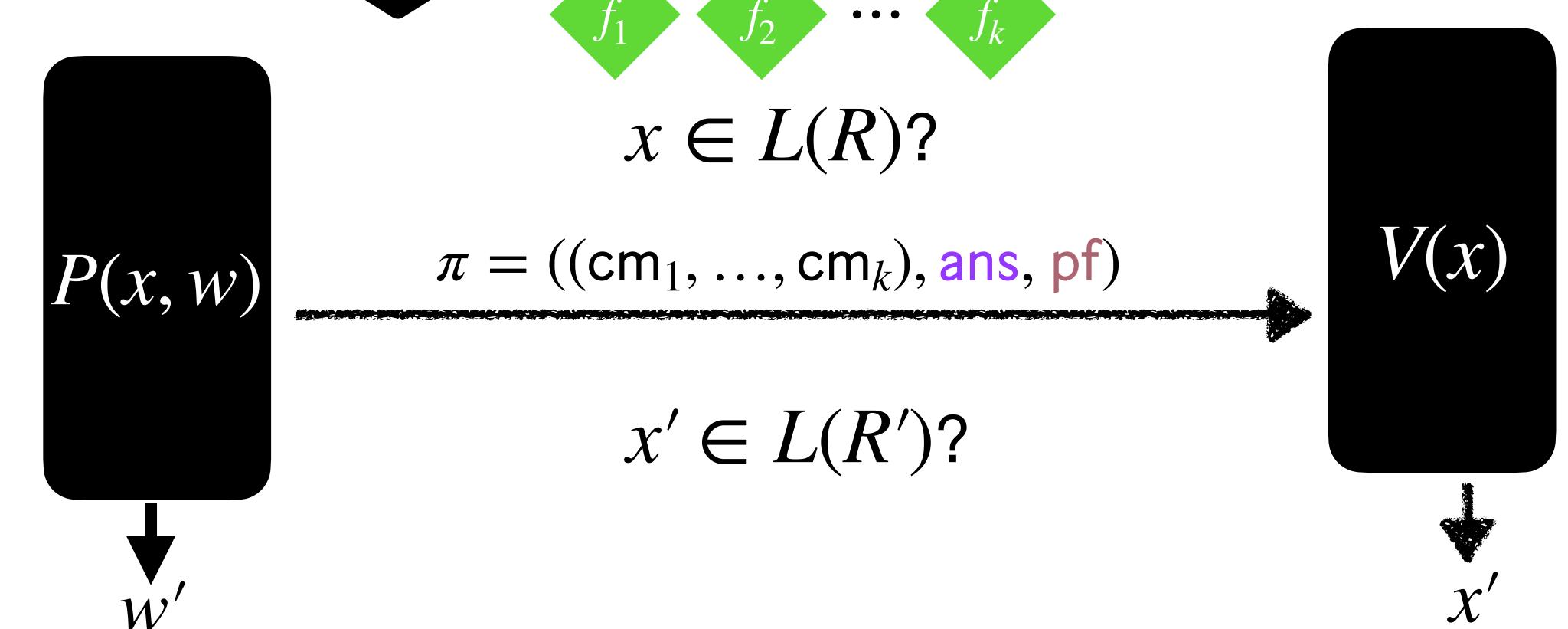


Ingredient #2: Vector commitment scheme (VC)



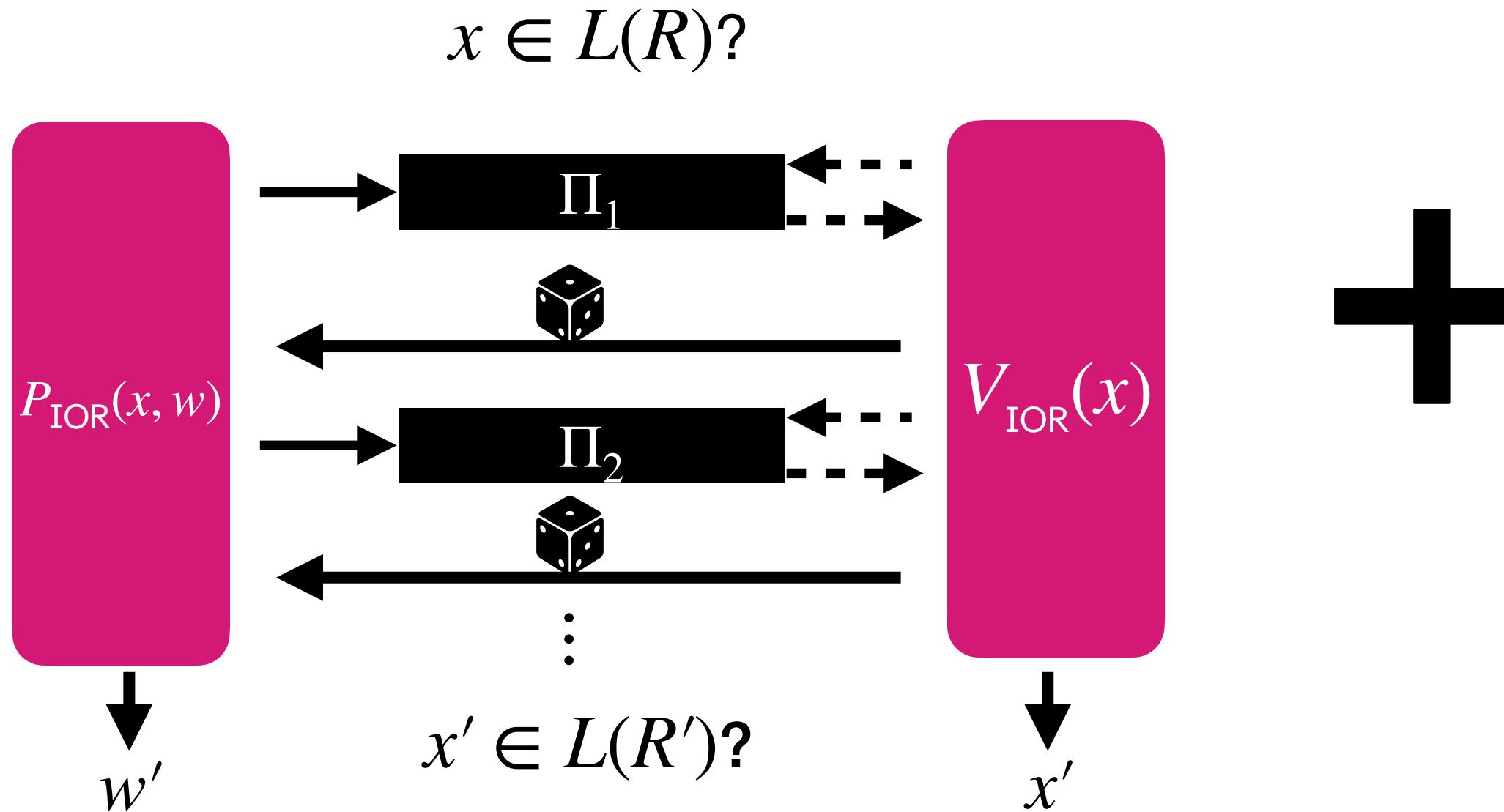
Two potential attacks to BCS[IOR, VC]:

1. \tilde{P} can query f_1, f_2, \dots, f_k many times to get dice that makes V_{IOR} output $x' \in L(R')$.

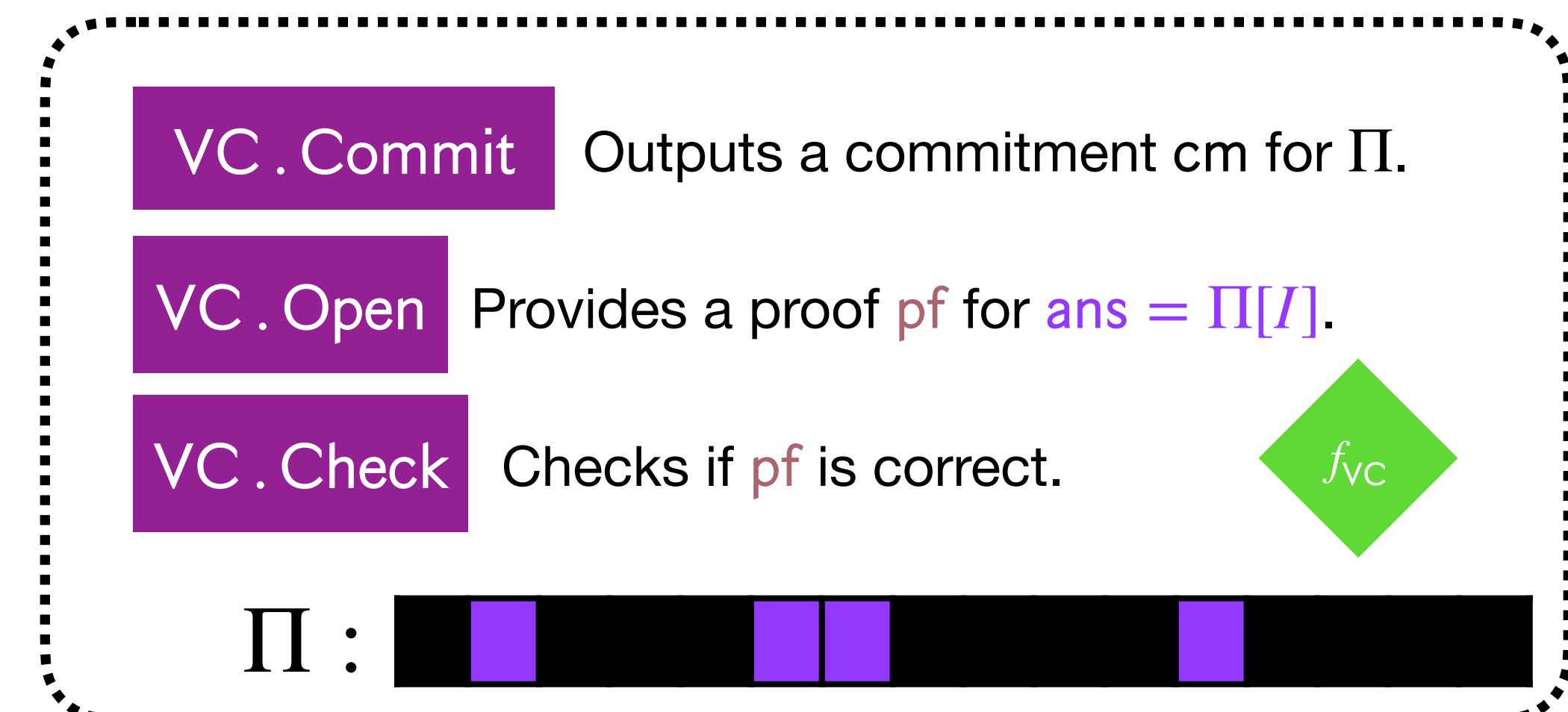


BCS[IOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)

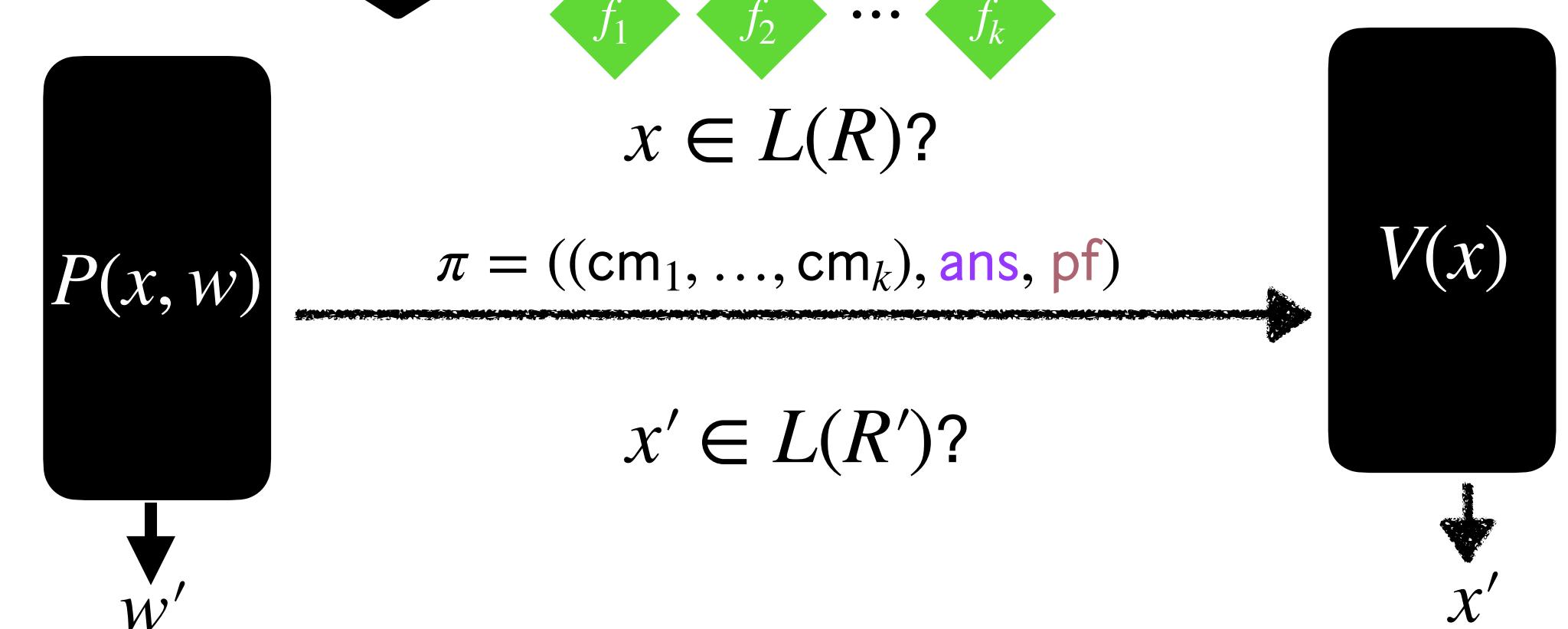


Ingredient #2: Vector commitment scheme (VC)



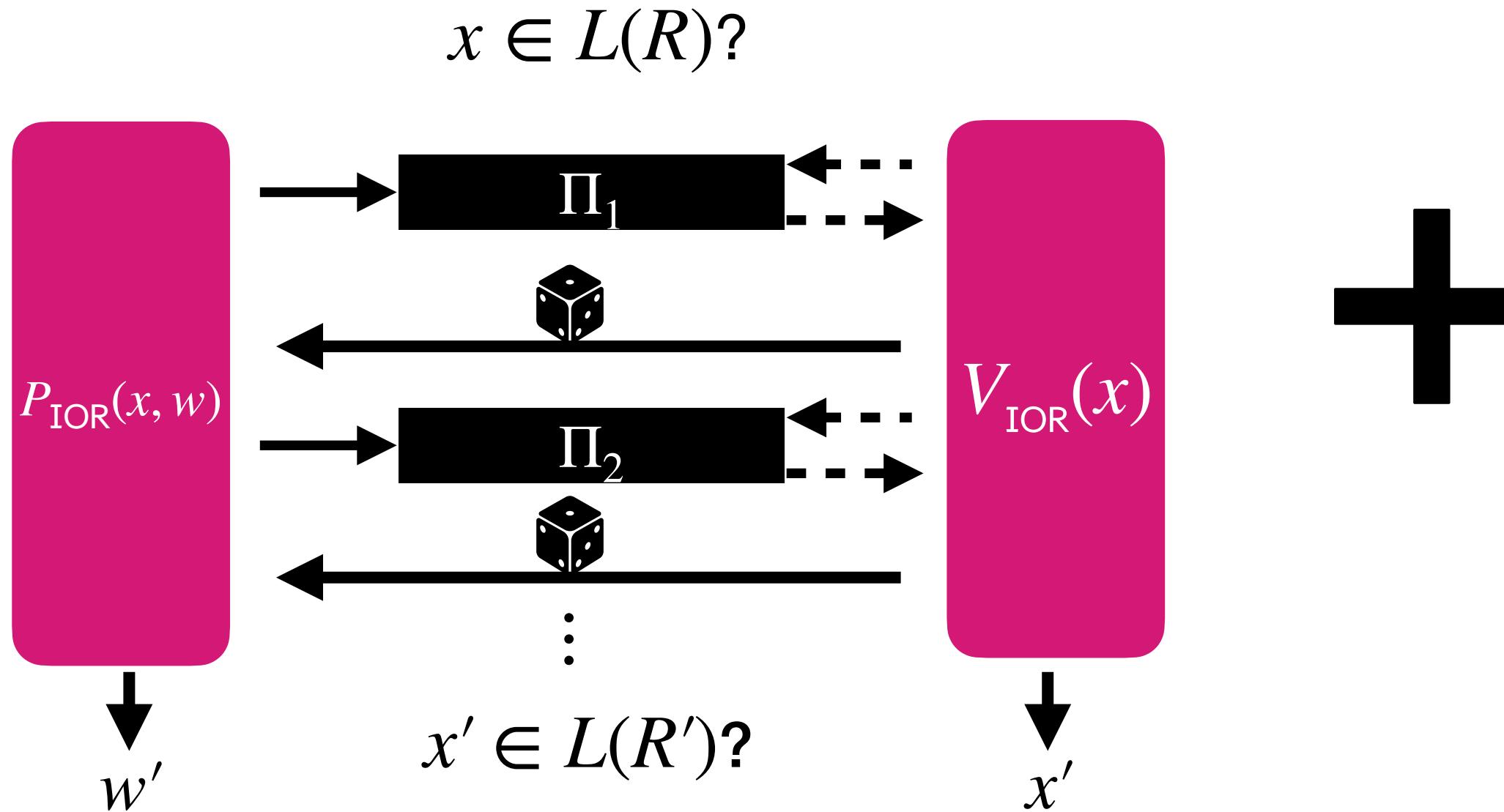
Two potential attacks to BCS[IOR, VC]:

1. \tilde{P} can query f_1, f_2, \dots, f_k many times to get \diamond that makes V_{IOR} output $x' \in L(R')$.
2. \tilde{P} can attack **VC** (e.g. use inconsistent ans).

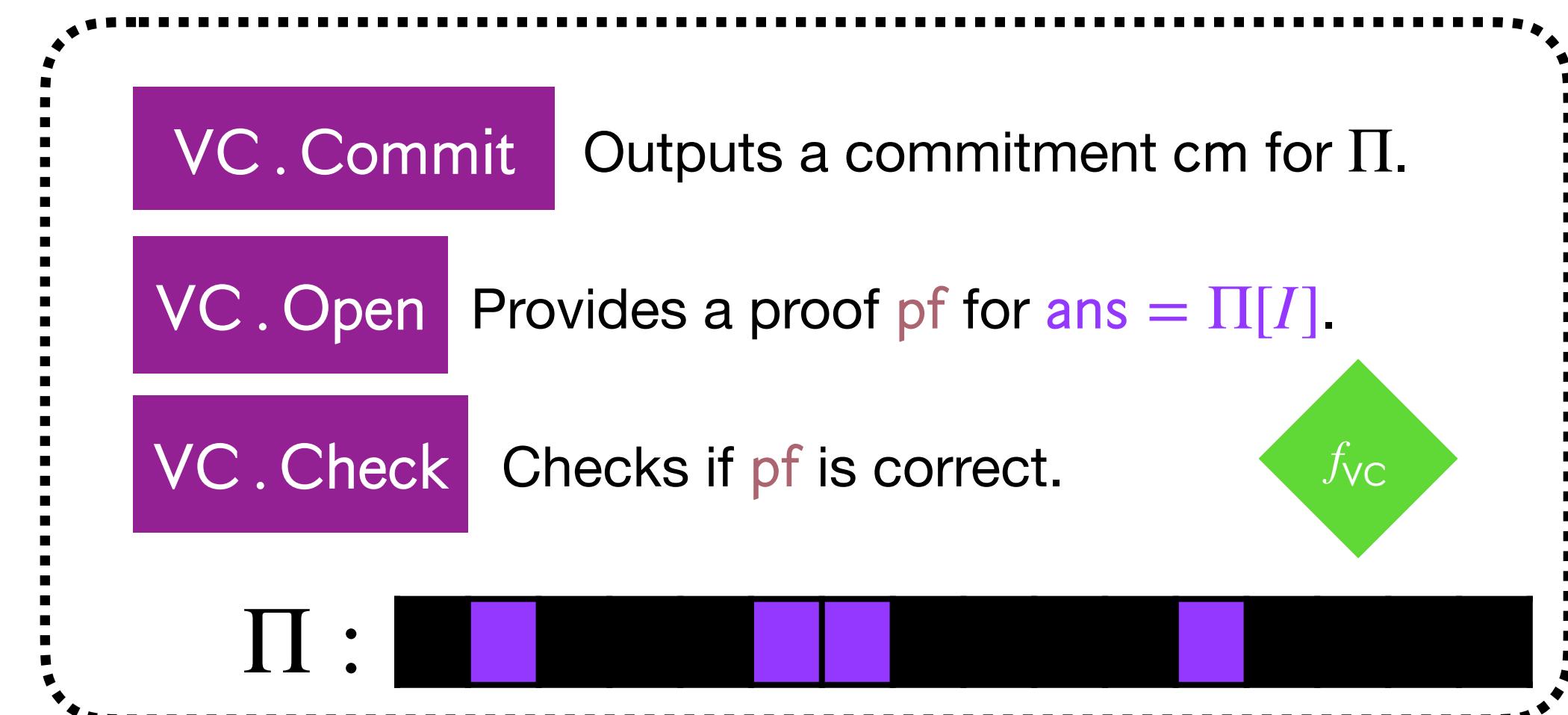


BCS[IOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)



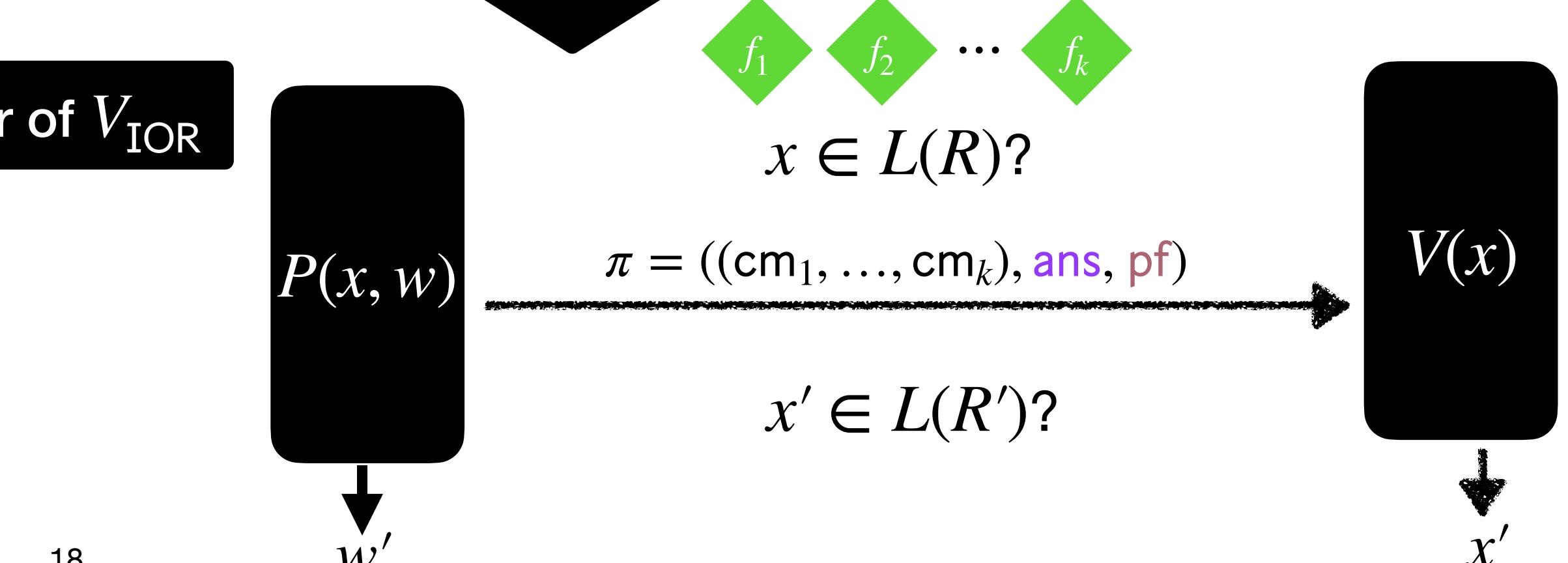
Ingredient #2: Vector commitment scheme (VC)



Two potential attacks to BCS[IOR, VC]:

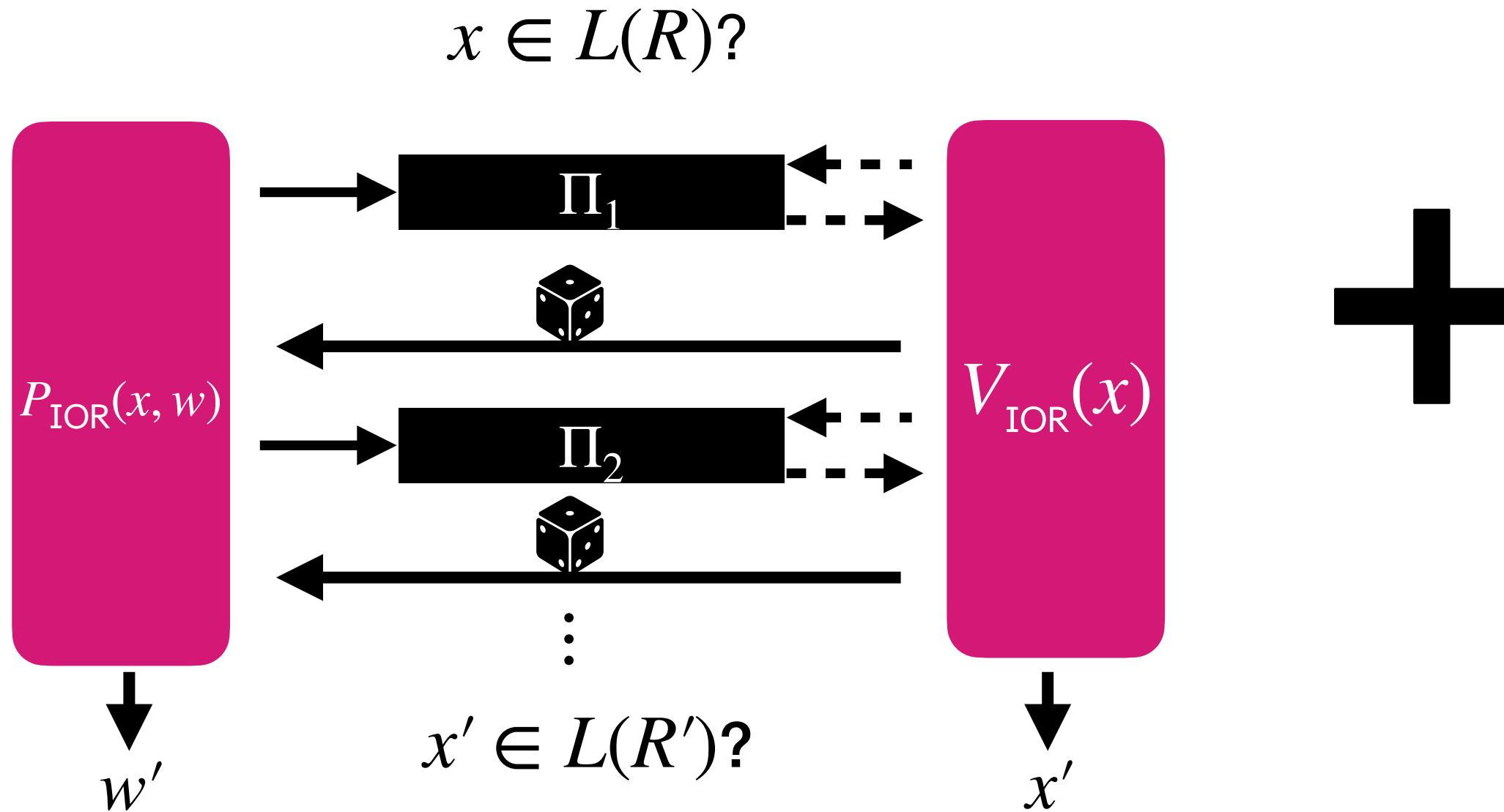
1. \tilde{P} can query f_1, f_2, \dots, f_k many times to get dice that makes V_{IOR} output $x' \in L(R')$.
2. \tilde{P} can attack VC (e.g. use inconsistent ans).

FS error of V_{IOR}

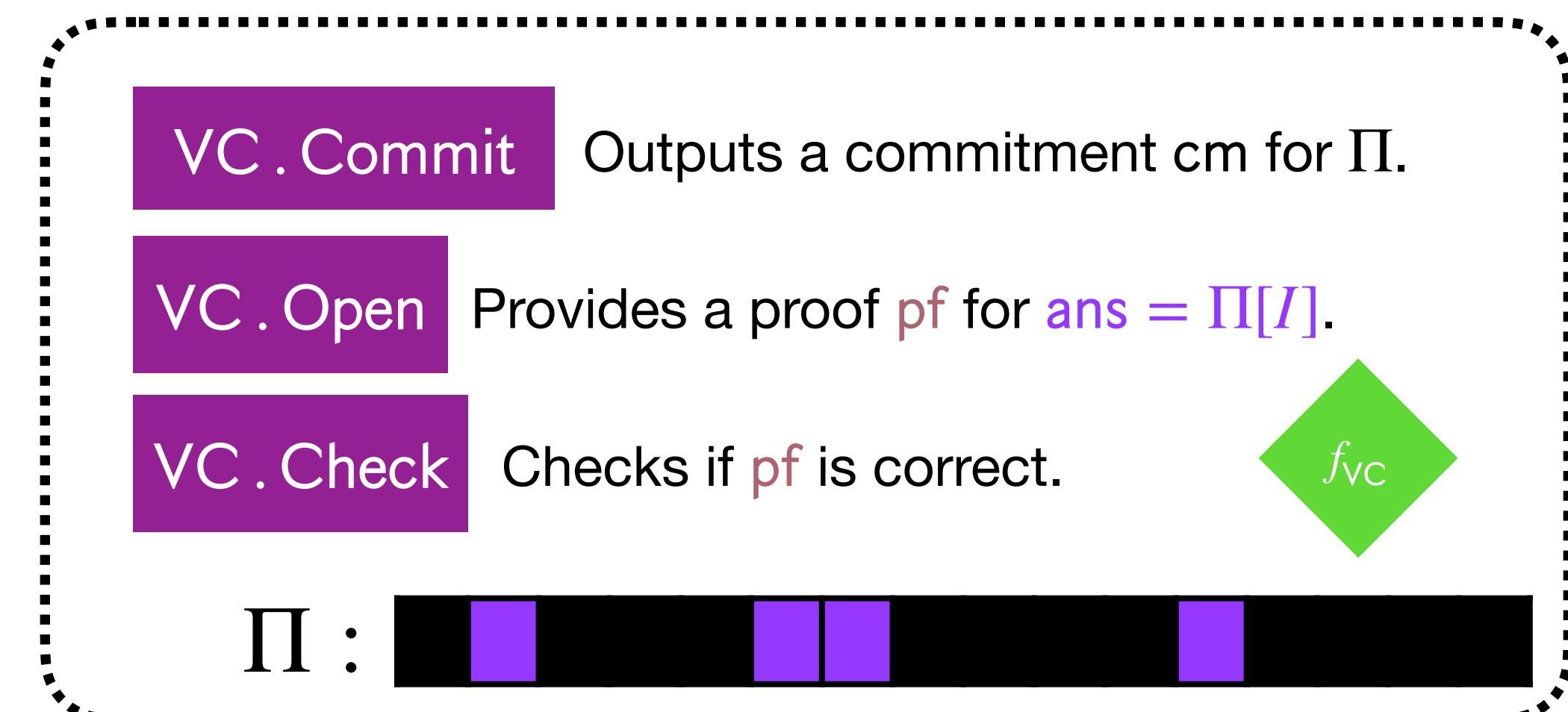


BCS[IOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)



Ingredient #2: Vector commitment scheme (VC)

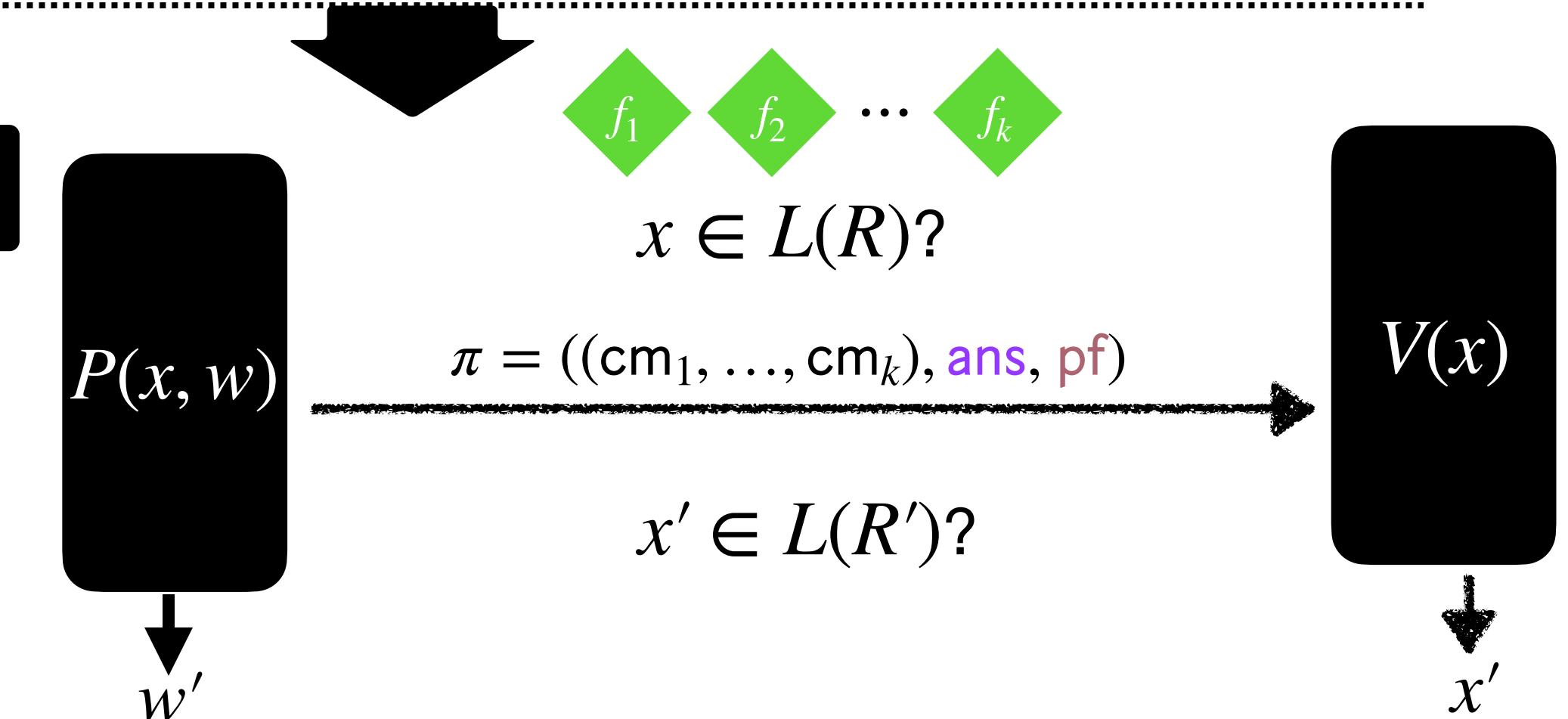


Two potential attacks to BCS[IOR, VC]:

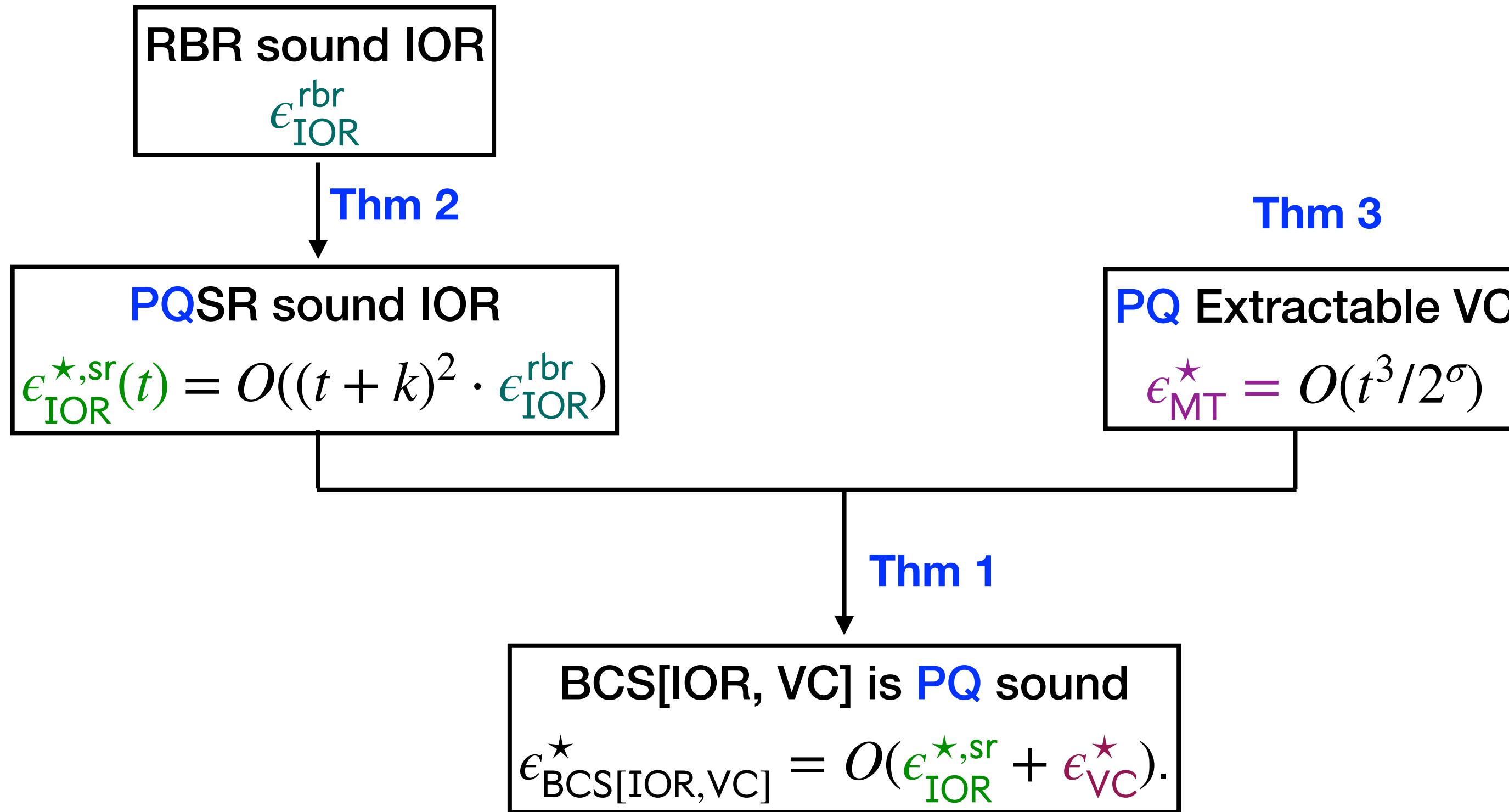
1. \tilde{P} can query $f_1 | f_2 | \dots | f_k$ many times to get dice that makes V_{IOR} output $x' \in L(R')$.
2. \tilde{P} can attack VC (e.g. use inconsistent ans).

FS error of V_{IOR}

VC error

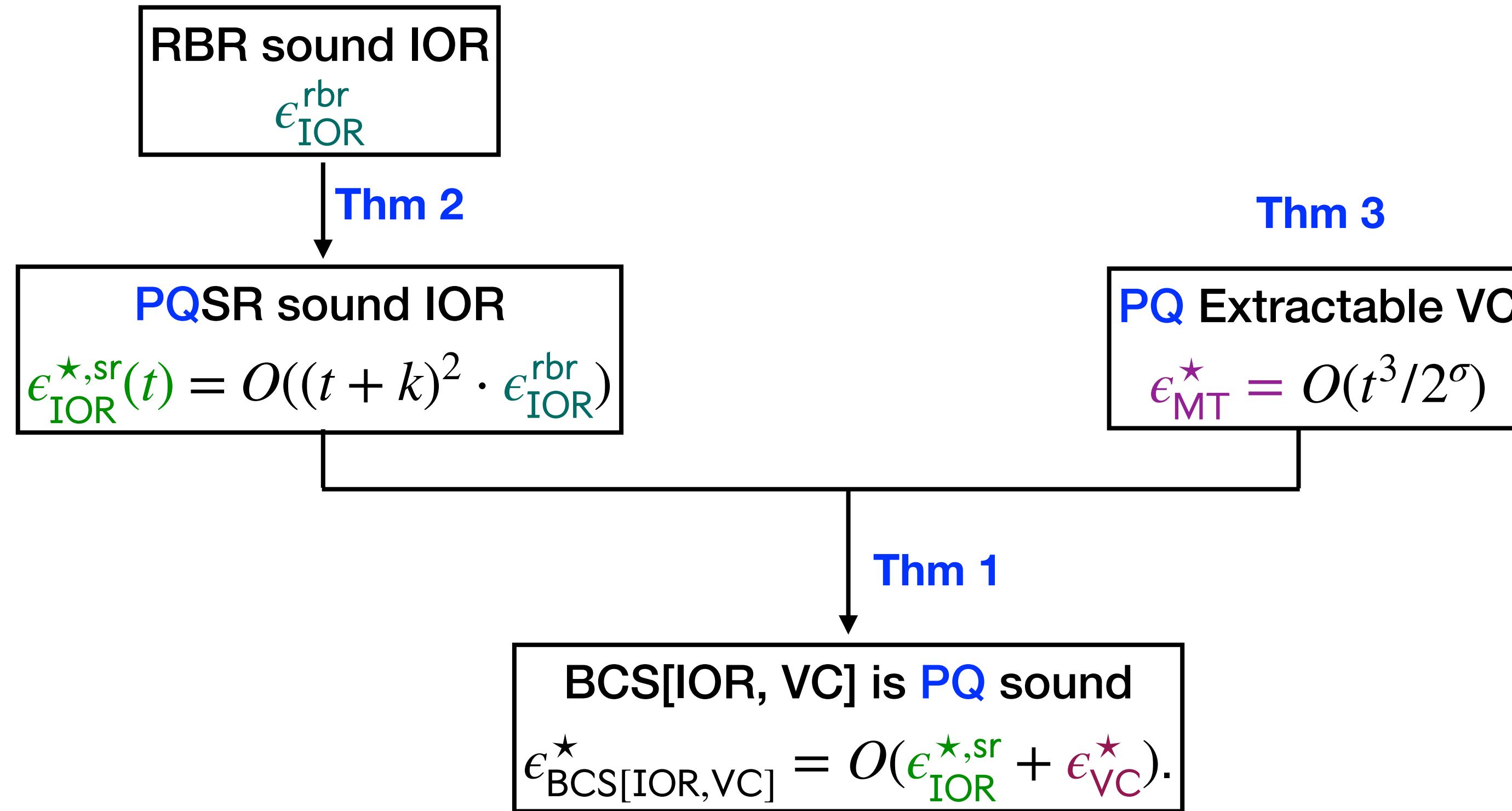


The role of state-restoration



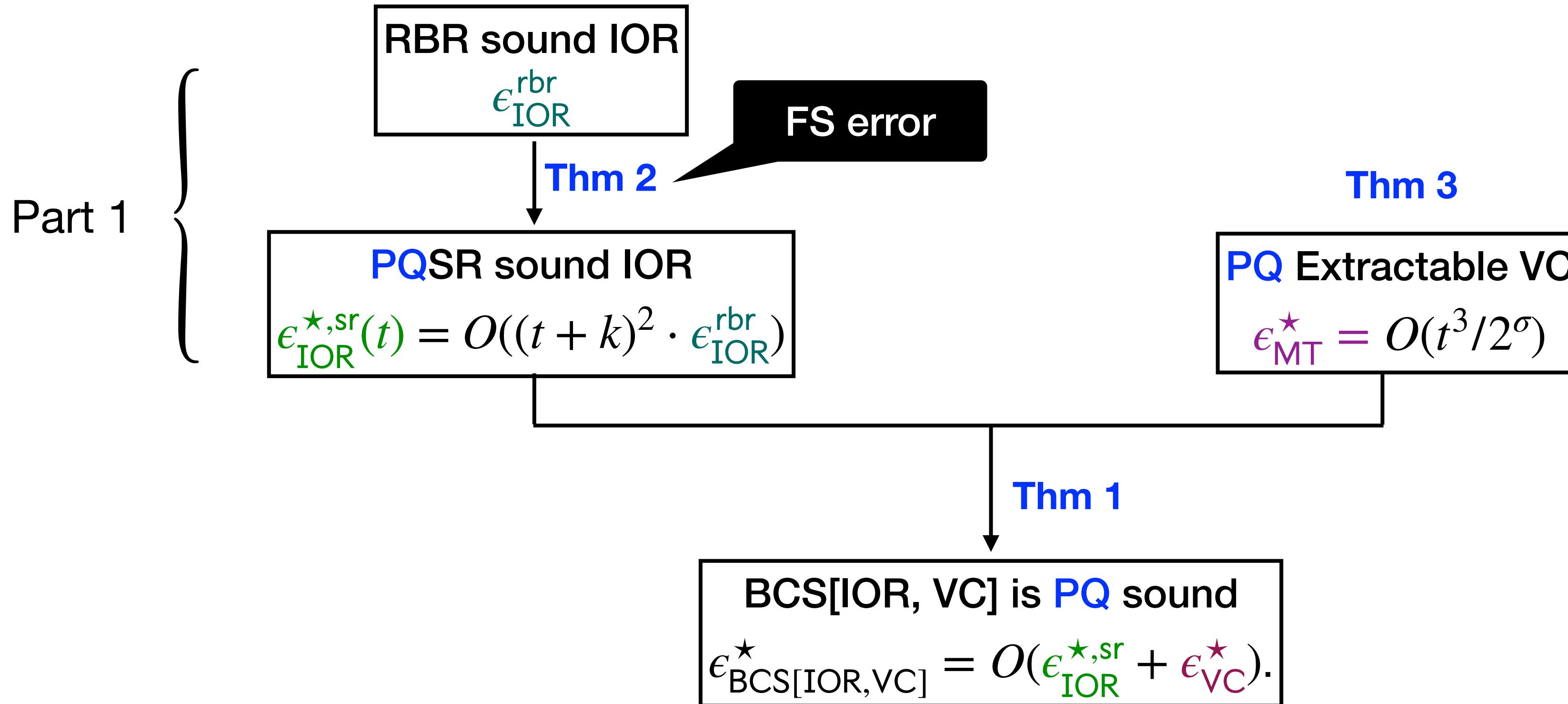
The role of state-restoration

Today's focus: soundness



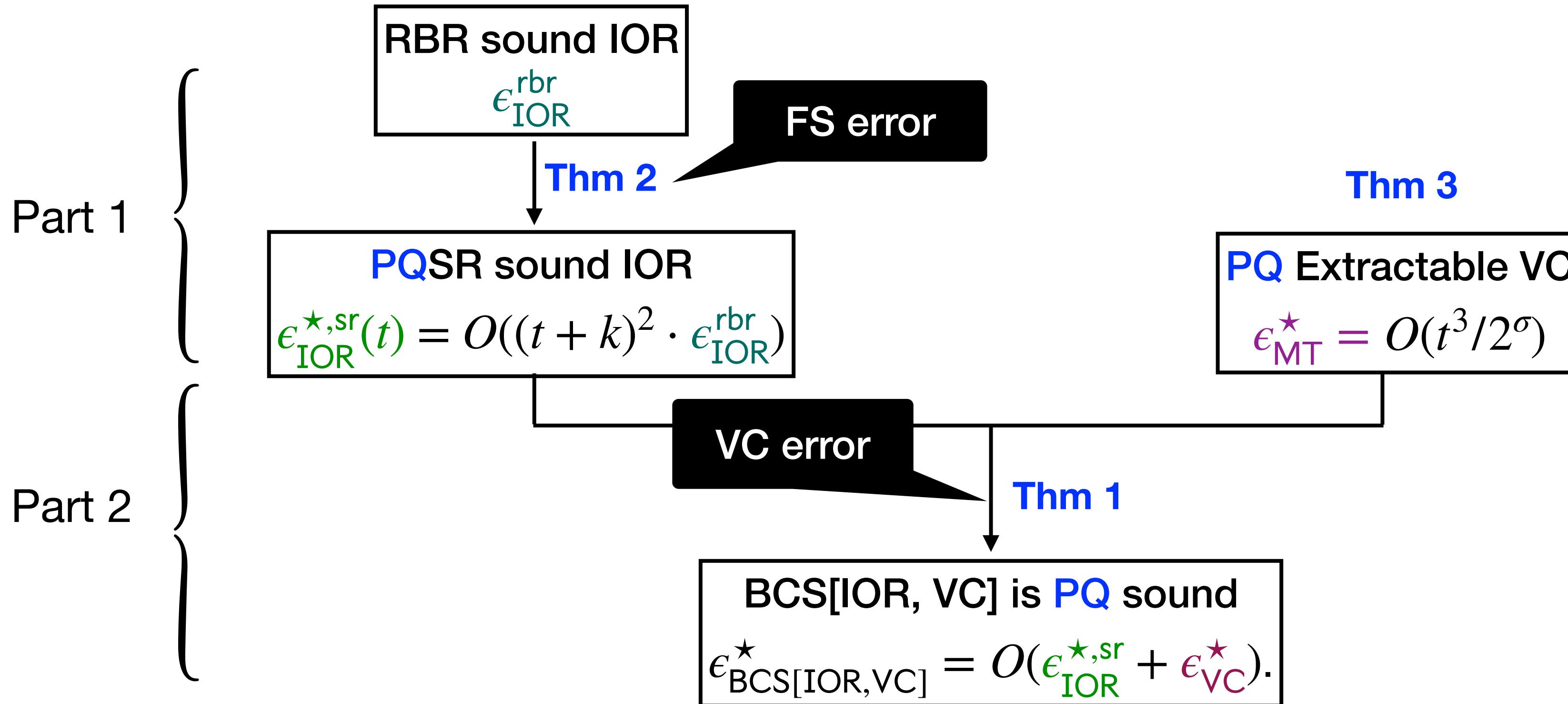
The role of state-restoration

Today's focus: soundness



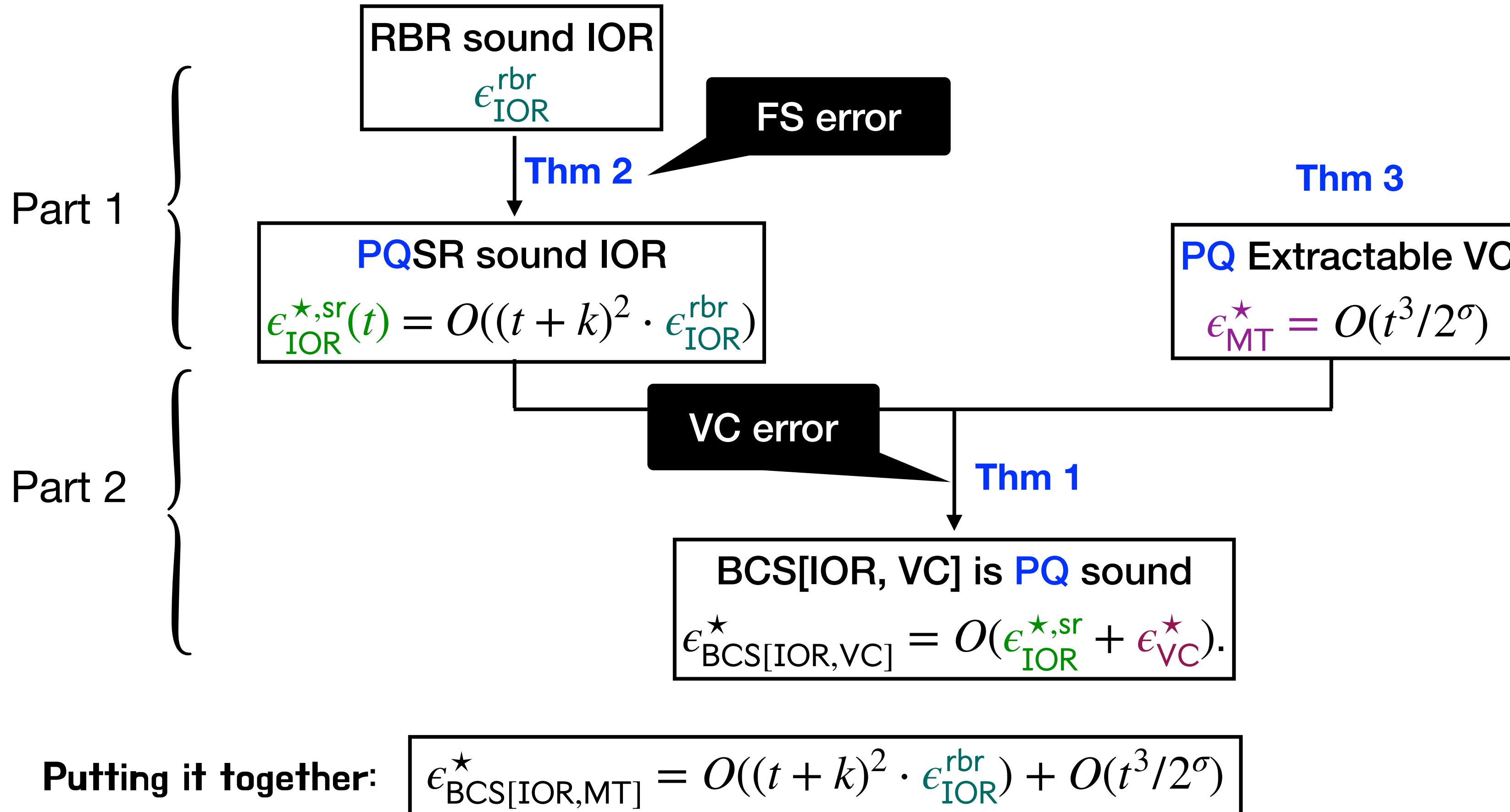
The role of state-restoration

Today's focus: soundness



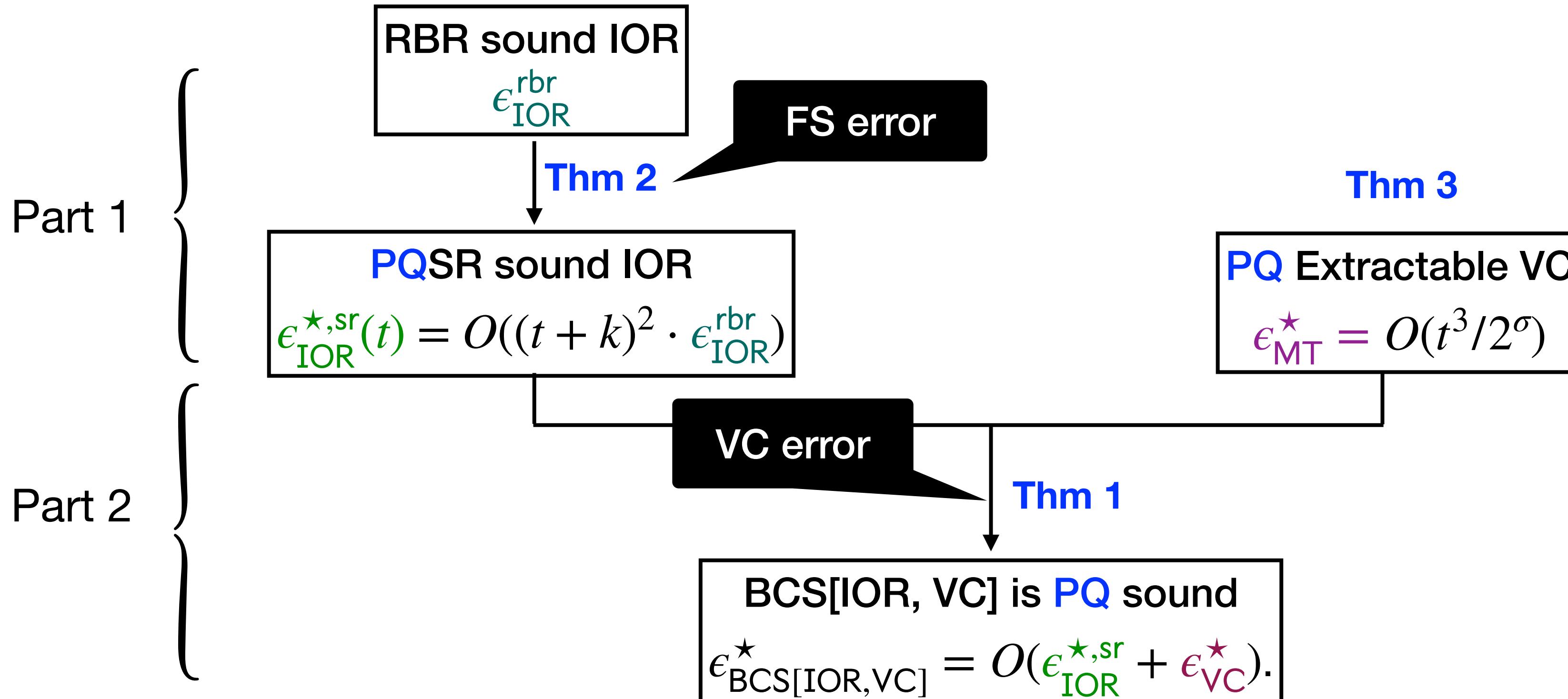
The role of state-restoration

Today's focus: soundness



The role of state-restoration

Today's focus: soundness



Putting it together:

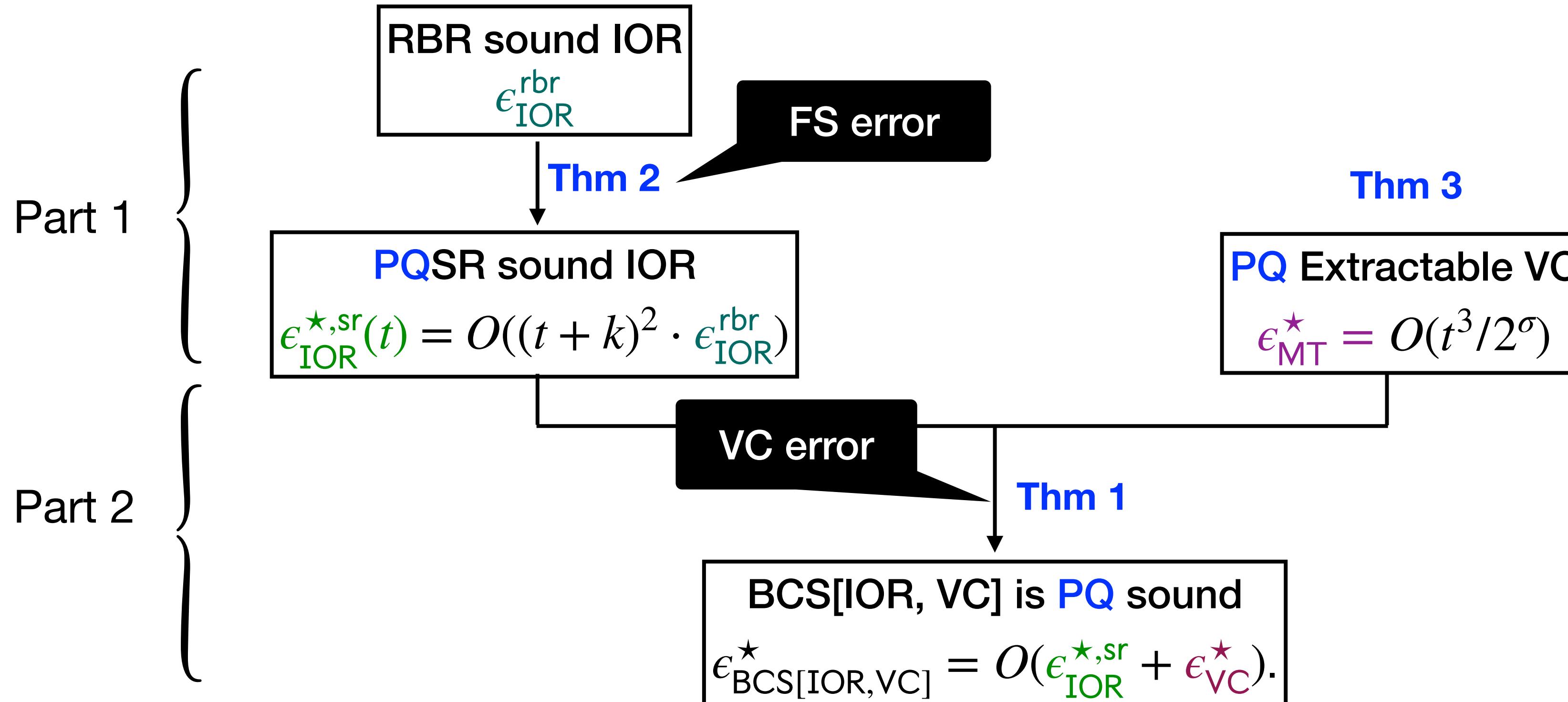
$$\epsilon_{\text{BCS}[\text{IOR,MT}]}^* = O((t+k)^2 \cdot \epsilon_{\text{IOR}}^{\text{rbr}}) + O(t^3/2^\sigma)$$

BCS error = FS error + VC error for PQ case!

The role of state-restoration

Today's focus: soundness

PQSR is weak enough
s.t. it only captures the FS error
and is implied by a classical property



Putting it together:

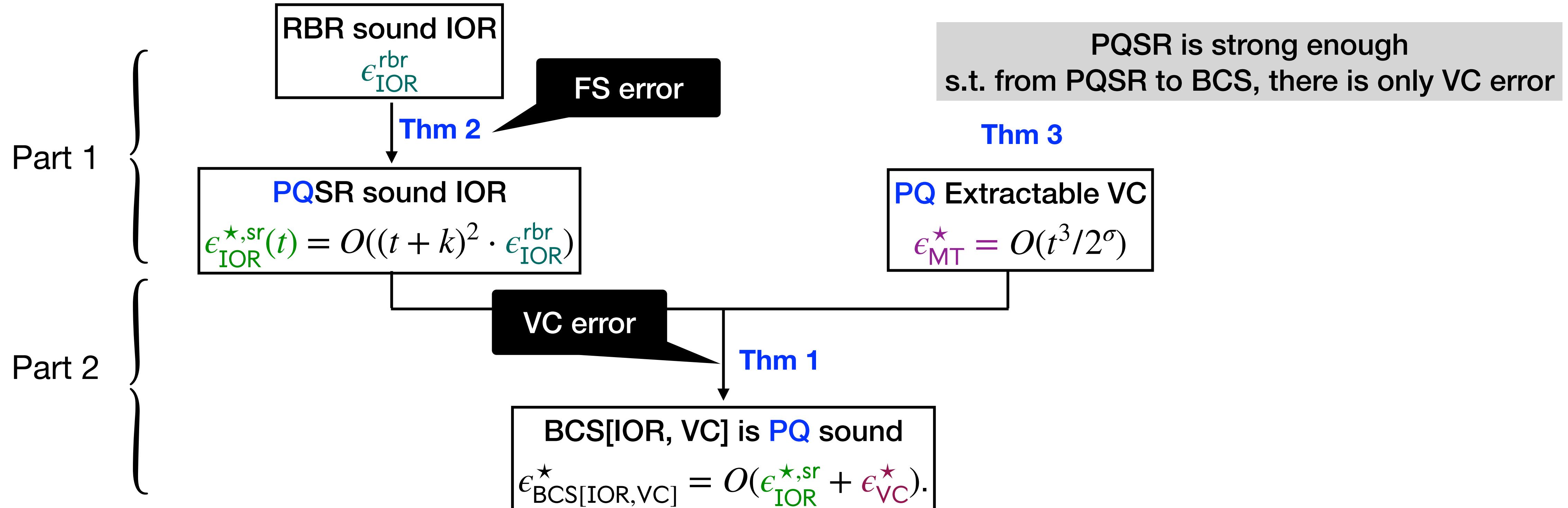
$$\epsilon_{\text{BCS}[\text{IOR,MT}]}^* = O((t+k)^2 \cdot \epsilon_{\text{IOR}}^{\text{rbr}}) + O(t^3/2^\sigma)$$

BCS error = FS error + VC error for PQ case!

The role of state-restoration

Today's focus: soundness

PQSR is weak enough
s.t. it only captures the FS error
and is implied by a classical property



Putting it together:

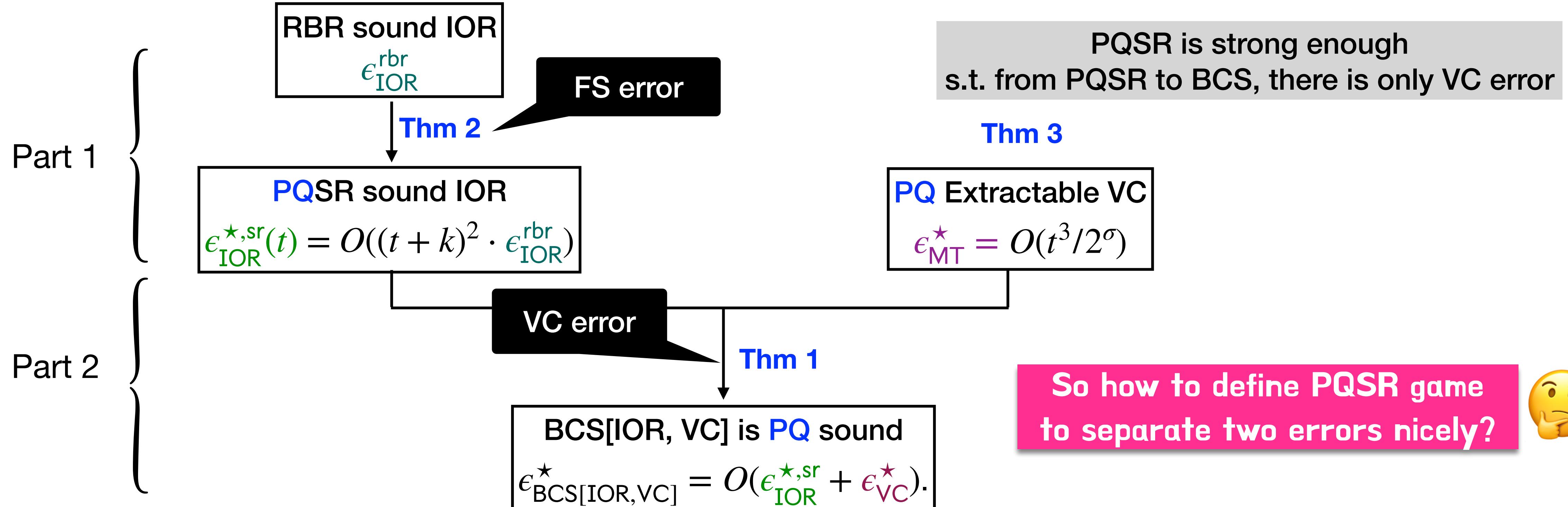
$$ε_{BCS[IOR,MT]}^* = O((t+k)^2 · ε_IOR^rbr) + O(t^3/2^σ)$$

BCS error = FS error + VC error for PQ case!

The role of state-restoration

Today's focus: soundness

PQSR is weak enough
s.t. it only captures the FS error
and is implied by a classical property



Putting it together:

$$ε_{BCS[IOR,MT]}^* = O((t+k)^2 · ε_IOR^rbr) + O(t^3/2^σ)$$

So how to define PQSR game
to separate two errors nicely?

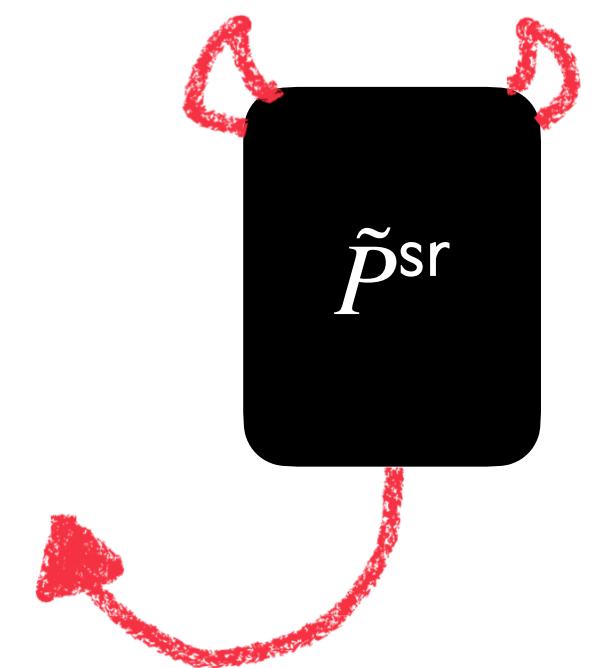
BCS error = FS error + VC error for PQ case!

Part 1:
PQSR soundness is
implied by RBR soundness

State-restoration captures the classical FS error

State-restoration captures the classical FS error

Classical adversary

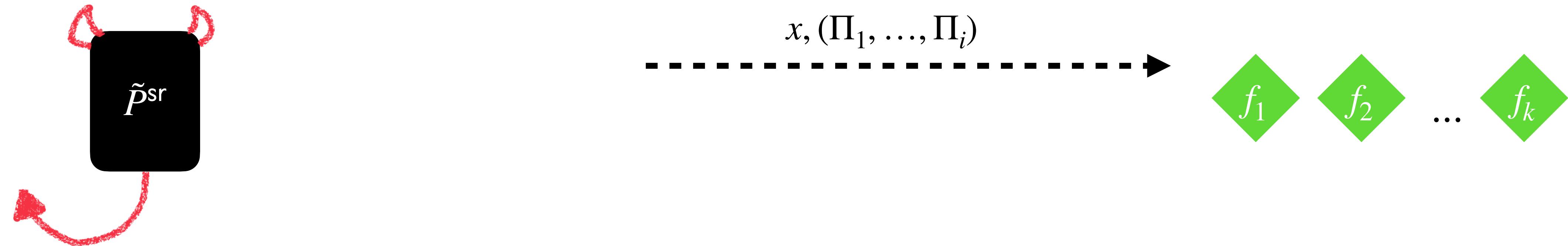


State-restoration captures the classical FS error

Classical adversary

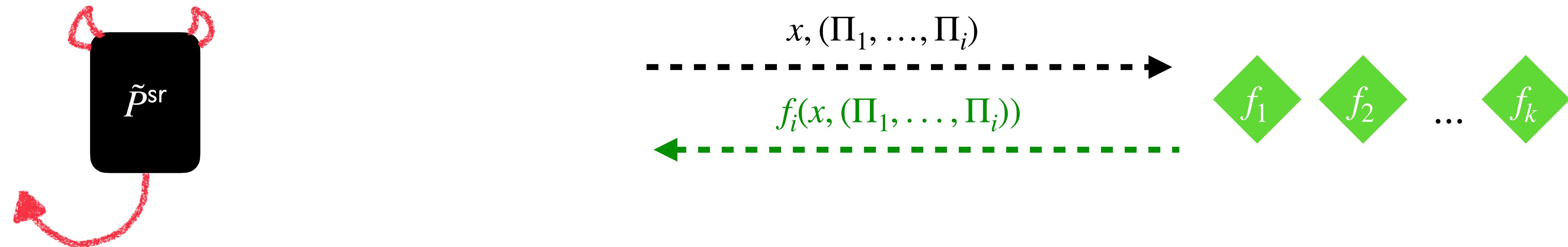
State-restoration captures the classical FS error

Classical adversary

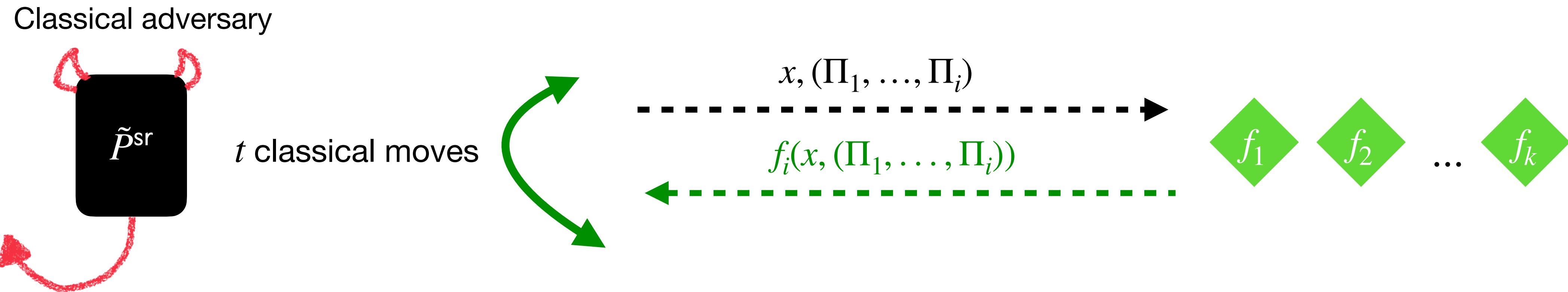


State-restoration captures the classical FS error

Classical adversary



State-restoration captures the classical FS error

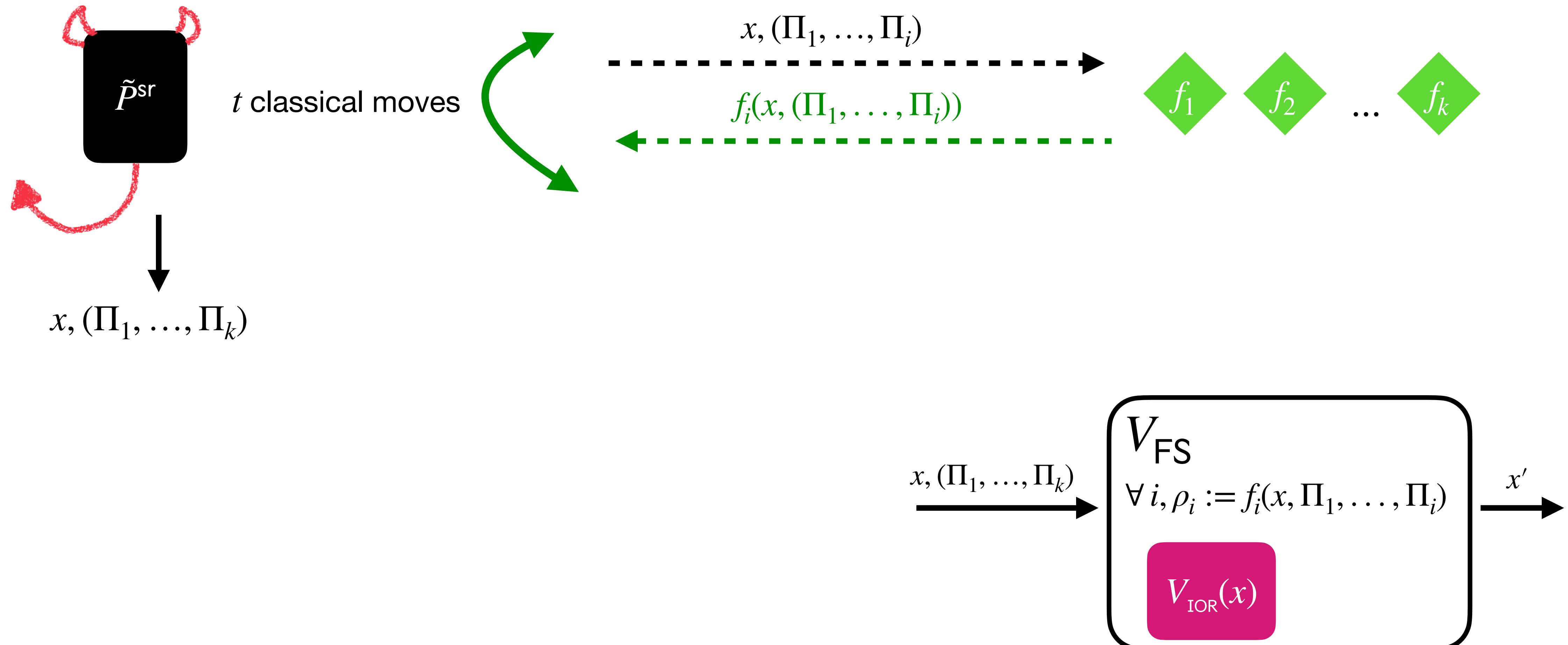


State-restoration captures the classical FS error



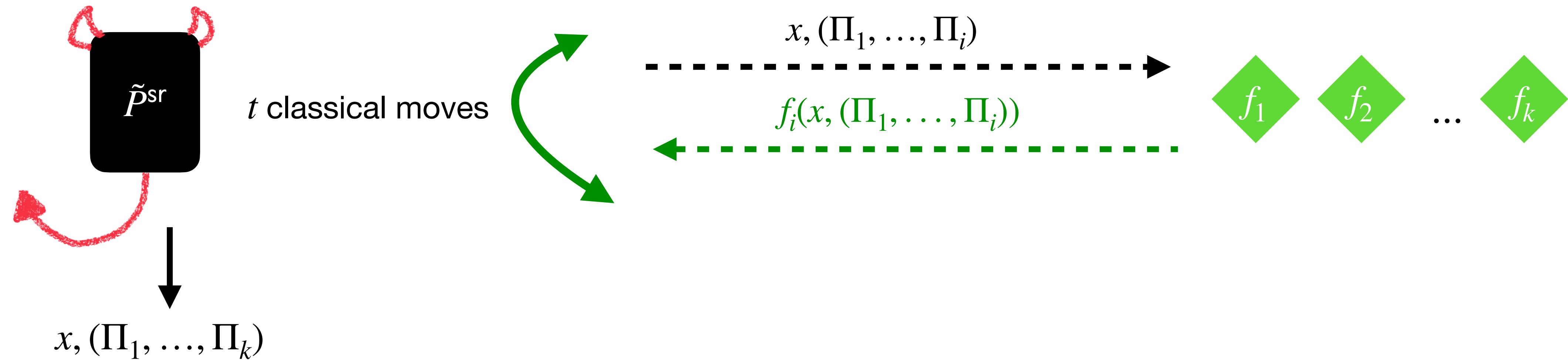
State-restoration captures the classical FS error

Classical adversary



State-restoration captures the classical FS error

Classical adversary

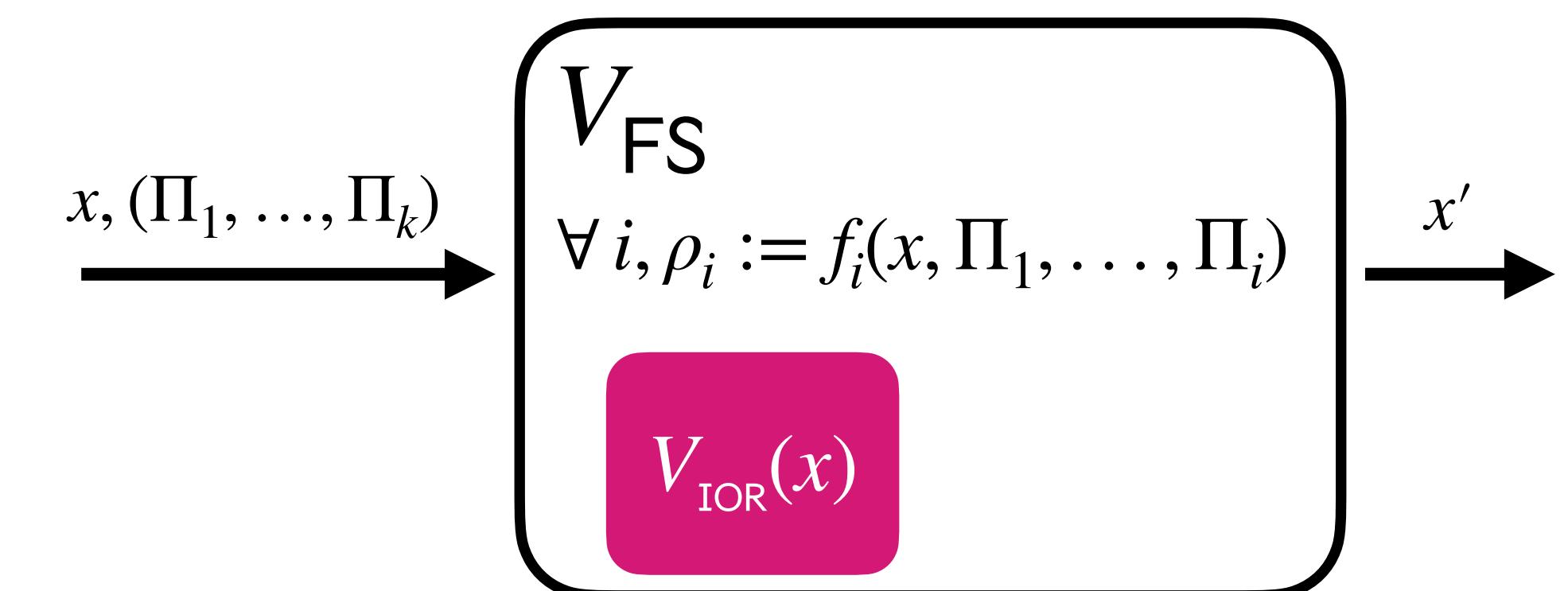


Soundness:

t -move \tilde{P}^{sr} cannot output $x, (\Pi_1, \dots, \Pi_k)$

s.t. it reduces a **no instance** $x \notin L(R)$

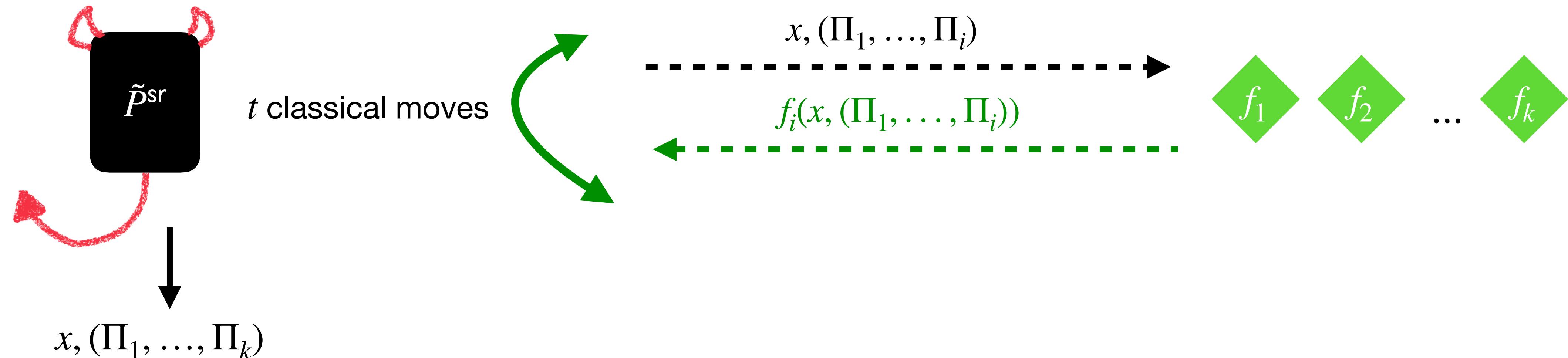
to a **yes instance** $x' \in L(R')$, except with error $\epsilon_{\text{IOR}}^{\text{sr}}(t)$



State-restoration captures the classical FS error

$\epsilon_{\text{IOR}}^{\text{sr}} = \text{the (classical) soundness error of FS[IOR]}$

Classical adversary

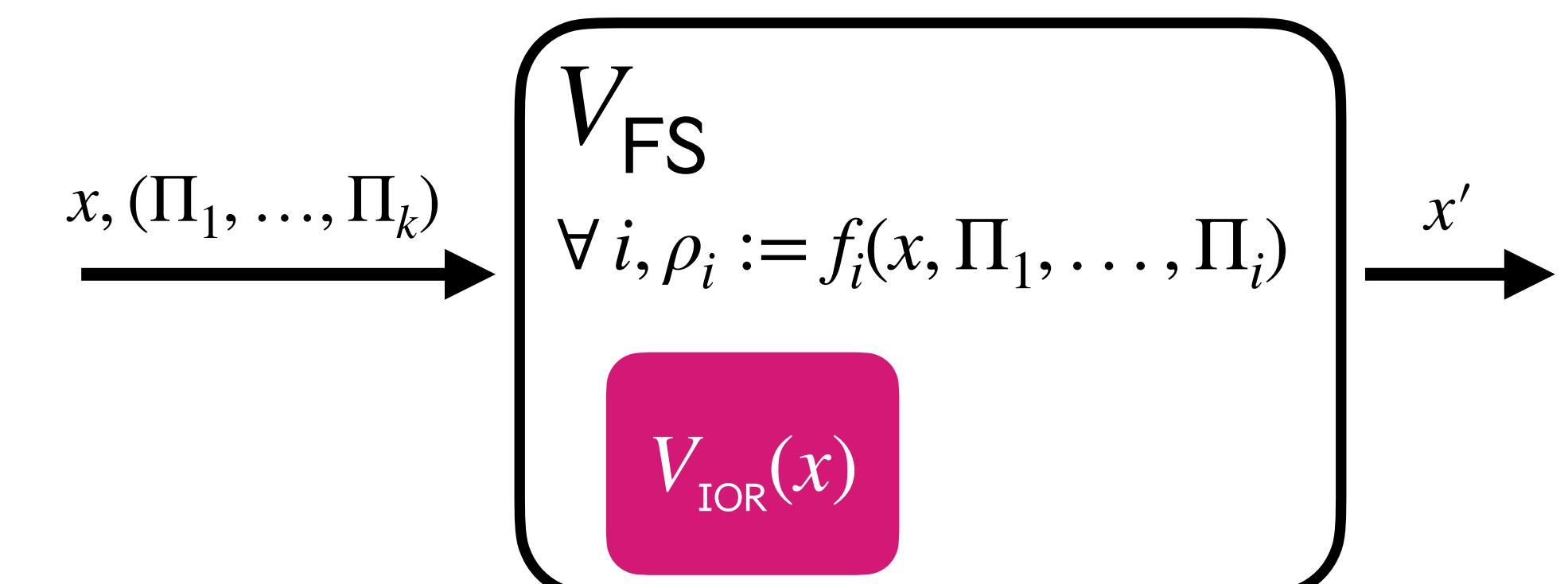


Soundness:

t -move \tilde{P}^{sr} cannot output $x, (\Pi_1, \dots, \Pi_k)$

s.t. it reduces a **no instance** $x \notin L(R)$

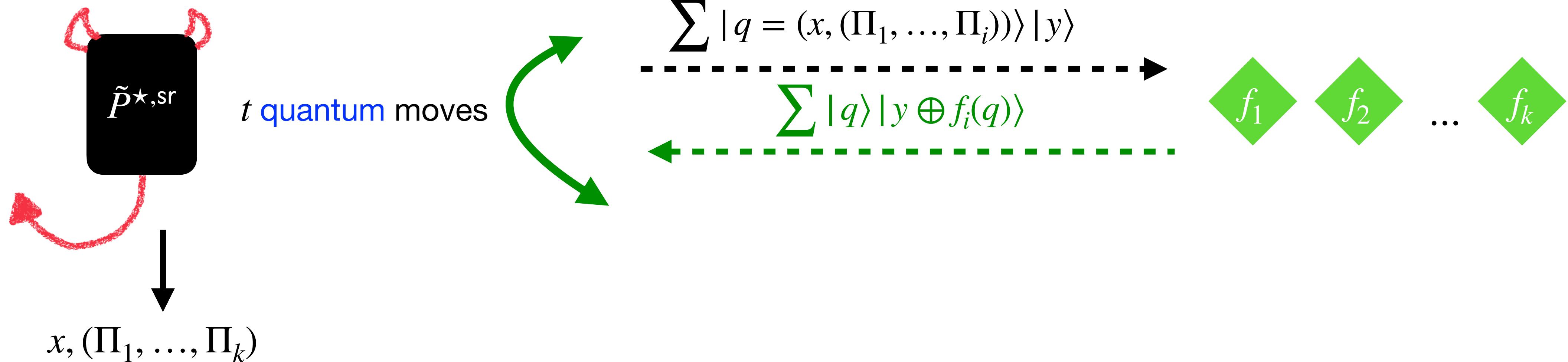
to a **yes instance** $x' \in L(R')$, except with error $\epsilon_{\text{IOR}}^{\text{sr}}(t)$



Our PQ state-restoration captures the PQ FS error

$\epsilon_{\text{IOR}}^{\star, \text{sr}} = \text{the PQ soundness error of FS[IOR]}$

Quantum adversary

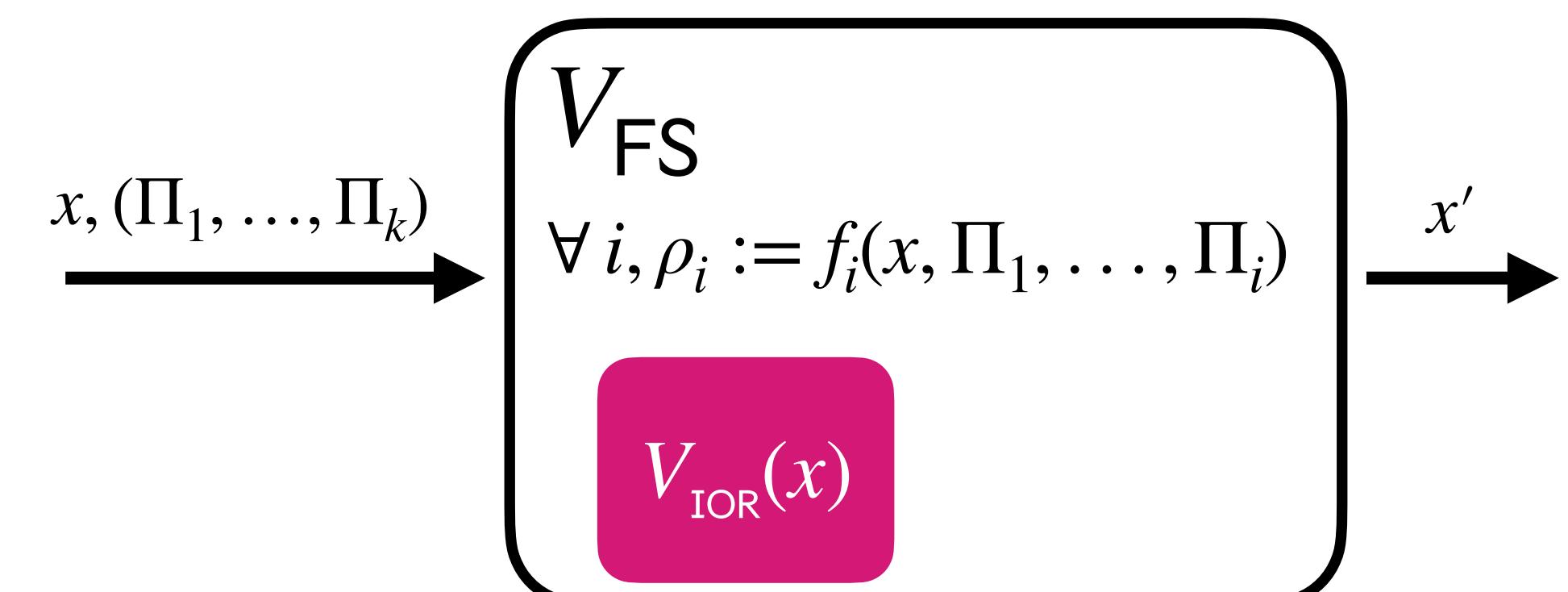


Soundness:

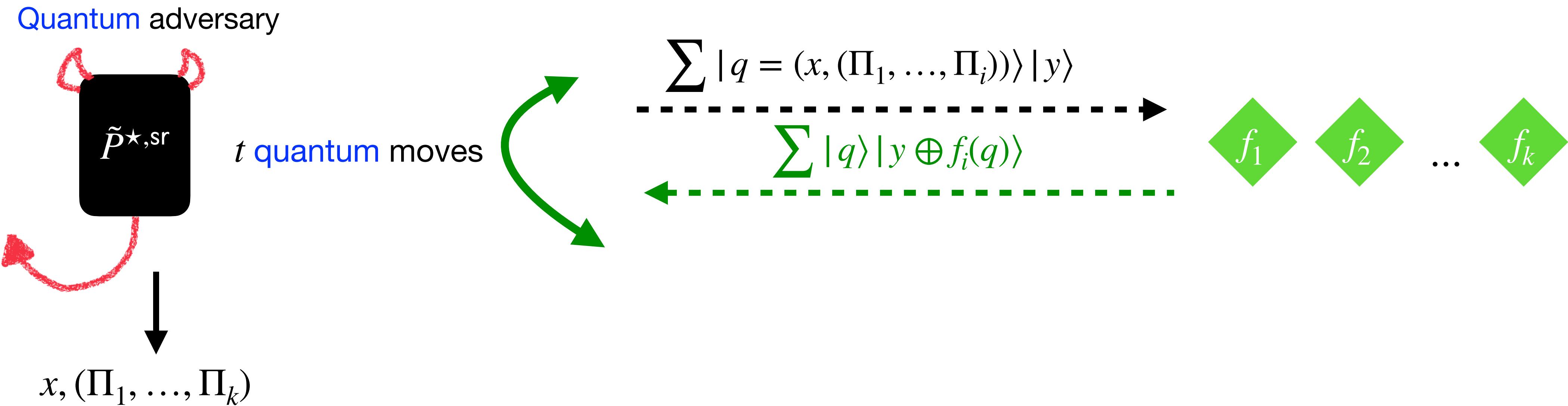
t -move $\tilde{P}^{\star, \text{sr}}$ cannot output $x, (\Pi_1, \dots, \Pi_k)$

s.t. it reduces a **no instance** $x \notin L(R)$

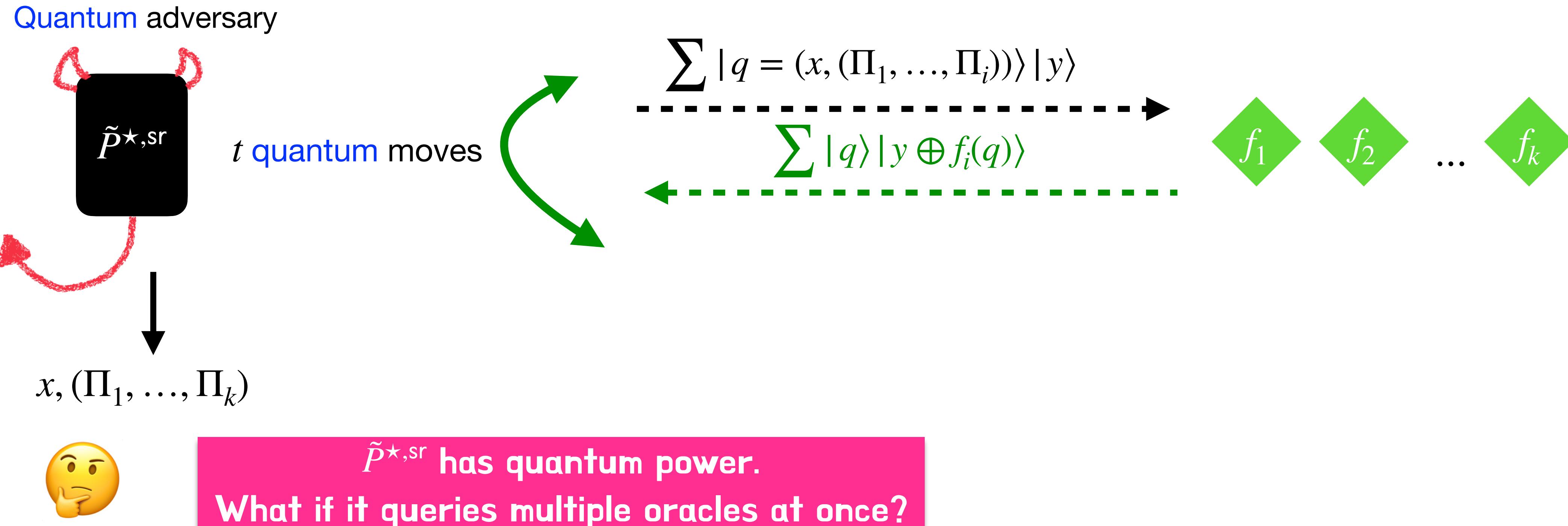
to a **yes instance** $x' \in L(R')$, except with error $\epsilon_{\text{IOR}}^{\star, \text{sr}}(t)$



Our PQ state-restoration captures the PQ FS error



Our PQ state-restoration captures the PQ FS error

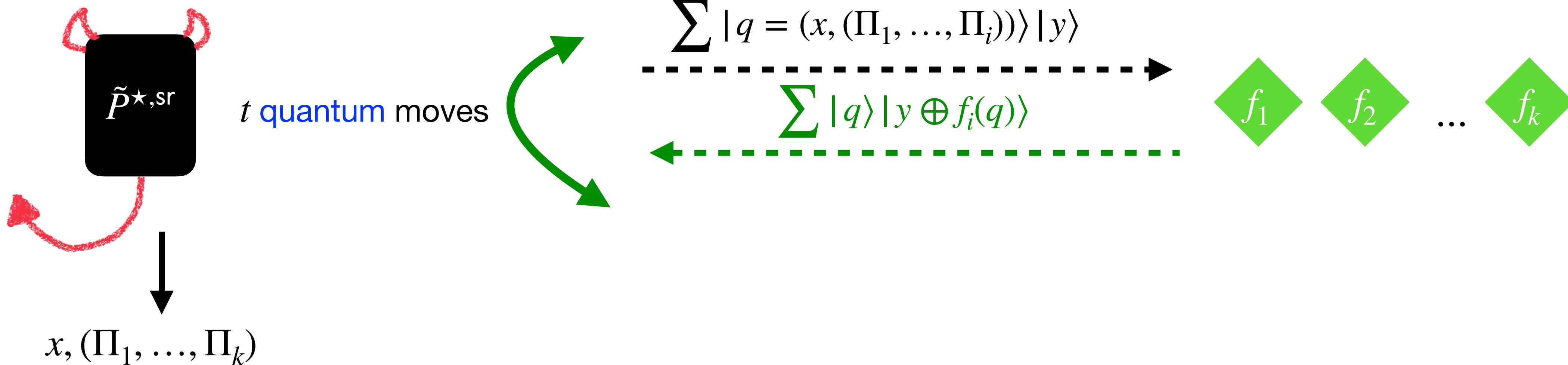


Our PQ state-restoration captures the PQ FS error



Our PQ state-restoration captures the PQ FS error

Quantum adversary

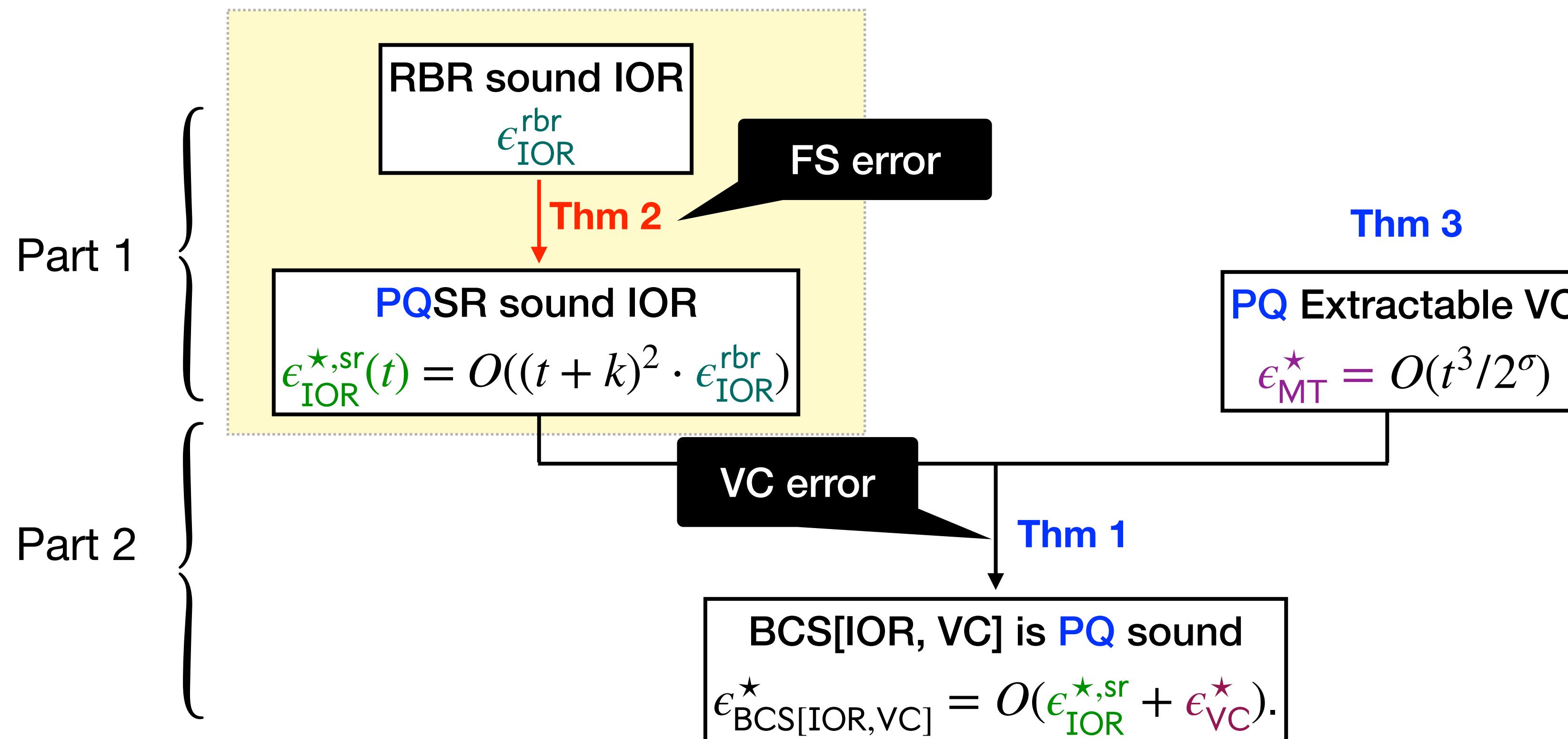


$\tilde{P}^{\star, \text{sr}}$ has quantum power.
What if it queries multiple oracles at once?

Our final definition captures this!

PQSR is a quantum property (too difficult).
Can we connect it with an easy classical property?

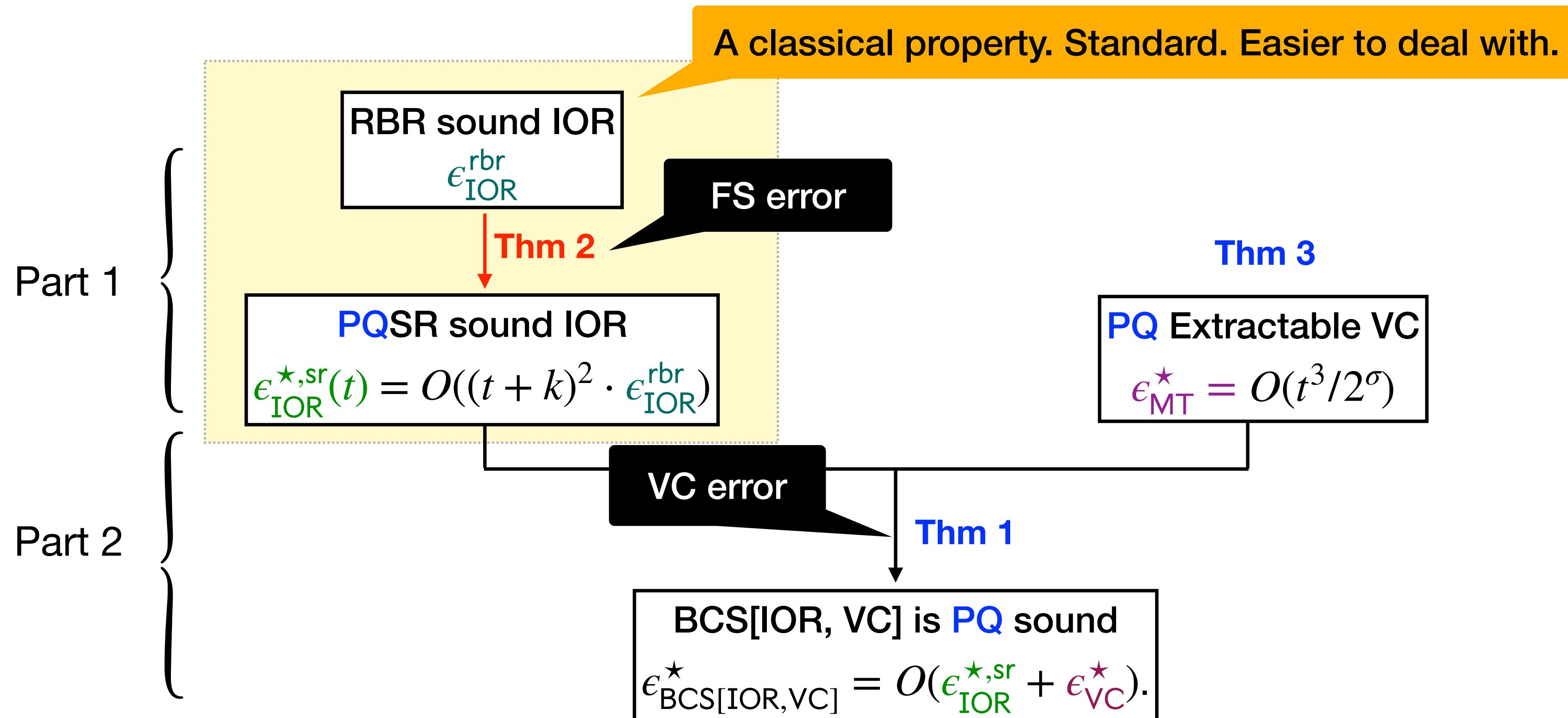
PQSR soundness is implied by RBR soundness



Putting it together:

$$\epsilon_{\text{BCS}[\text{IOR,MT}]}^{\star} = O((t + k)^2 \cdot \epsilon_{\text{IOR}}^{\text{rbr}}) + O(t^3/2^{\sigma})$$

PQSR soundness is implied by RBR soundness



Putting it together:

$$\epsilon_{\text{BCS}[\text{IOR,MT}]}^{\star} = O((t + k)^2 \cdot \epsilon_{\text{IOR}}^{\text{rbr}}) + O(t^3/2^{\sigma})$$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed

or not doomed

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed**

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed

$x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

doomed Almost impossible to make V output $x' \in L'$

or not doomed Promising to make V output $x' \in L'$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed

$x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.
 x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.
 x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.
 x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \longrightarrow x, \Pi_1$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \longrightarrow x, \Pi_1 \longrightarrow x, \Pi_1, \rho_1$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \longrightarrow x, \Pi_1 \longrightarrow x, \Pi_1, \rho_1 \longrightarrow x, \Pi_1, \rho_1, \Pi_2$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

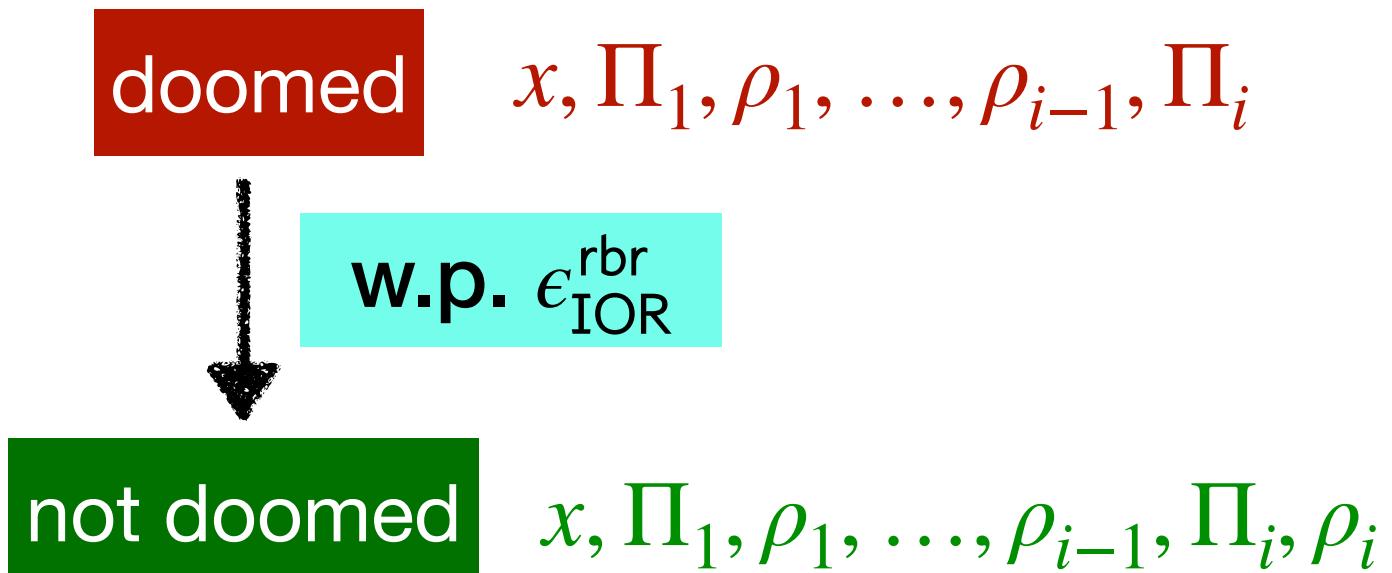
$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$



To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.
 x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \longrightarrow x, \Pi_1 \longrightarrow x, \Pi_1, \rho_1 \longrightarrow x, \Pi_1, \rho_1, \Pi_2 \longrightarrow \dots \longrightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

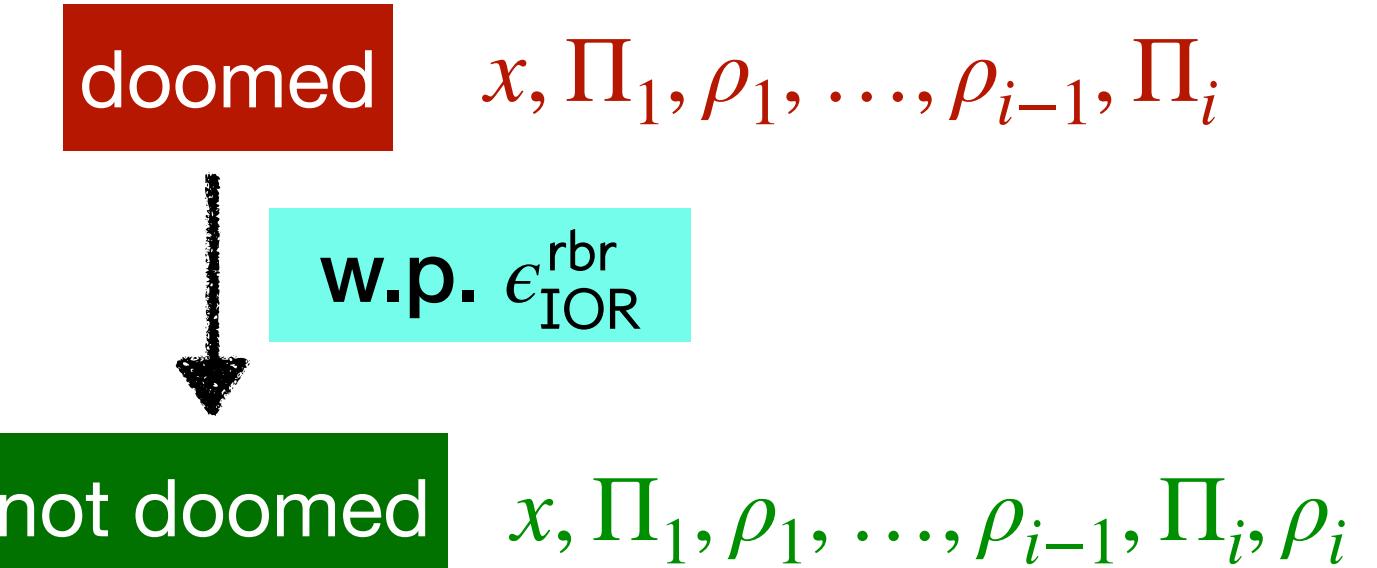
then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can **find** $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$



To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can **find** $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

$\epsilon_{\text{IOR}}^{\text{sr}}(t) \leq \Pr[\mathcal{A} \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t + k)\text{-query } \mathcal{A}]$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

$\epsilon_{\text{IOR}}^{\text{sr}}(t) \leq \Pr[\mathcal{A} \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t+k)\text{-query } \mathcal{A}]$

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

Search problem for some sparse set!

then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

$\epsilon_{\text{IOR}}^{\text{sr}}(t) \leq \Pr[\mathcal{A} \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t + k)\text{-query } \mathcal{A}]$

RBR soundness induces a search problem in the SR game

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

Search problem for some sparse set!

then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

$\epsilon_{\text{IOR}}^{\text{sr}}(t) \leq \Pr[\mathcal{A} \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t + k)\text{-query } \mathcal{A}]$

RBR soundness induces a search problem in the SR game

Definition of RBR soundness $\epsilon_{\text{IOR}}^{\text{rbr}}$:

Each partial transcript is labeled either

doomed Almost impossible to make V output $x' \in L'$

or **not doomed** Promising to make V output $x' \in L'$

doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i$

w.p. $\epsilon_{\text{IOR}}^{\text{rbr}}$

not doomed $x, \Pi_1, \rho_1, \dots, \rho_{i-1}, \Pi_i, \rho_i$

To win SR game, \tilde{P}^{sr} needs to find $x, (\Pi_1, \dots, \Pi_k)$ such that $x \notin L$ but V_{FS} outputs $x' \in L'$.

x is **doomed**, but $x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$ is **not doomed**.

$x \rightarrow x, \Pi_1 \rightarrow x, \Pi_1, \rho_1 \rightarrow x, \Pi_1, \rho_1, \Pi_2 \rightarrow \dots \rightarrow x, \Pi_1, \rho_1, \dots, \Pi_k, \rho_k$

\mathcal{A} : run \tilde{P}^{sr} and compute ρ_1, \dots, ρ_k (at most $t + k$ classical queries);

Search problem for some sparse set!

then \tilde{P}^{sr} wins $\Rightarrow \mathcal{A}$ can find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i that jumps to **not doomed**.

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

$\epsilon_{\text{IOR}}^{\text{sr}}(t) \leq \Pr[\mathcal{A} \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t + k)\text{-query } \mathcal{A}]$

$= O((t + k) \cdot \epsilon_{\text{IOR}}^{\text{rbr}})$

What happens in the quantum case?

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

But we are not searching ρ_i in a set S

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

But we are not searching ρ_i in a set S

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

Grover's optimality is also true for finding $(q, f_i(q)) \in R$ for sparse relation R .

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

Grover's optimality is also true for finding $(q, f_i(q)) \in R$ for sparse relation R .

But wait, we have $\rho_1, \dots, \rho_{i-1}$ in the relation.

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

Grover's optimality is also true for finding $(q, f_i(q)) \in R$ for sparse relation R .

But wait, we have $\rho_1, \dots, \rho_{i-1}$ in the relation.

Our solution: fix f_1, \dots, f_{i-1} when analyzing for f_i , then it's searching $(q, f_i(q)) \in R'$ for $\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse R' .

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem, but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i] \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

Grover's optimality is also true for finding $(q, f_i(q)) \in R$ for sparse relation R .

But wait, we have $\rho_1, \dots, \rho_{i-1}$ in the relation.

Proof uses instability lemma from [CMS19].

Our solution: fix f_1, \dots, f_{i-1} when analyzing for f_i , then it's searching $(q, f_i(q)) \in R'$ for $\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse R' .

What happens in the quantum case?

find $x, \Pi_1, \rho_1, \dots, \Pi_i$ and ρ_i

$\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse

Quantumly, the same search problem,
but with quantum queries!

$\epsilon_{\text{IOR}}^{\star, \text{sr}}(t) \leq \Pr[\mathcal{A}^\star \text{ finds such } x, \Pi_1, \dots, \rho_i \text{ for a } (t+k)\text{-query quantum } \mathcal{A}^\star]$

$= O((t+k)^2 \epsilon_{\text{IOR}}^{\text{rbr}})$

Search is faster in the quantum world: Grover's algorithm for multiple oracles

We can find a preimage of a set S for some f_i w.p. $\Omega(T^2 \cdot \text{sparsity of } S)$ with T queries to f_1, \dots, f_k .

There's a limit to the speed up: Grover's optimality

Every T -query \mathcal{A}^\star can find a preimage of a set S for some f_i w.p. $O(T^2 \cdot \text{sparsity of } S)$.

Almost there...

\mathcal{A}^\star needs to find $q = (x, \Pi_1, \dots, \Pi_i)$ and $\rho_i = f_i(q)$
s.t. $((x, \Pi_1, \rho_1, \dots, \Pi_i), \rho_i)$ in a relation

Grover's optimality is also true for finding $(q, f_i(q)) \in R$ for sparse relation R .

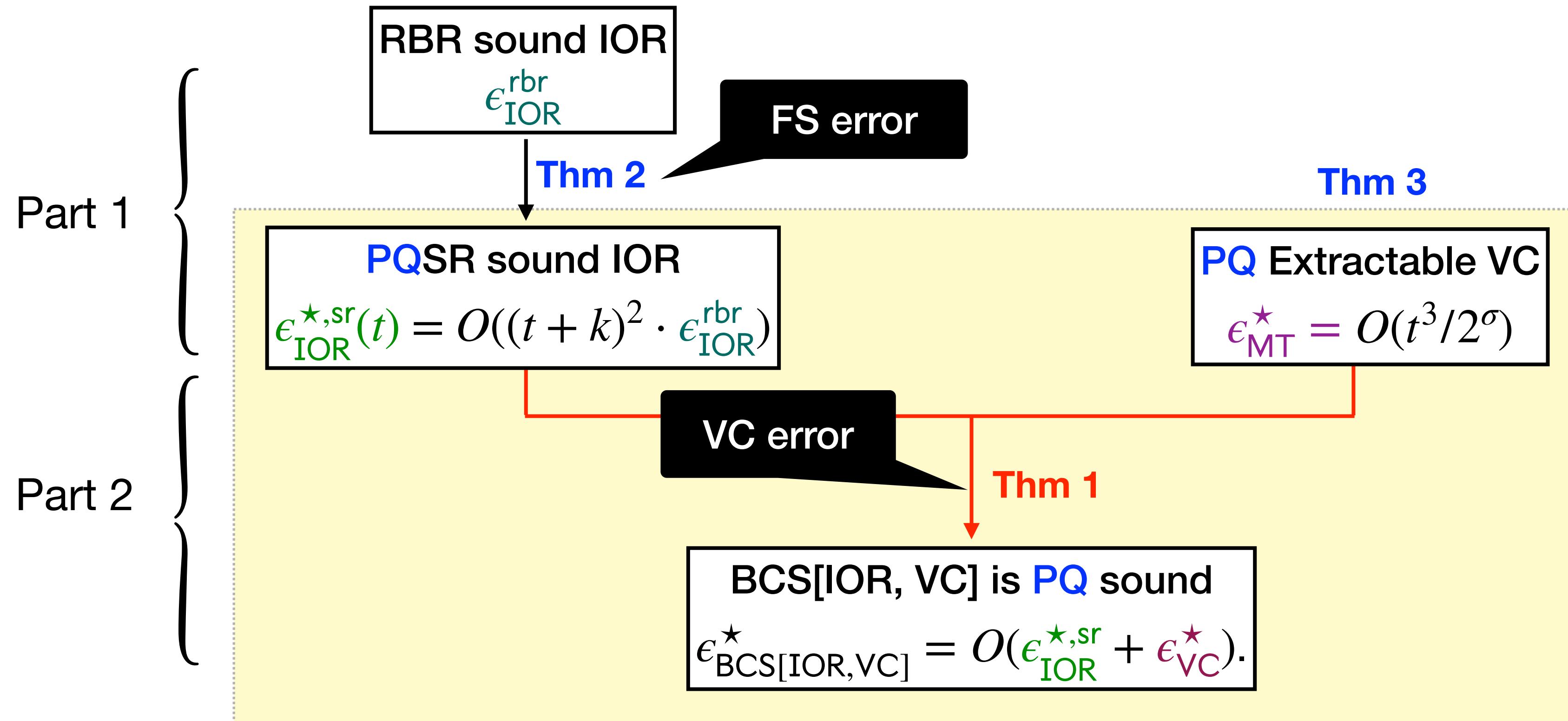
But wait, we have $\rho_1, \dots, \rho_{i-1}$ in the relation.

Proof uses instability lemma from [CMS19].

Our solution: fix f_1, \dots, f_{i-1} when analyzing for f_i , then it's searching $(q, f_i(q)) \in R'$ for $\epsilon_{\text{IOR}}^{\text{rbr}}$ -sparse R' .

Part 2: From PQSR IOR to PQ NRDX

BCS PQ soundness = PQSR soundness + VC PQ error



Putting it together:

$$\epsilon_{\text{BCS[IOR,MT]}}^* = O((t+k)^2 \cdot \epsilon_{\text{IOR}}^{\text{rbr}}) + O(t^3/2^\sigma)$$

What happens in the classical case?

Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

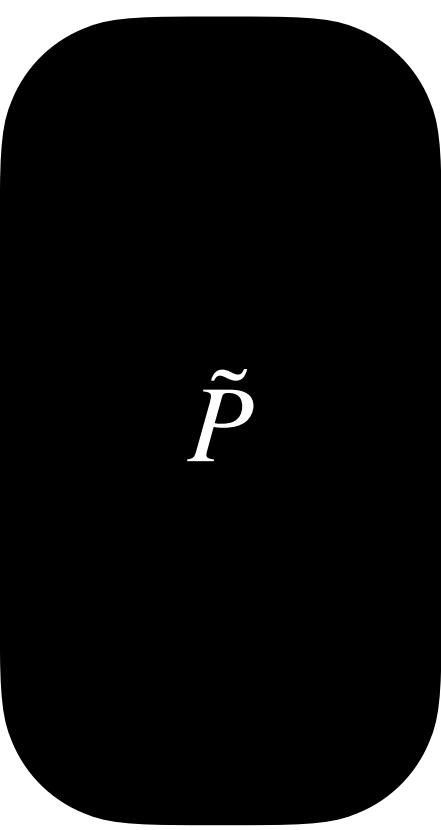
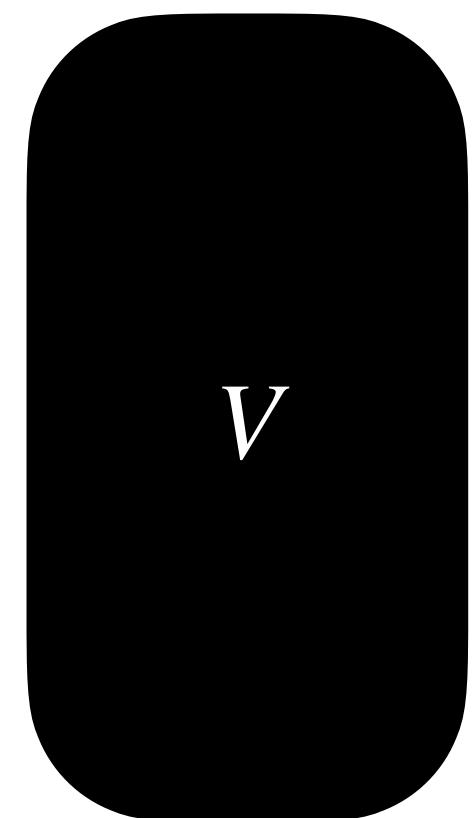
A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover

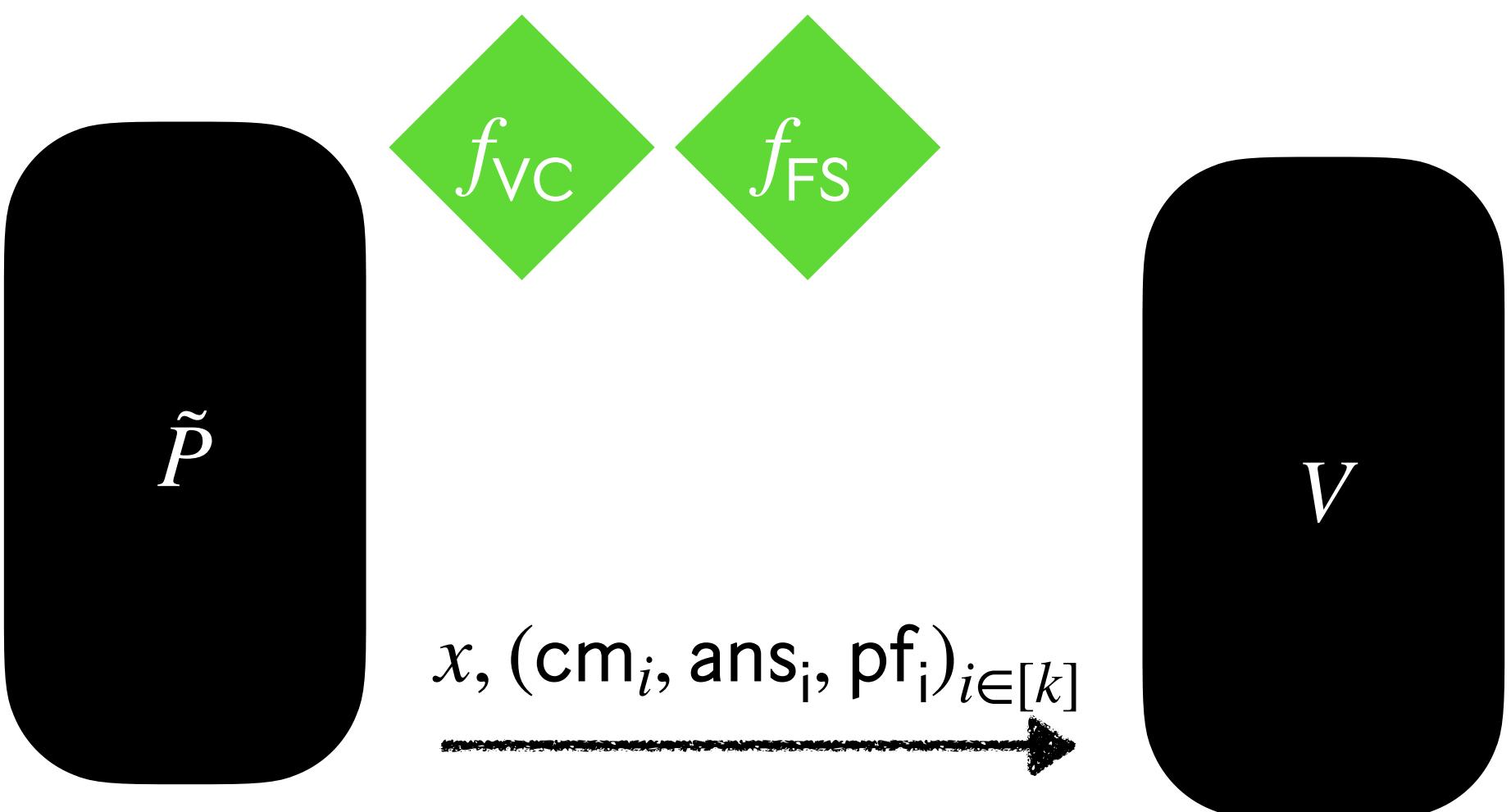


Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover

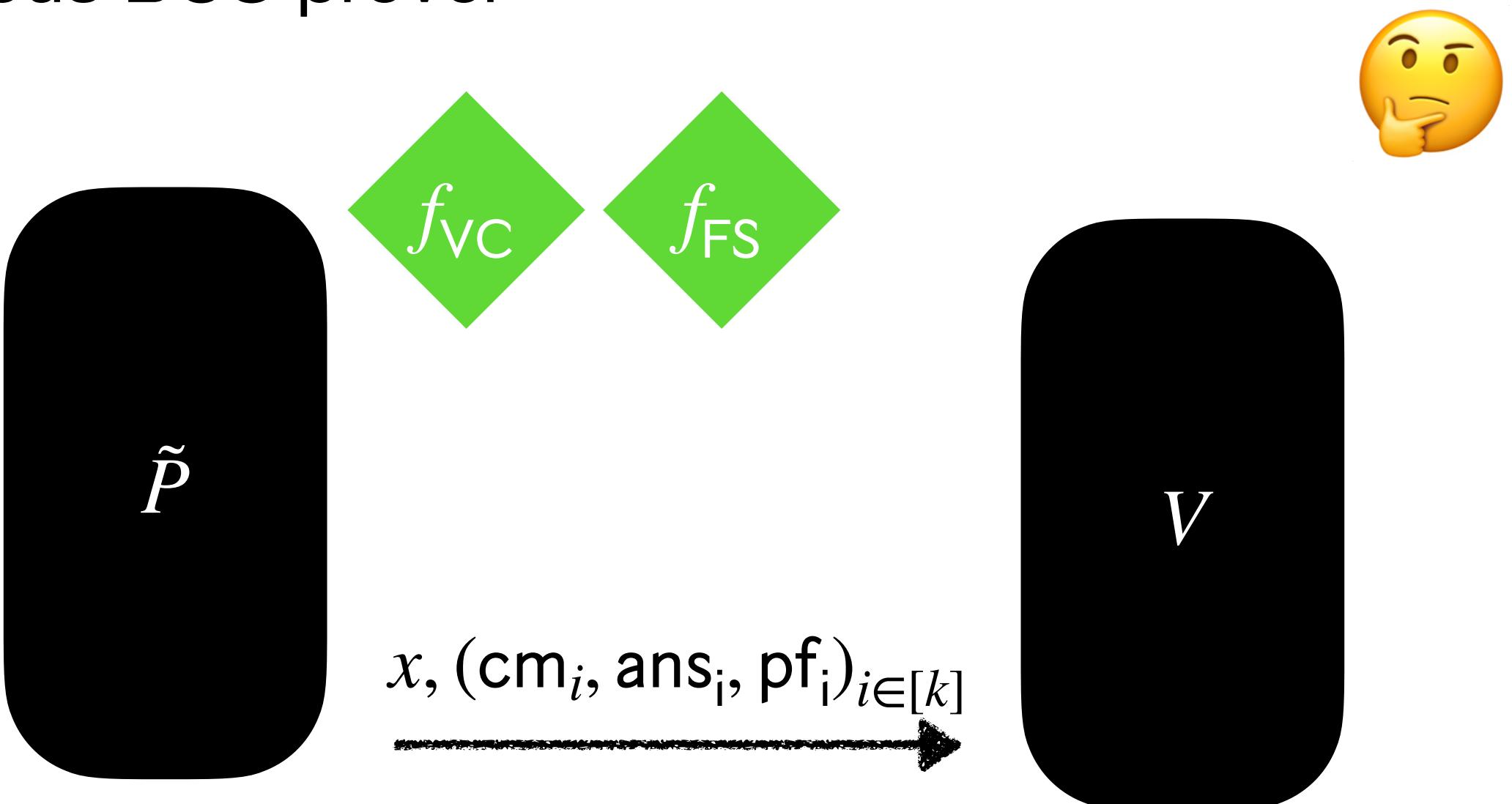


Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover

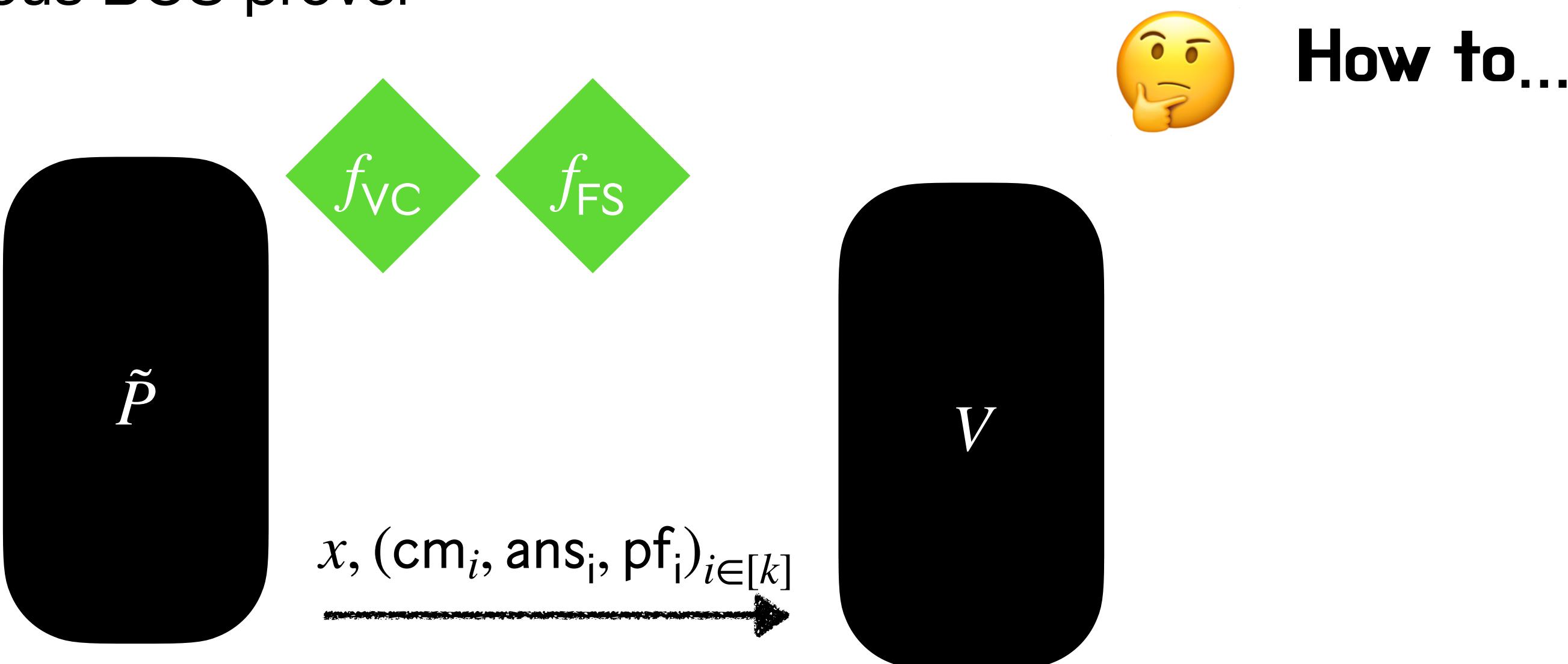


Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover

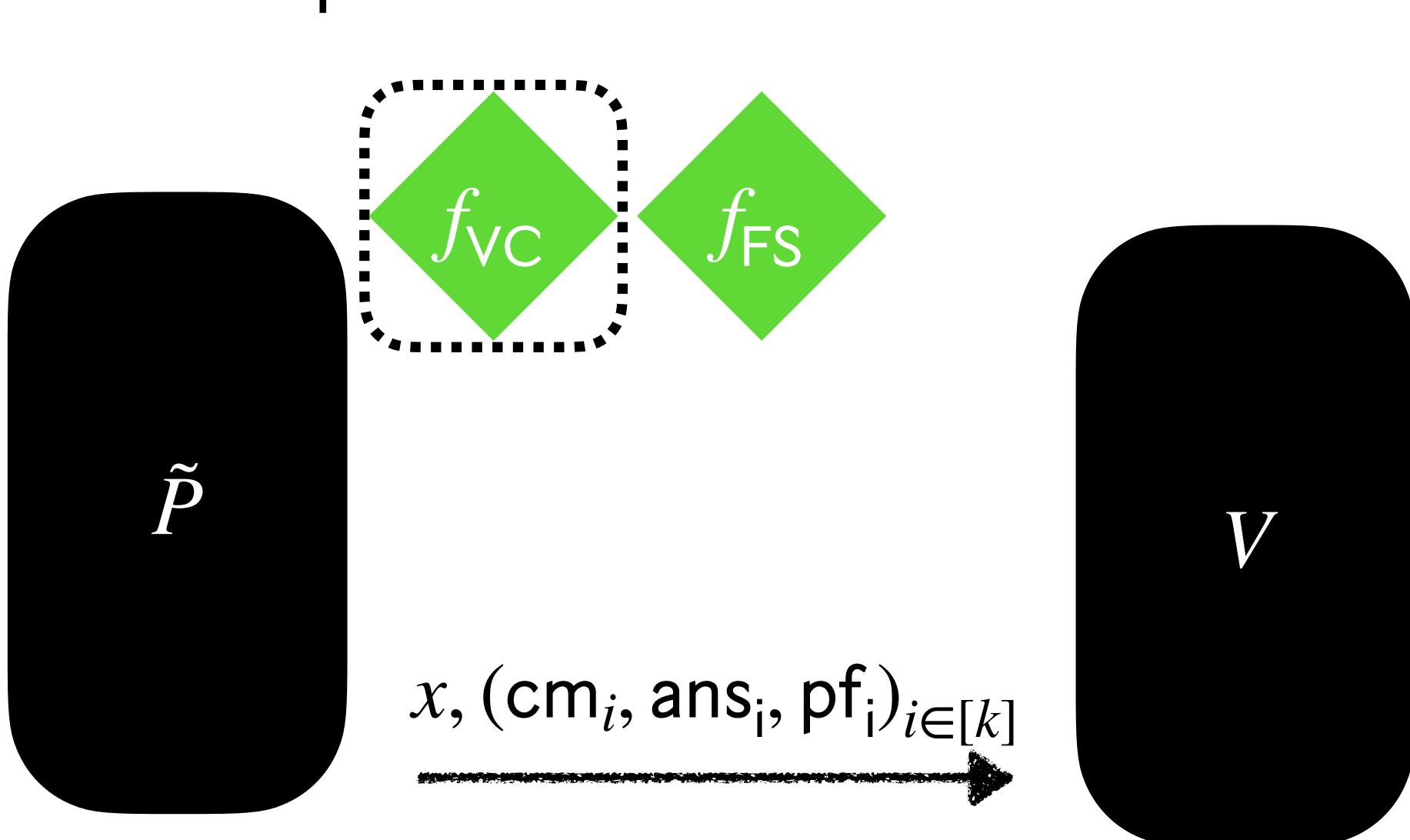


Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover



How to...

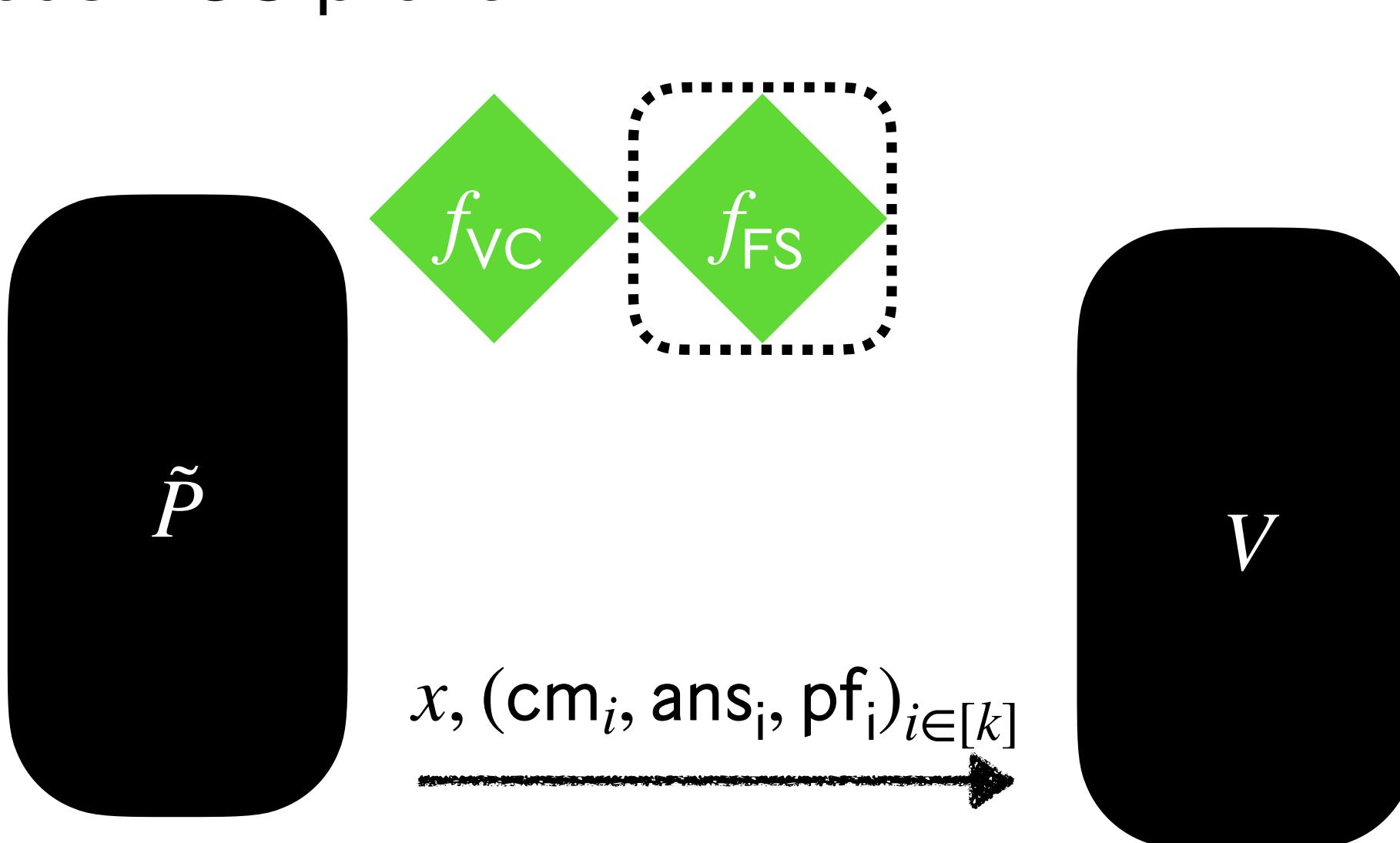
1. Answer f_{VC} queries?

Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover



How to...

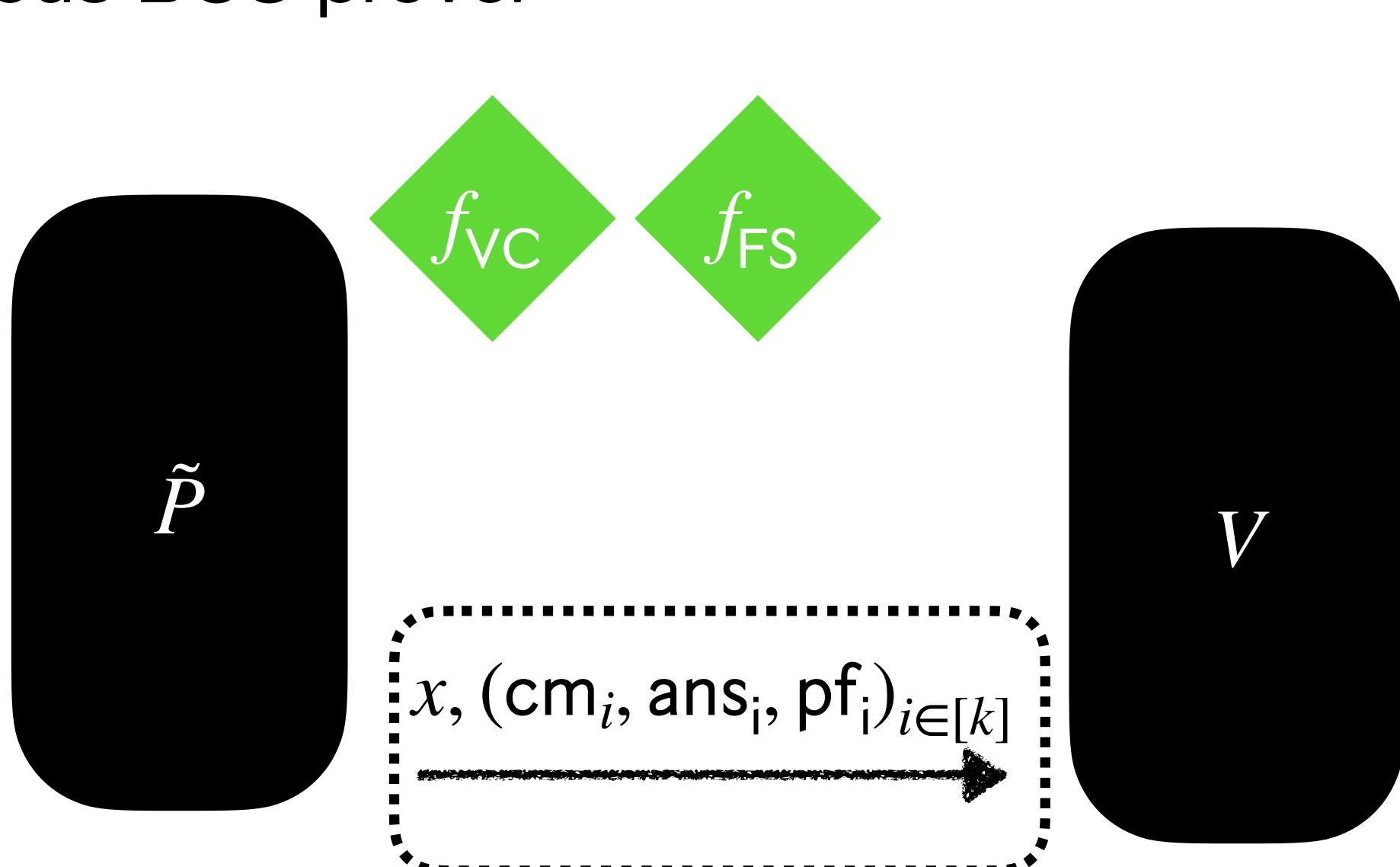
1. Answer f_{VC} queries?
2. Answer f_{FS} queries?

Goal: we want to construct a SR prover \tilde{P}^{sr} such that

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

A construction: \tilde{P}^{sr} **simulates** \tilde{P} .

Malicious BCS prover



How to...

1. Answer f_{VC} queries?
2. Answer f_{FS} queries?
3. Derive the output of \tilde{P}^{sr} from the output of \tilde{P} ?

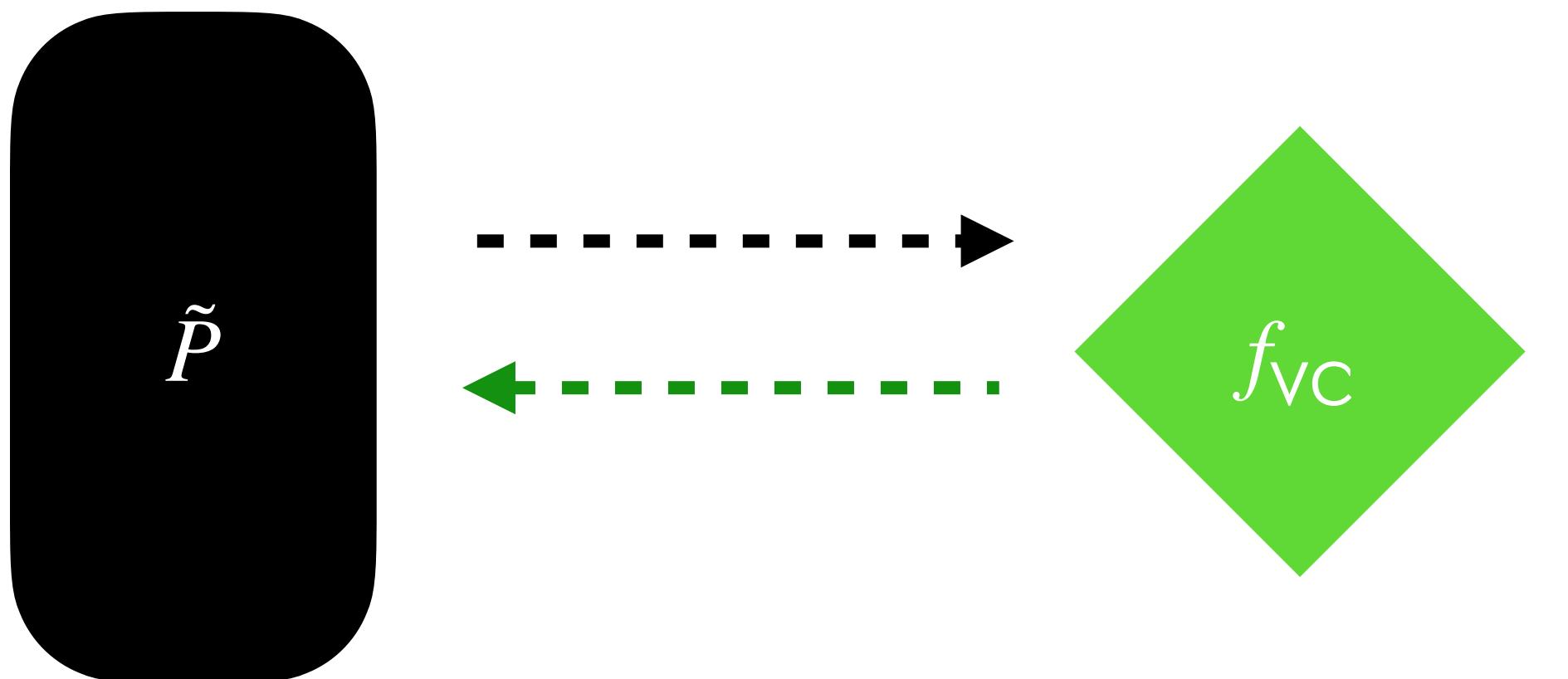
Construction of \tilde{P}^{sr}

Step 1: how to answer f_{VC} queries?

Construction of \tilde{P}^{sr}

Step 1: how to answer f_{VC} queries?

Malicious BCS prover

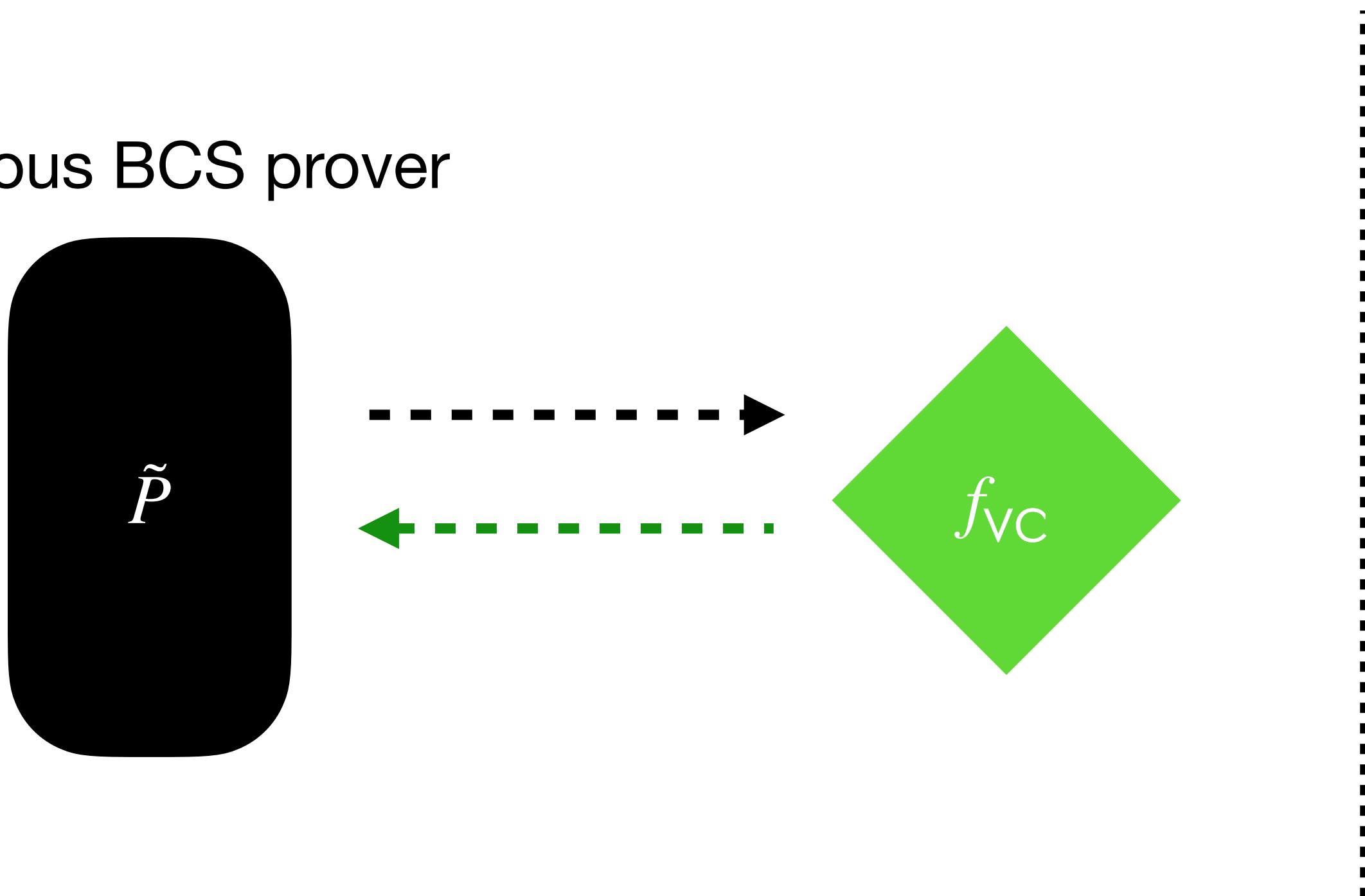


Construction of \tilde{P}^{sr}

Classical case

Step 1: how to answer f_{VC} queries?

Malicious BCS prover



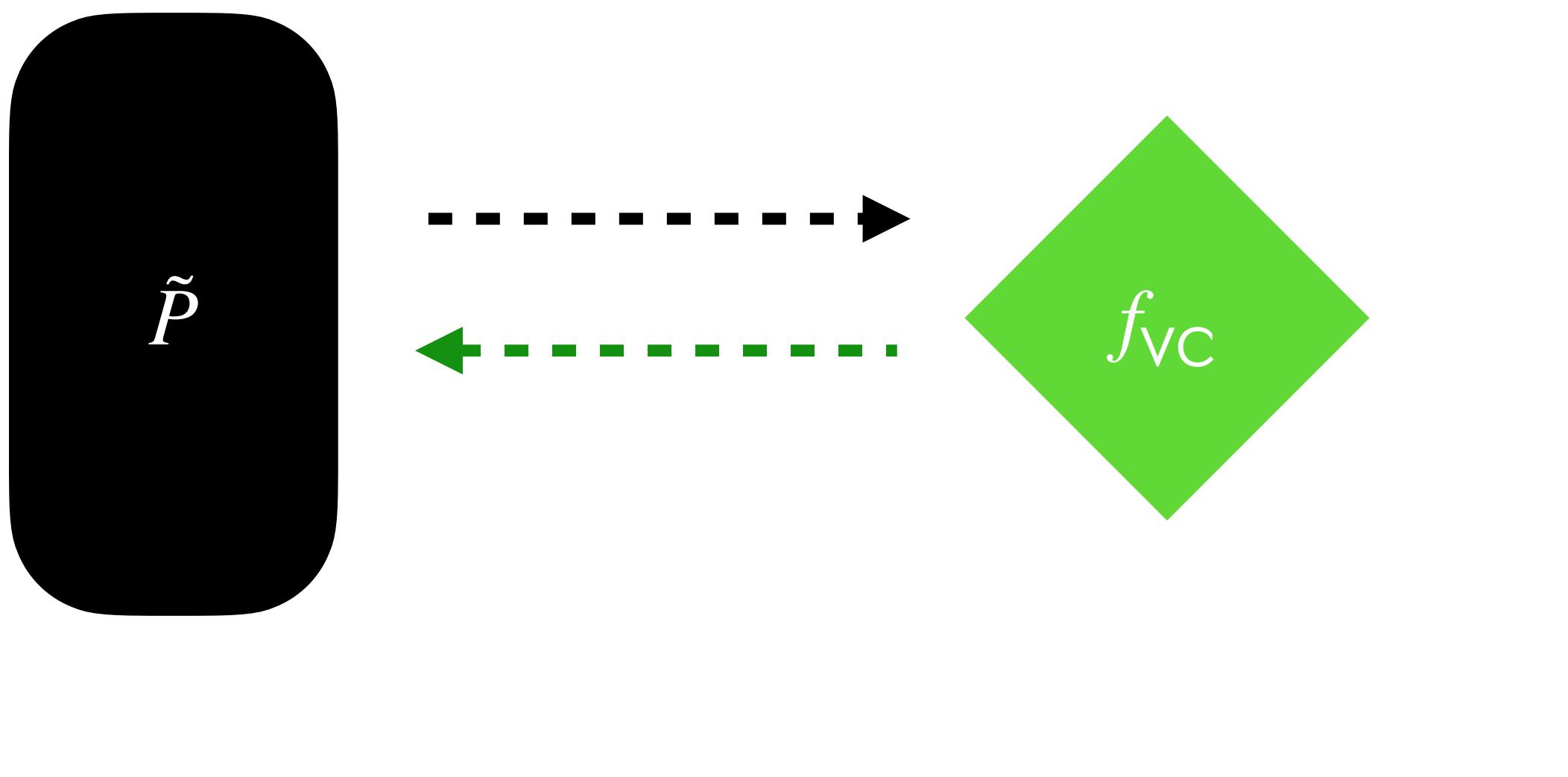
Construction of \tilde{P}^{sr}

Classical case

Step 1: how to answer f_{VC} queries?

\tilde{P}^{sr} does not have oracle access to f_{VC}

Malicious BCS prover

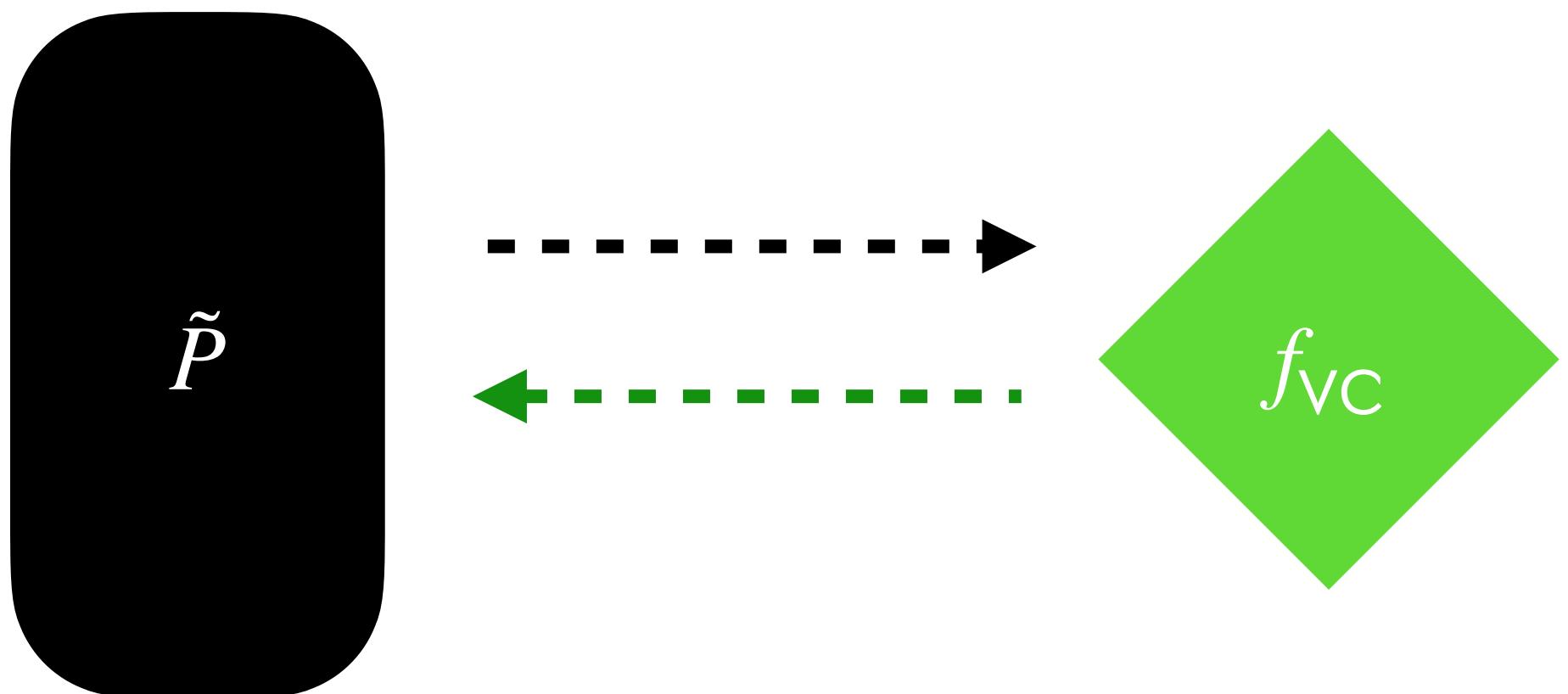


Construction of \tilde{P}^{sr}

Classical case

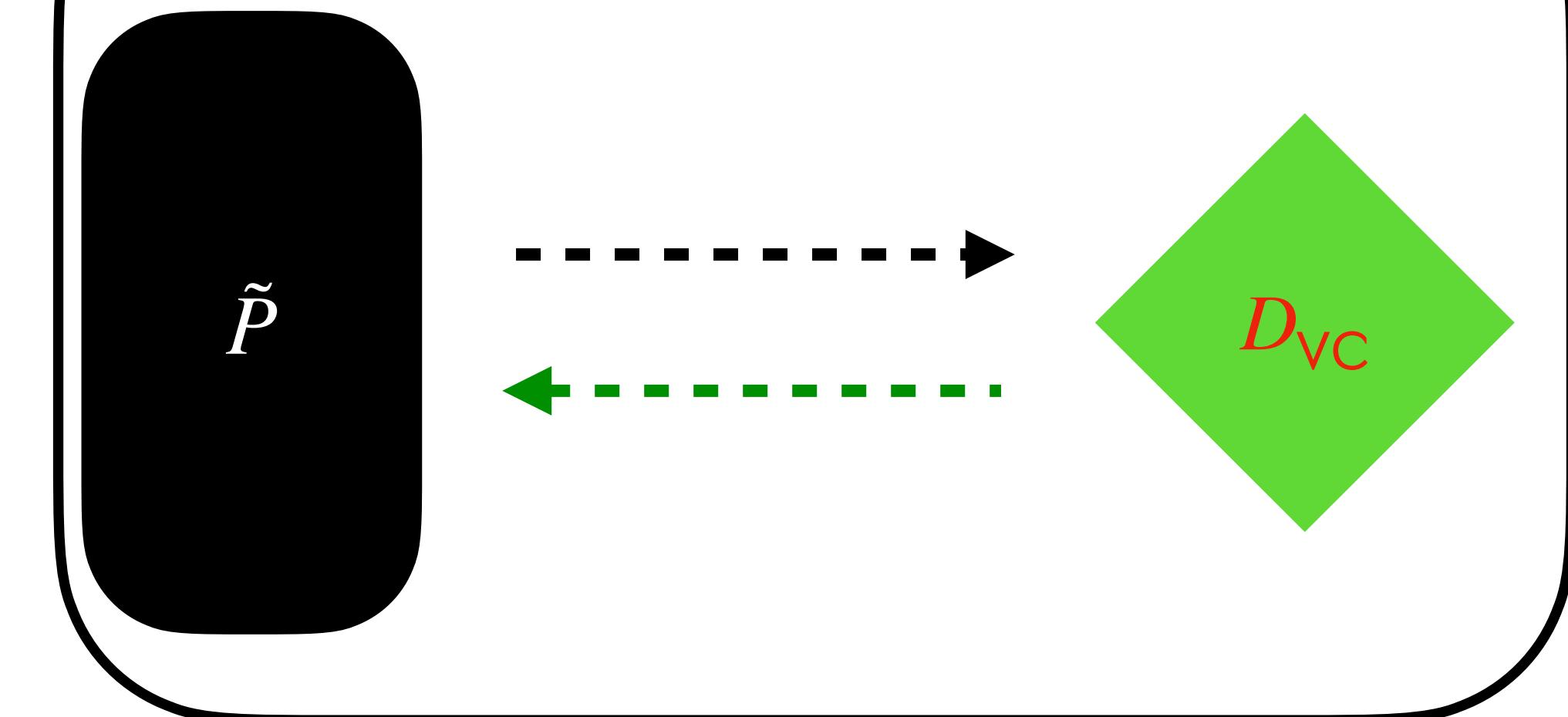
Step 1: how to answer f_{VC} queries?

Malicious BCS prover



\tilde{P}^{sr} does not have oracle access to f_{VC}

Malicious SR prover \tilde{P}^{sr}



Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

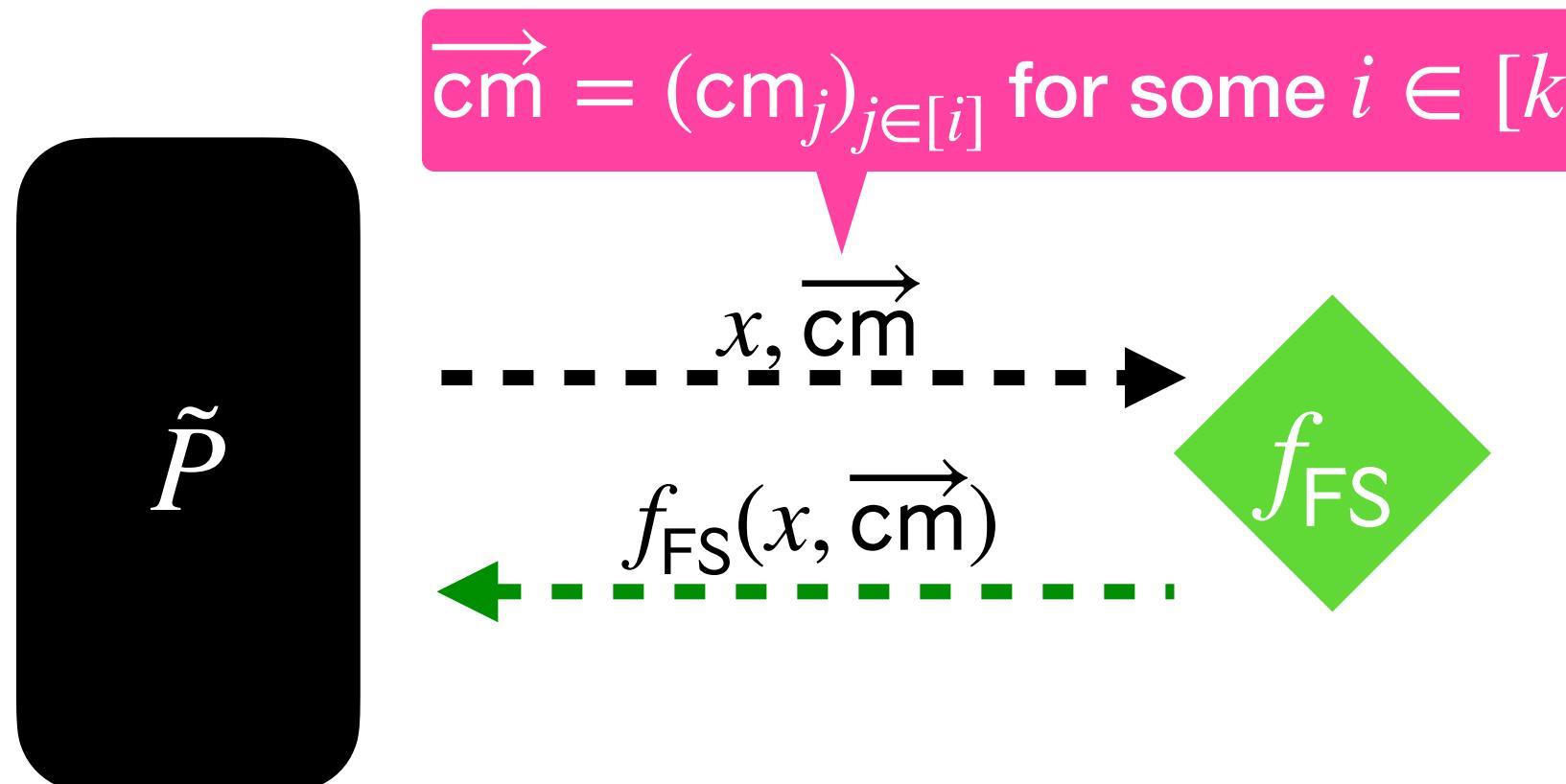
A natural attempt

Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

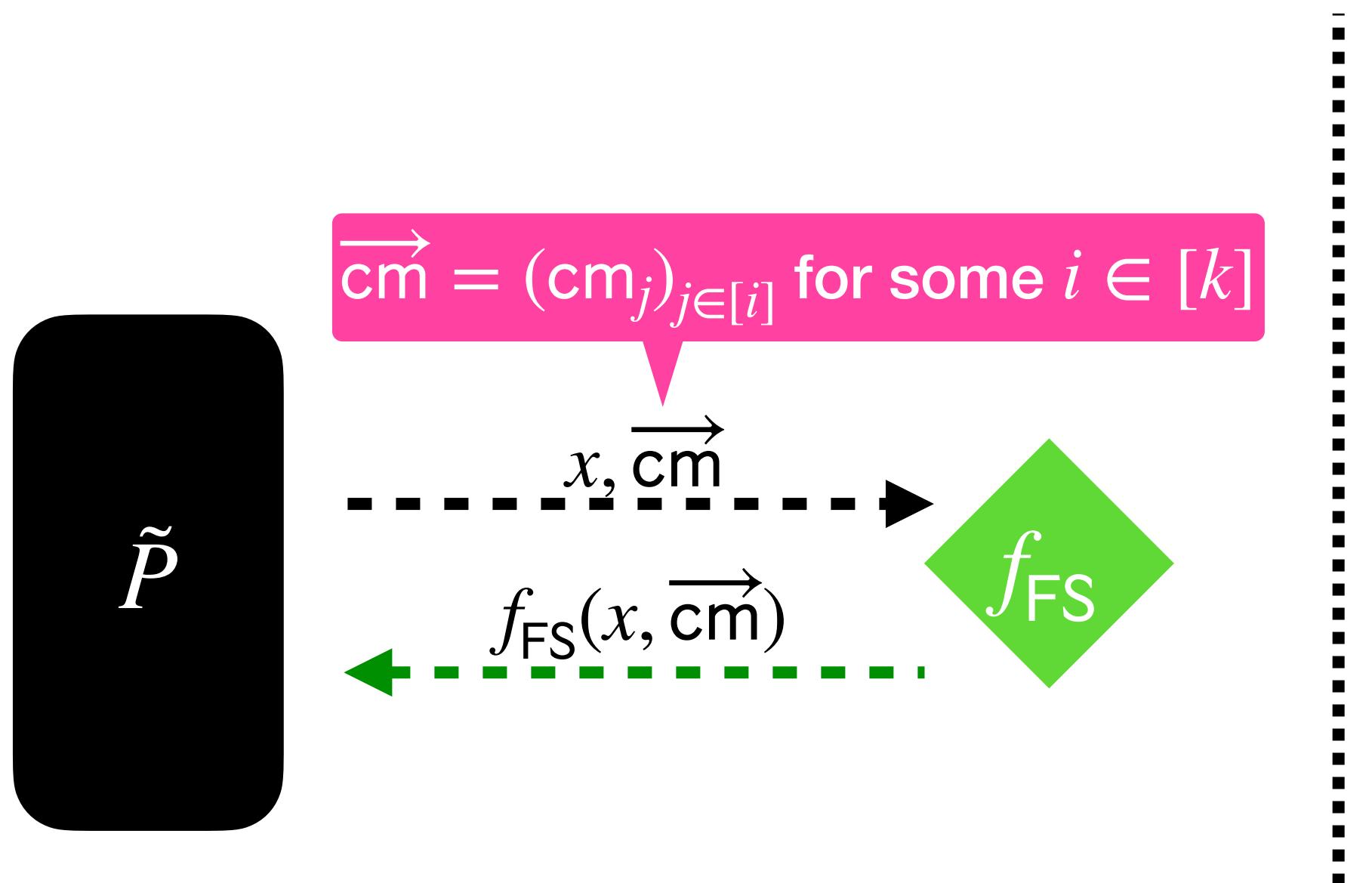


Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt



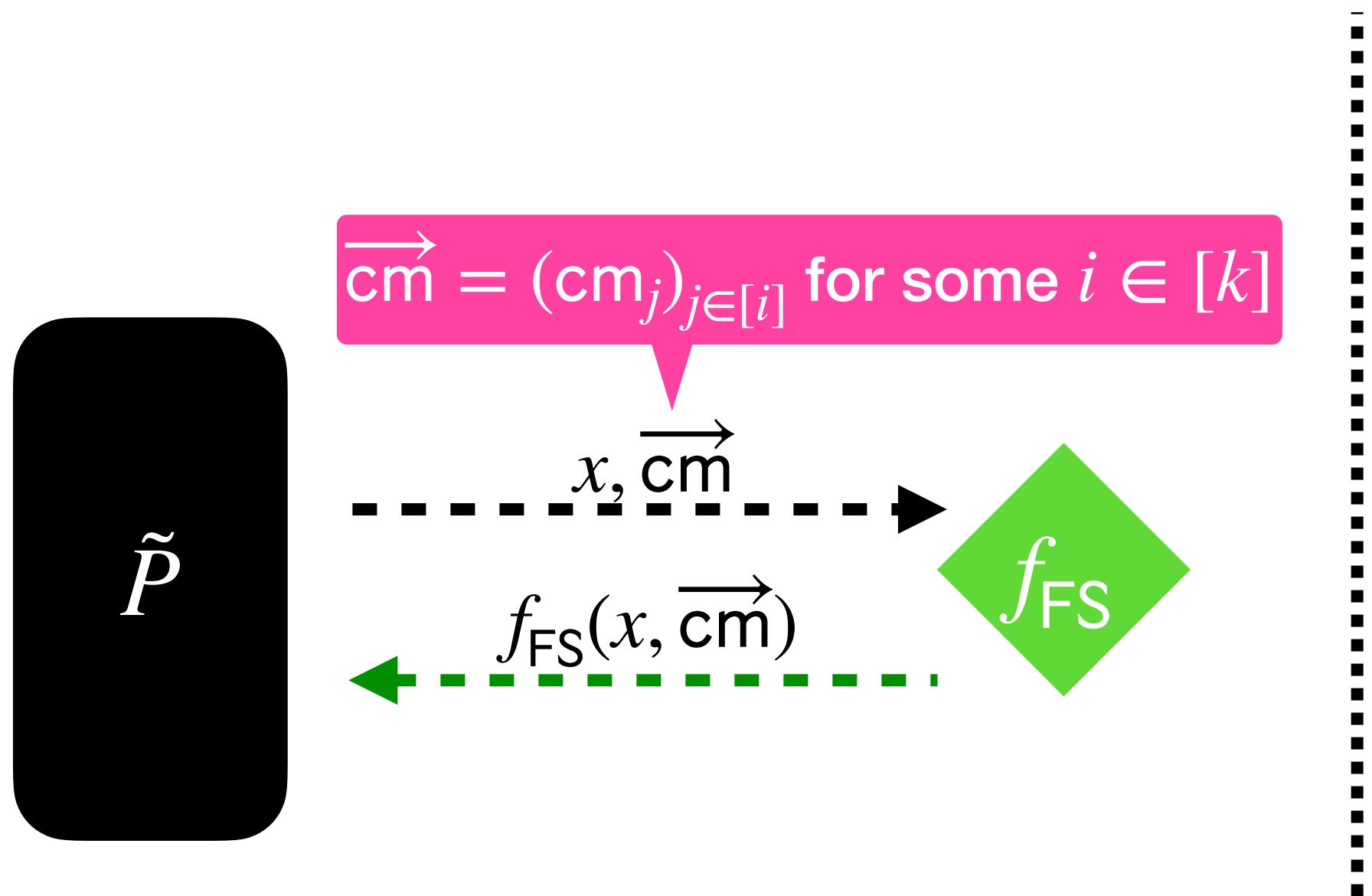
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



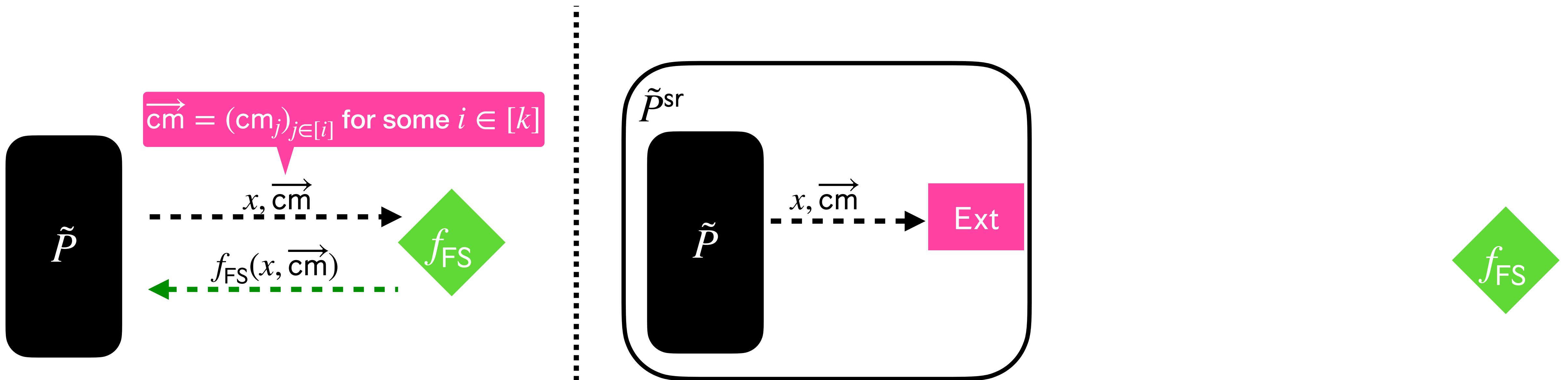
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



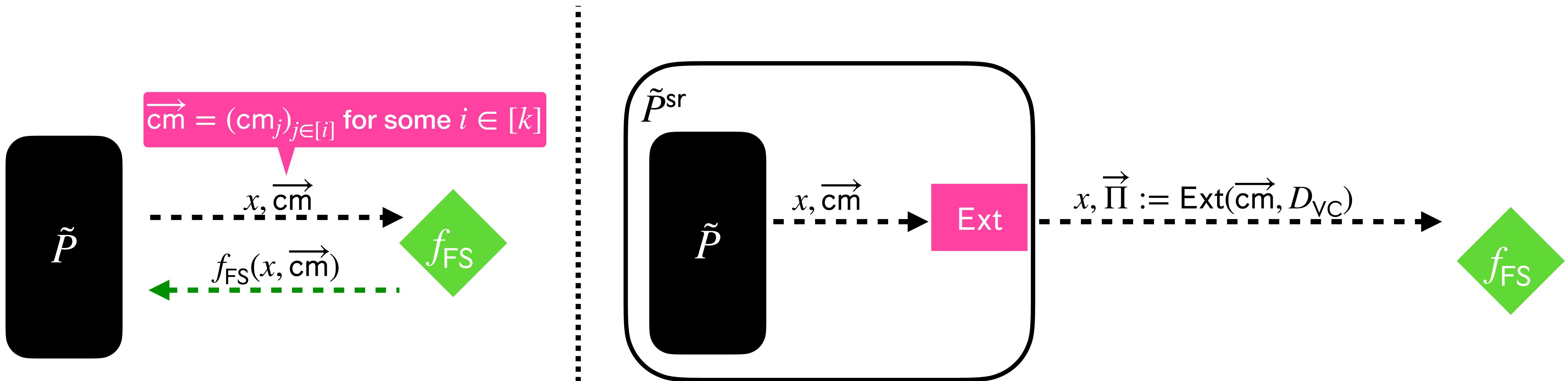
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



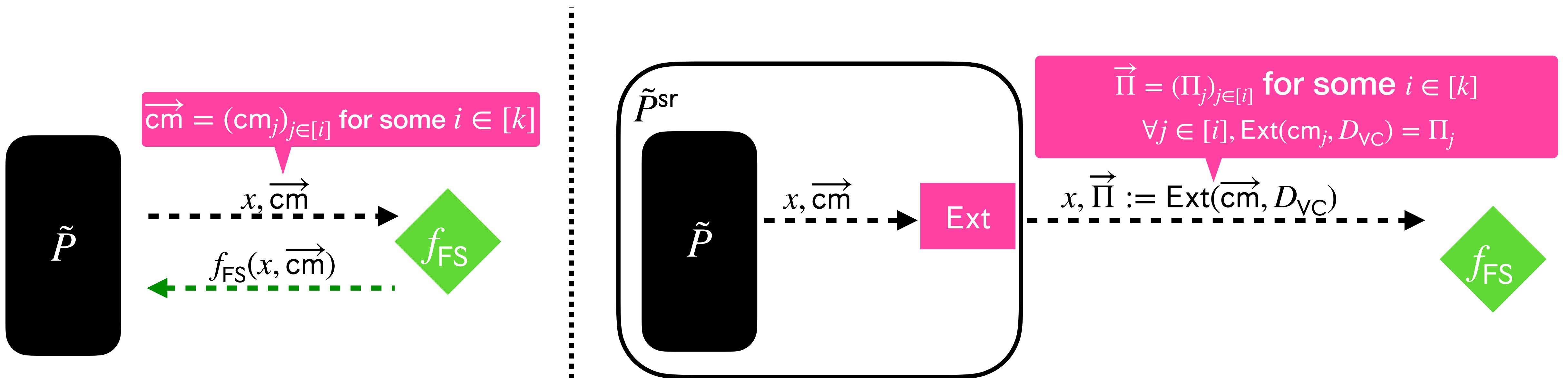
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



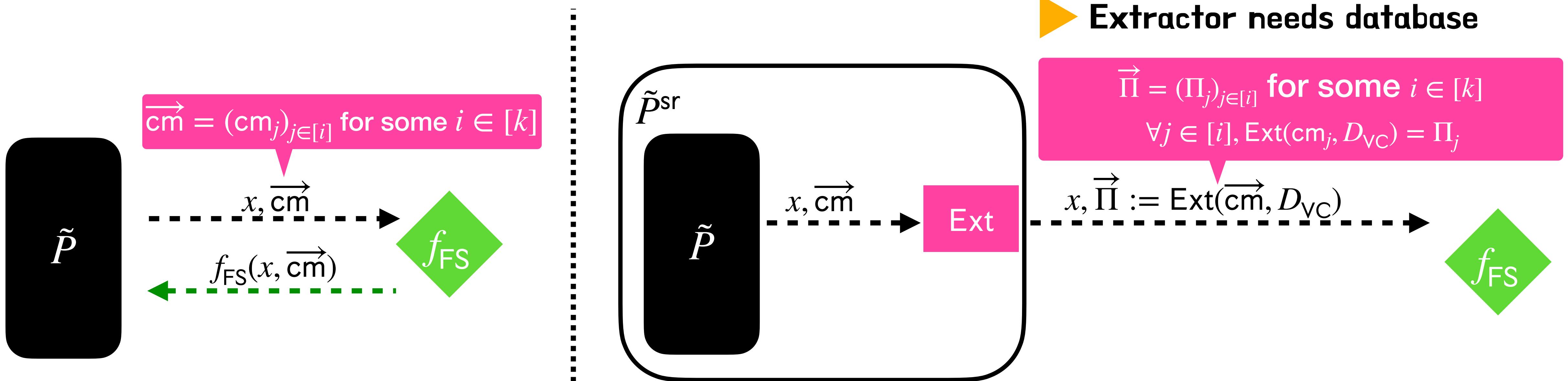
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



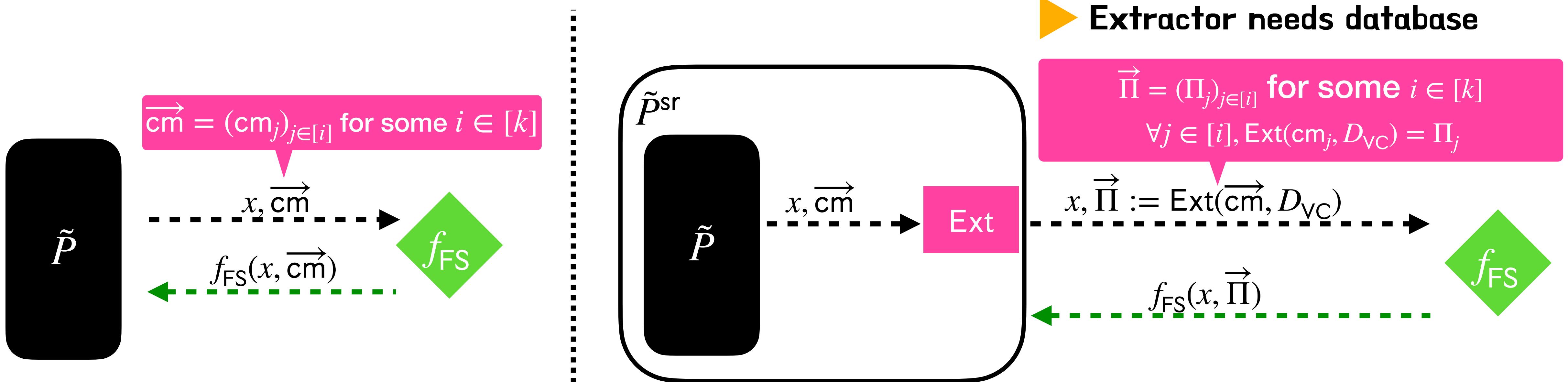
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



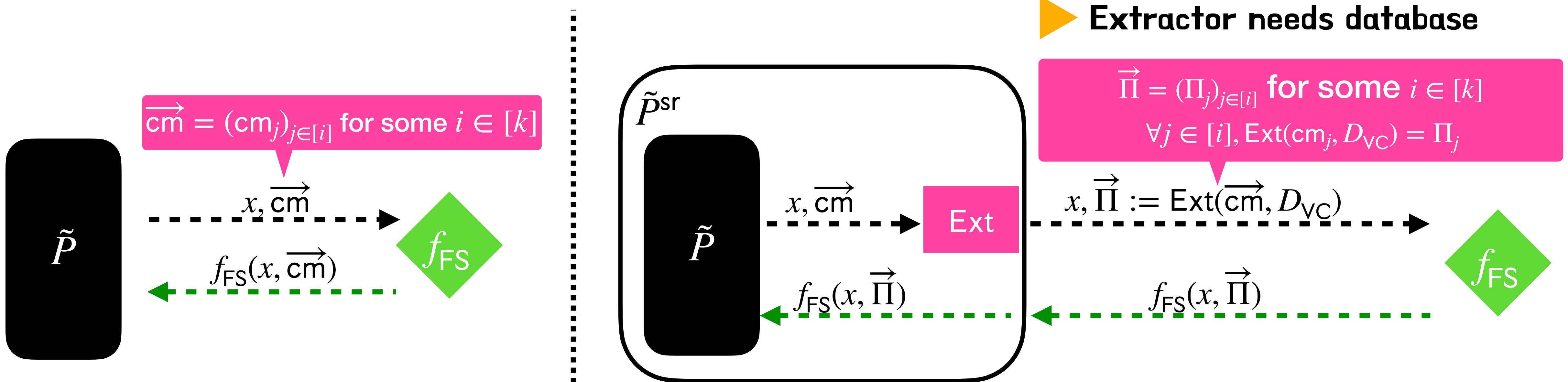
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



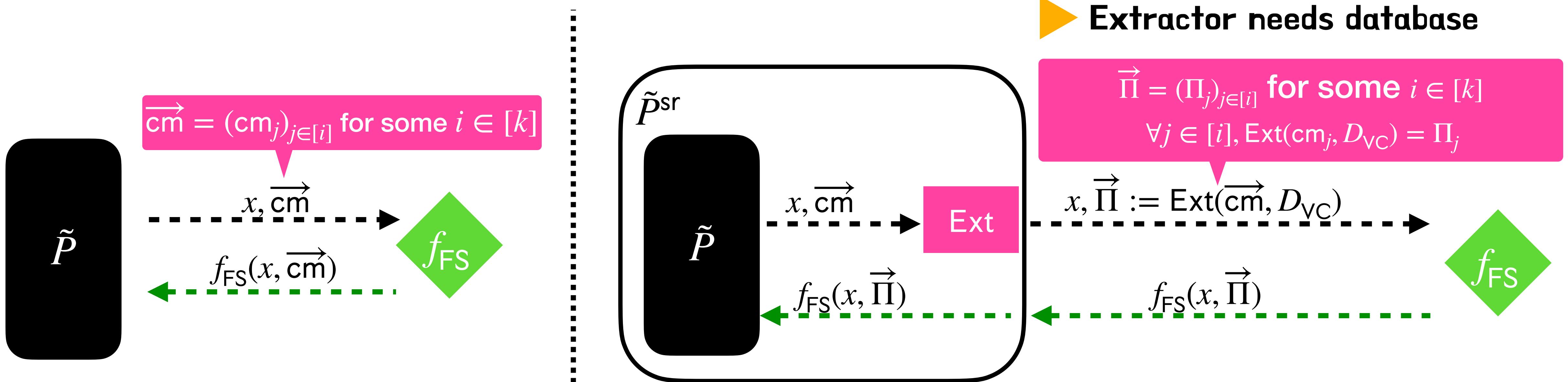
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

A natural attempt

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



But \tilde{P} can query $\text{cm}_1 \neq \text{cm}'_1$, with the same underlying message Π_1 .

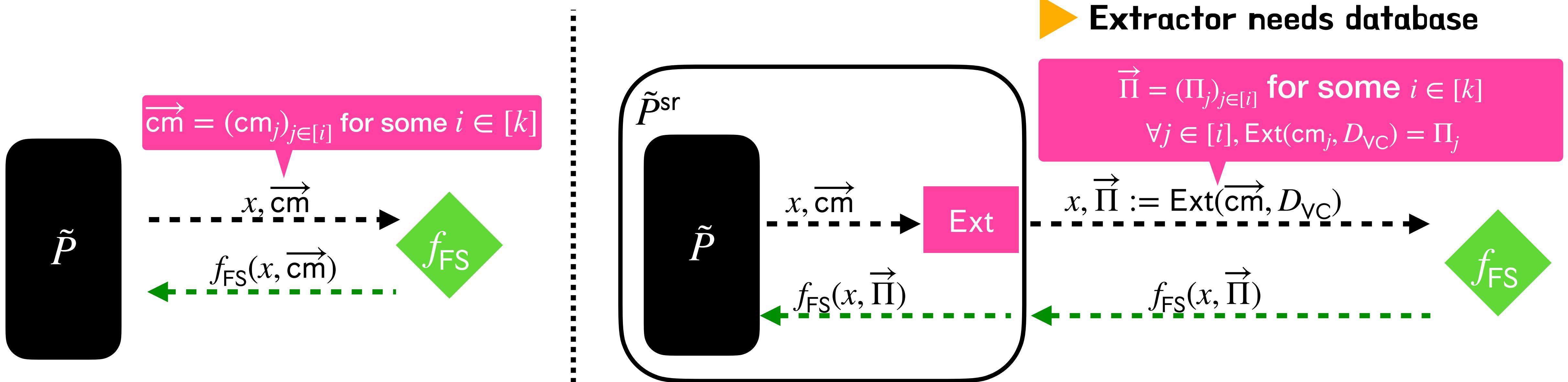
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

Instead...

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



But \tilde{P} can query $cm_1 \neq cm'_1$, with the same underlying message Π_1 .

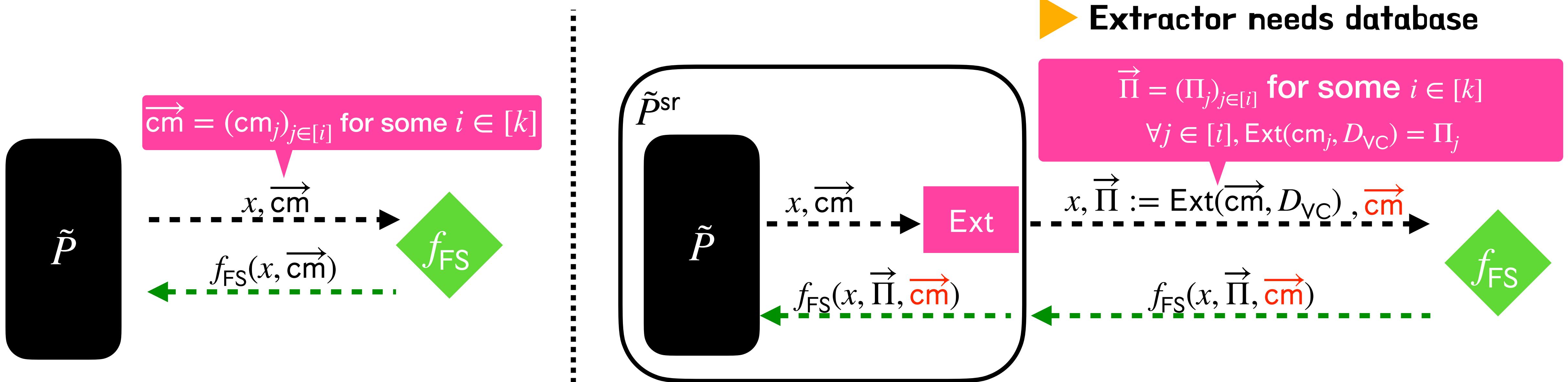
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

Instead...

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



But \tilde{P} can query $cm_1 \neq cm'_1$, with the same underlying message Π_1 .

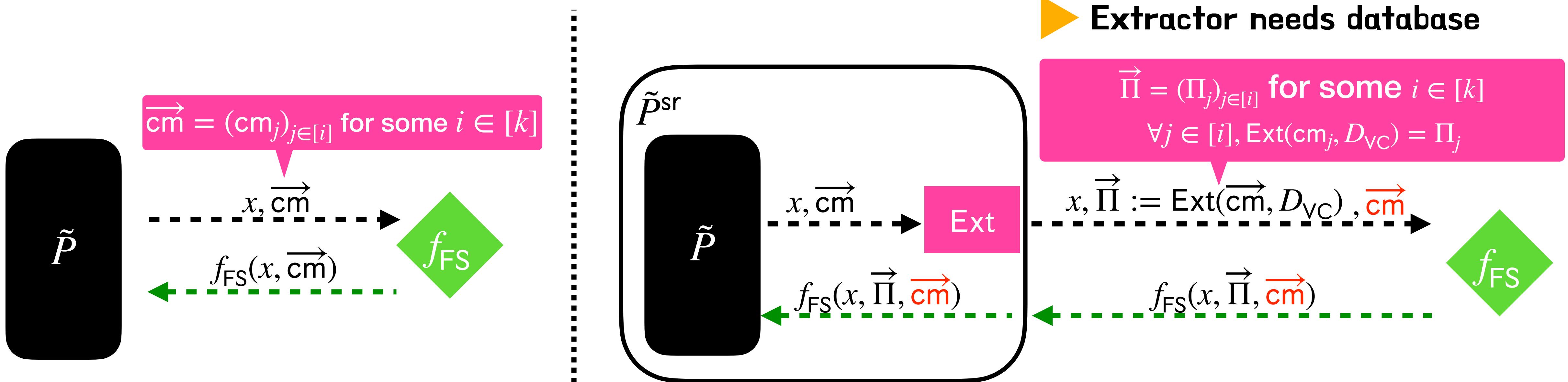
Construction of \tilde{P}^{sr}

Classical case

Step 2: how to answer f_{FS} queries?

Instead...

\tilde{P}^{sr} needs to query f_{FS} on IOR strings



But \tilde{P} can query $cm_1 \neq cm'_1$, with the same underlying message Π_1 .

Omitted: actual PQSR definition includes salt

Construction of \tilde{P}^{sr}

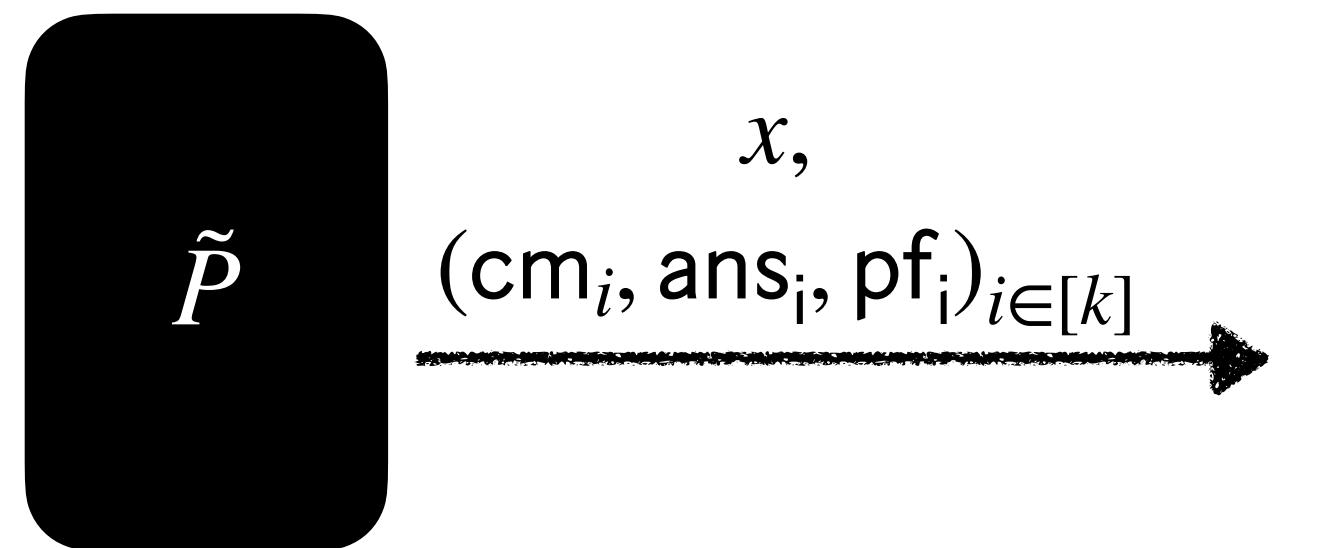
Classical case

Step 3: how to derive the output

Construction of \tilde{P}^{sr}

Classical case

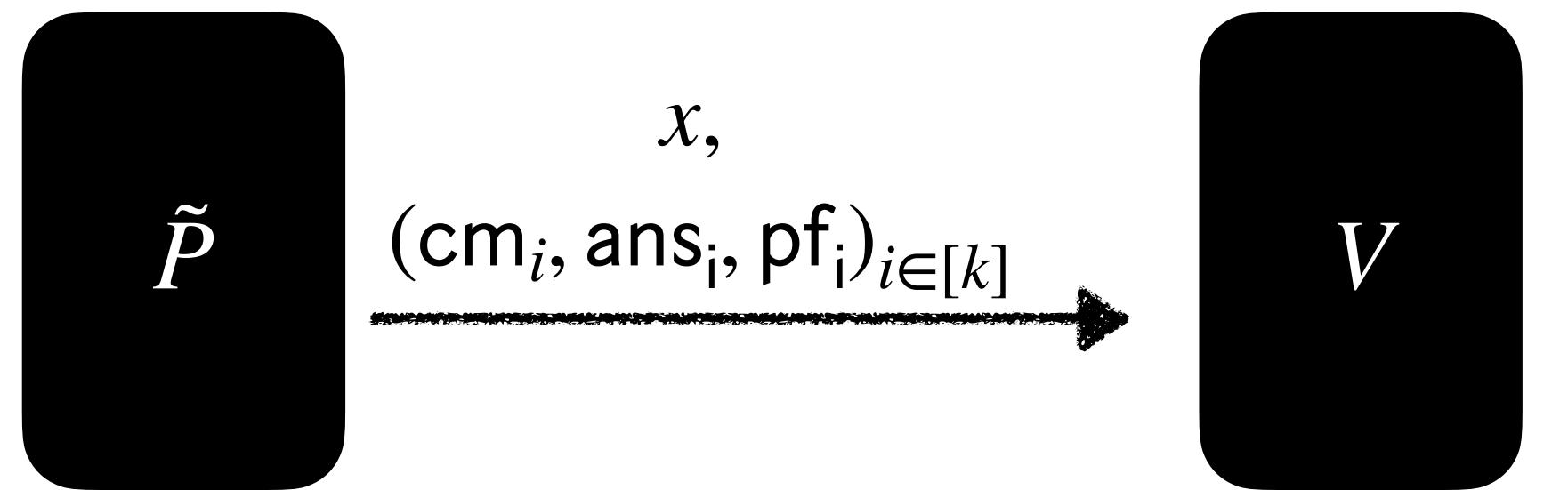
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

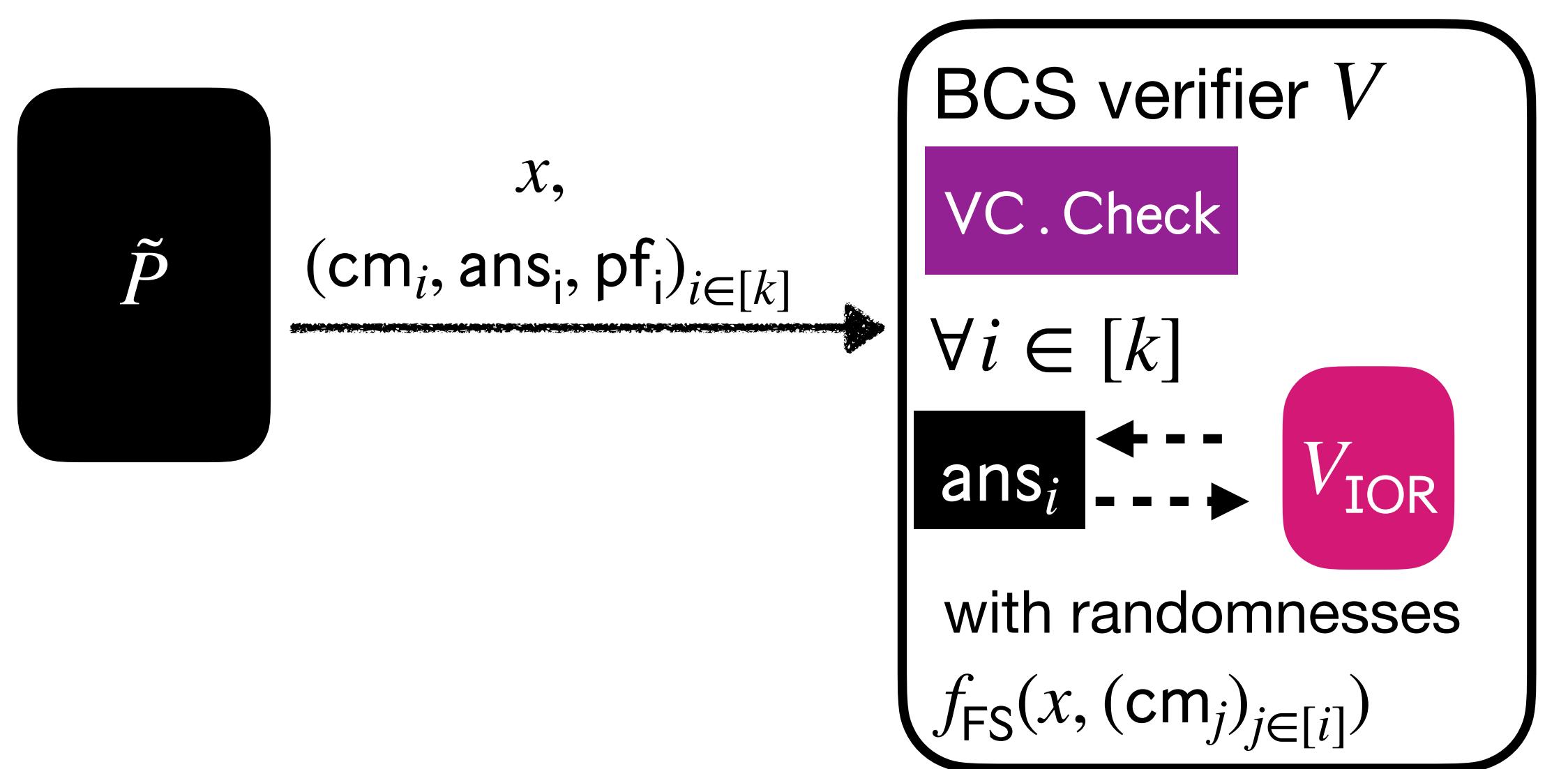
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

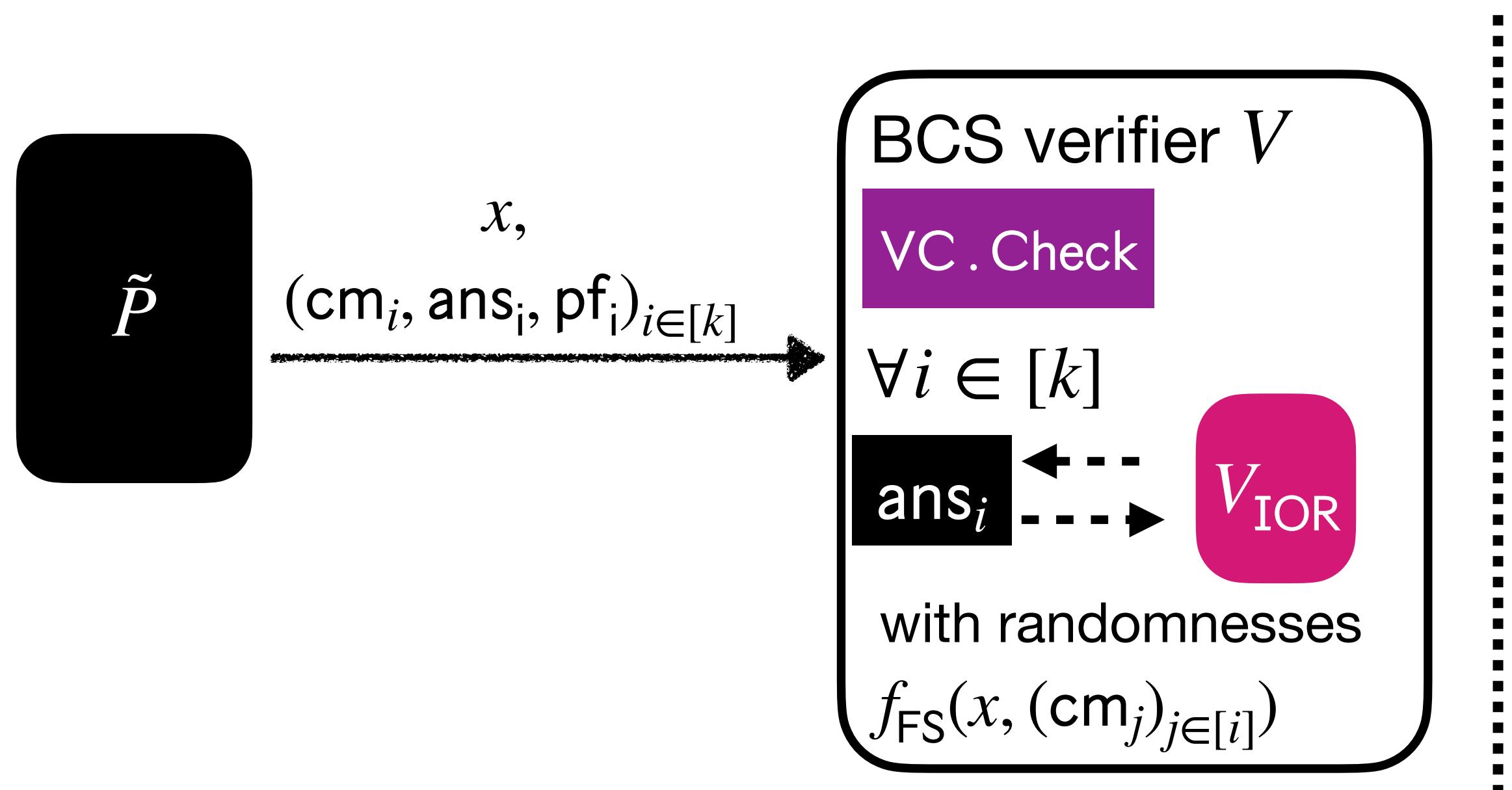
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

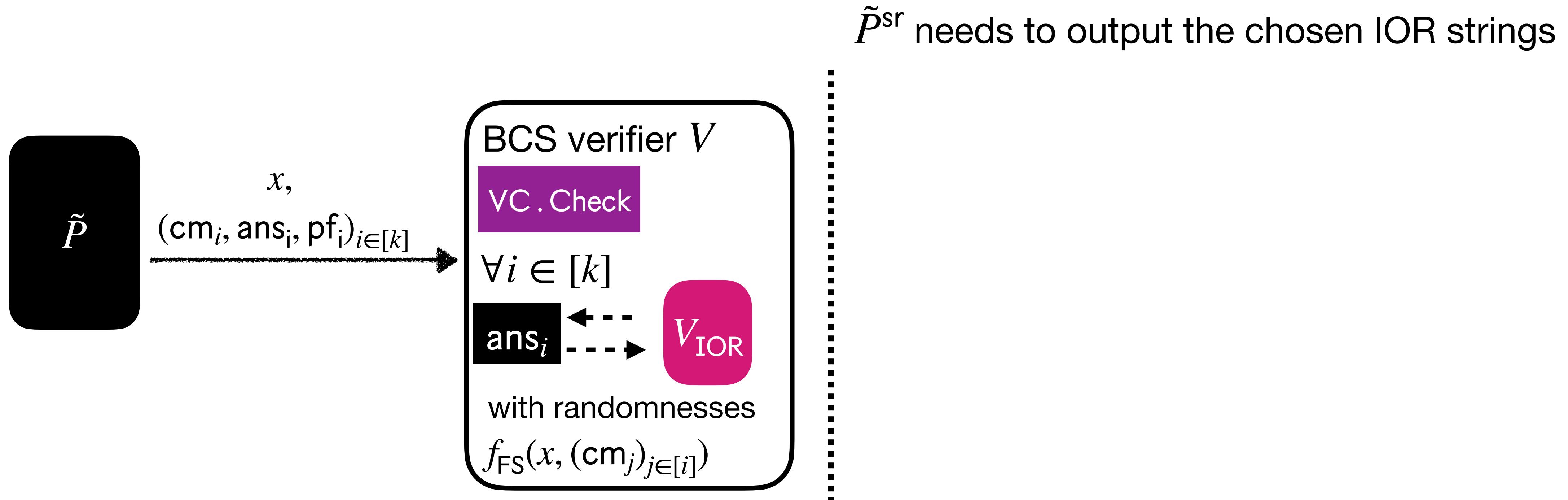
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

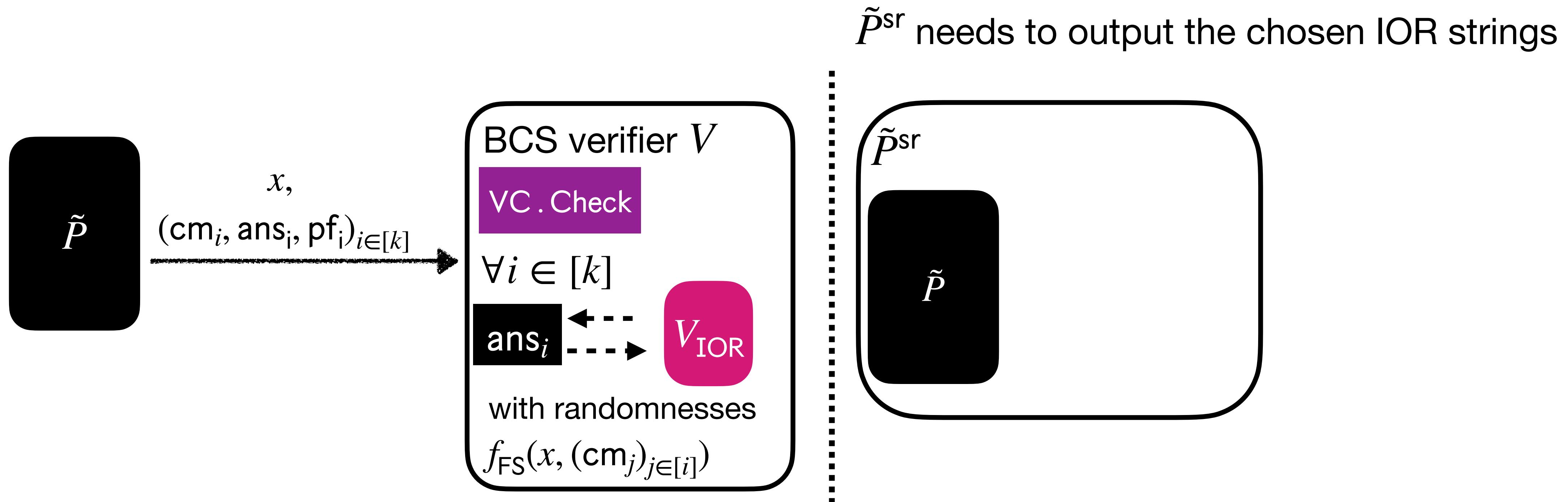
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

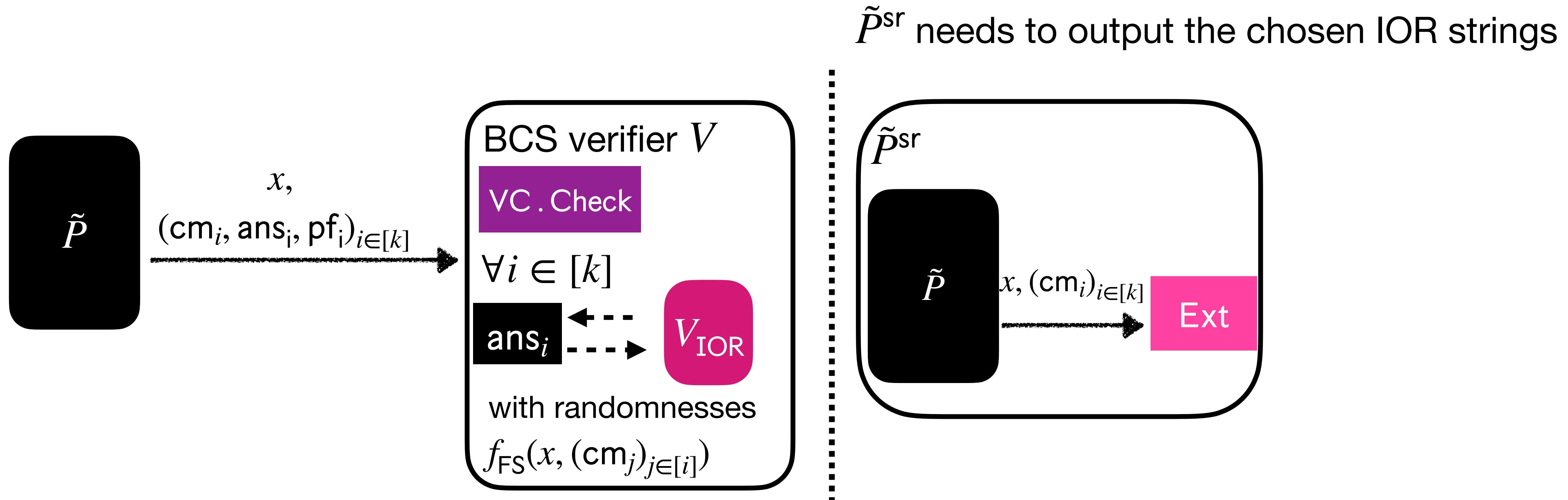
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

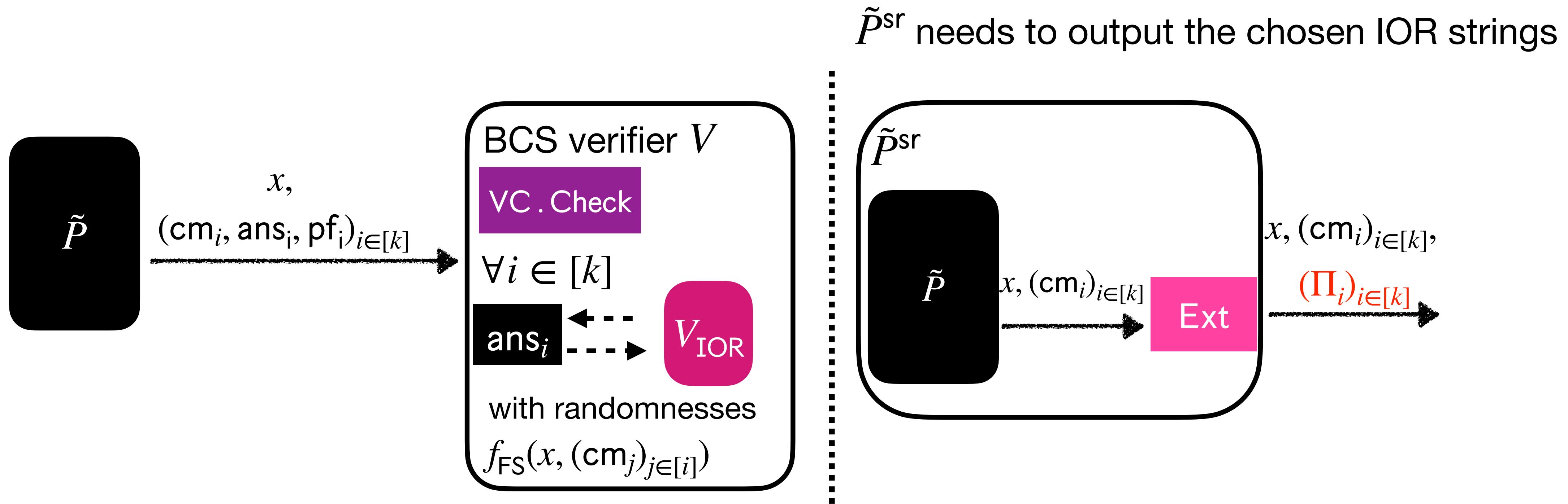
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

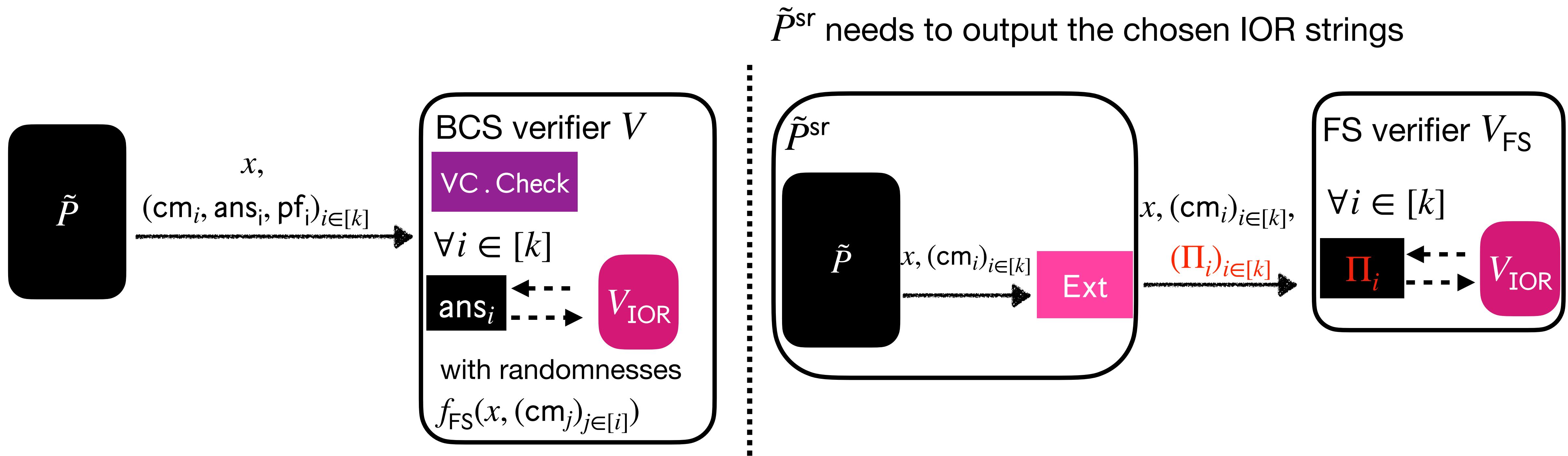
Step 3: how to derive the output



Construction of \tilde{P}^{sr}

Classical case

Step 3: how to derive the output



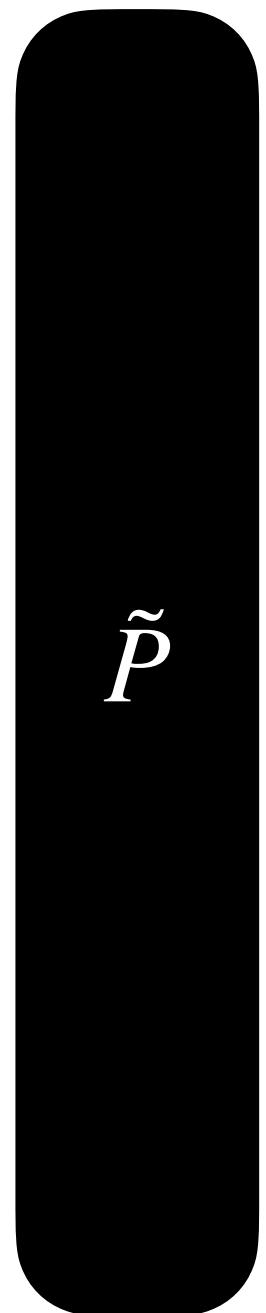
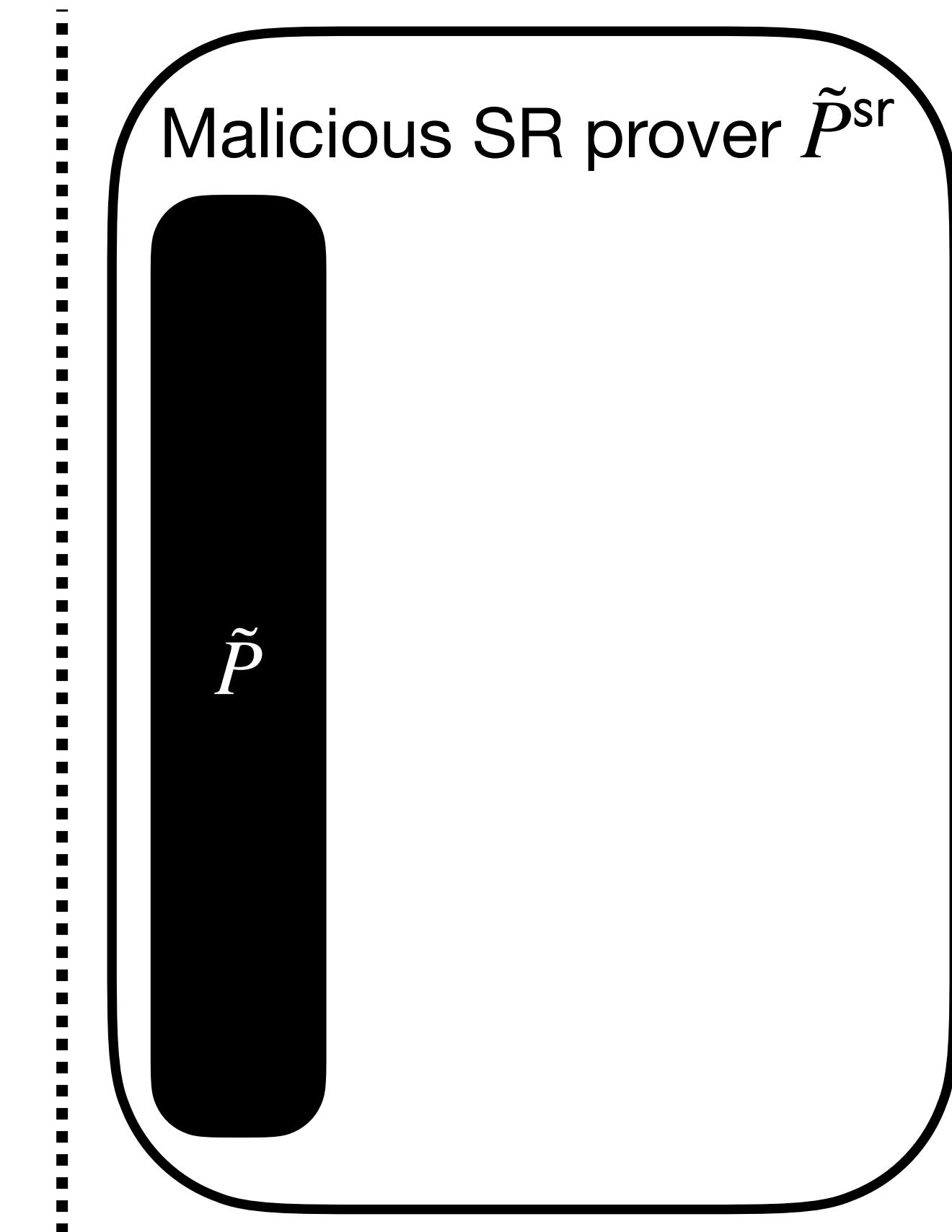
The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

Malicious BCS prover

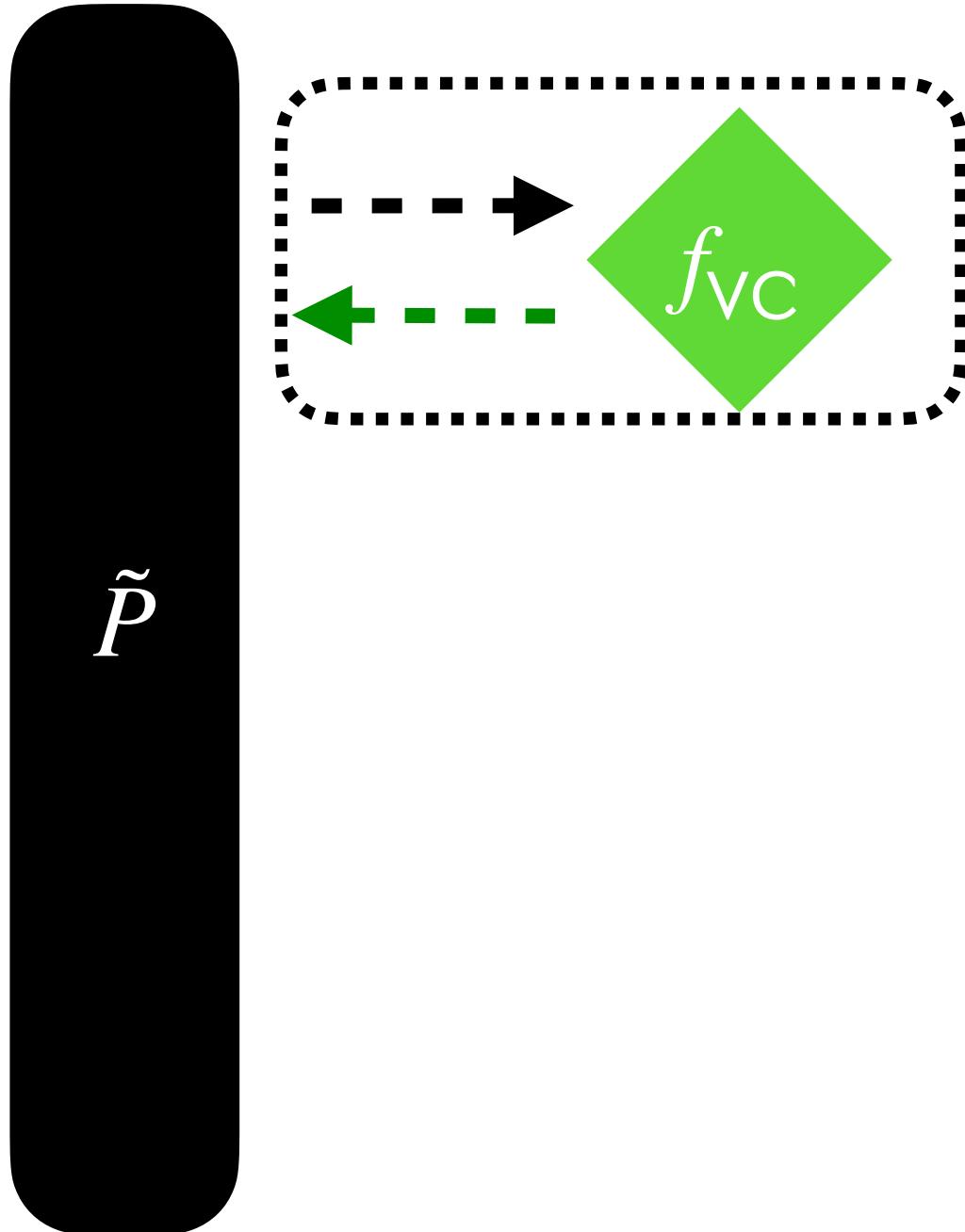


The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

How to answer f_{VC} queries?

Malicious BCS prover

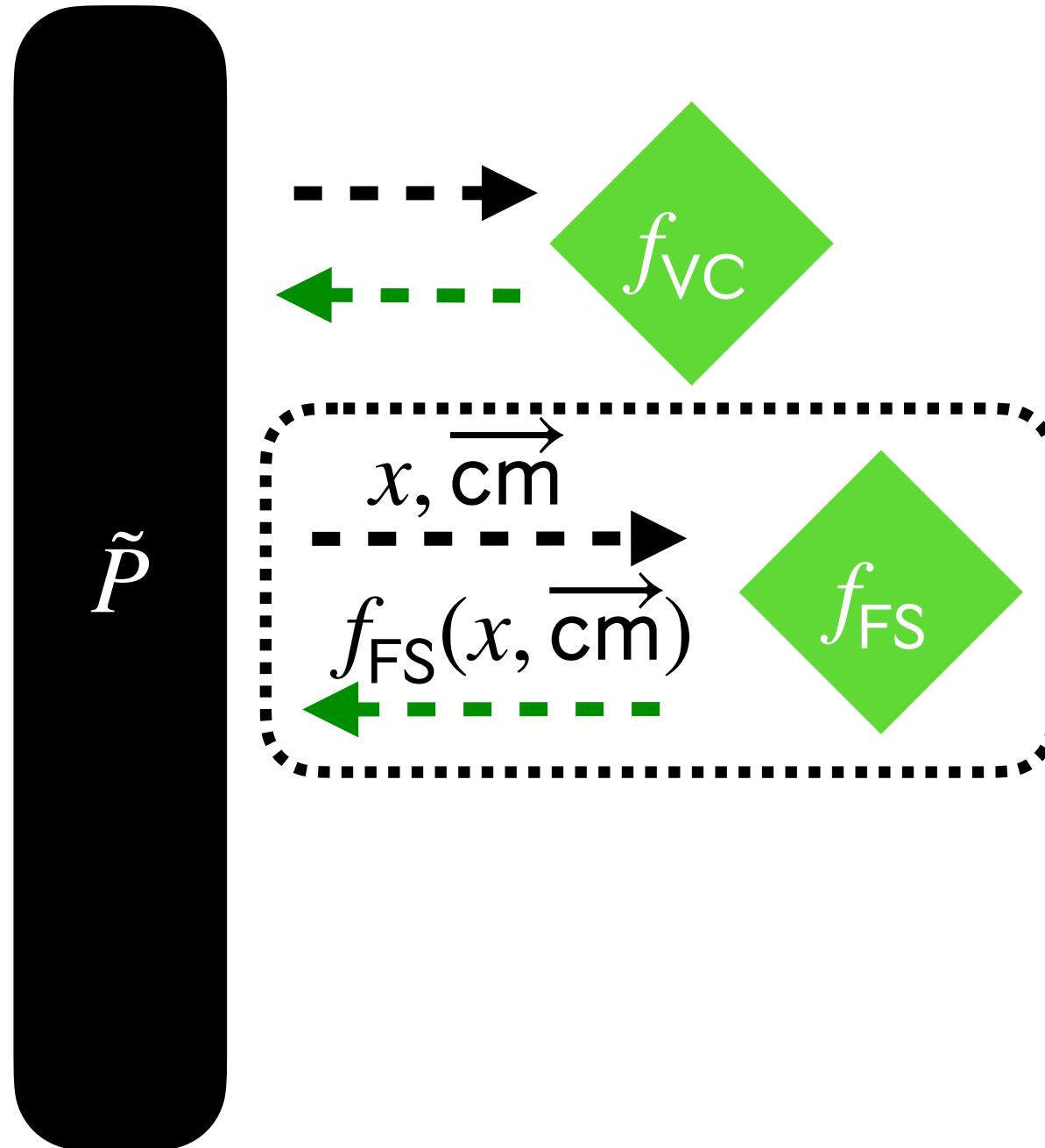
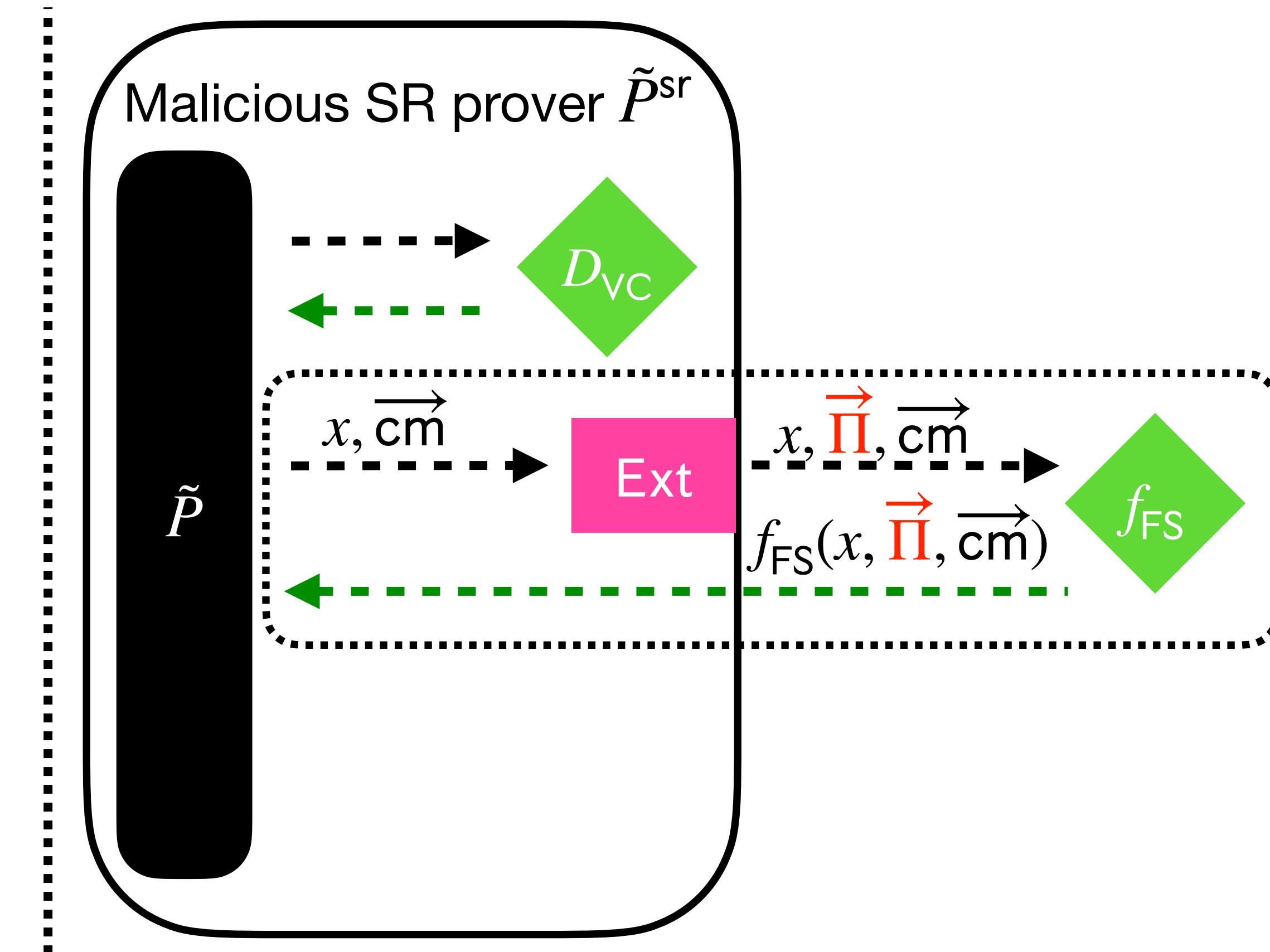


The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

How to answer f_{FS} queries?

Malicious BCS prover

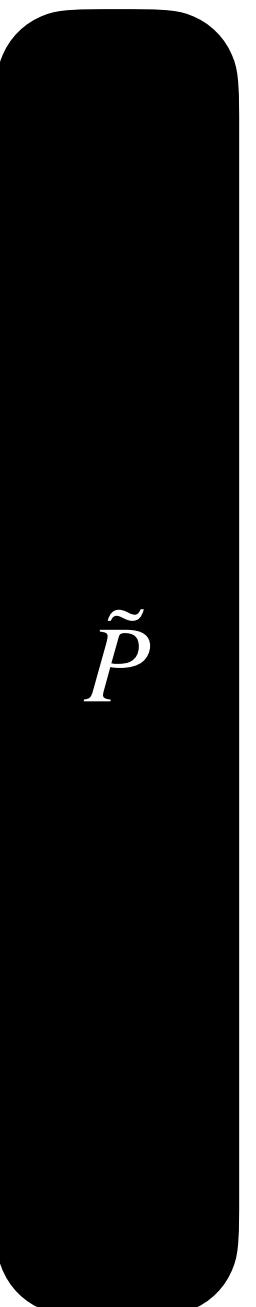
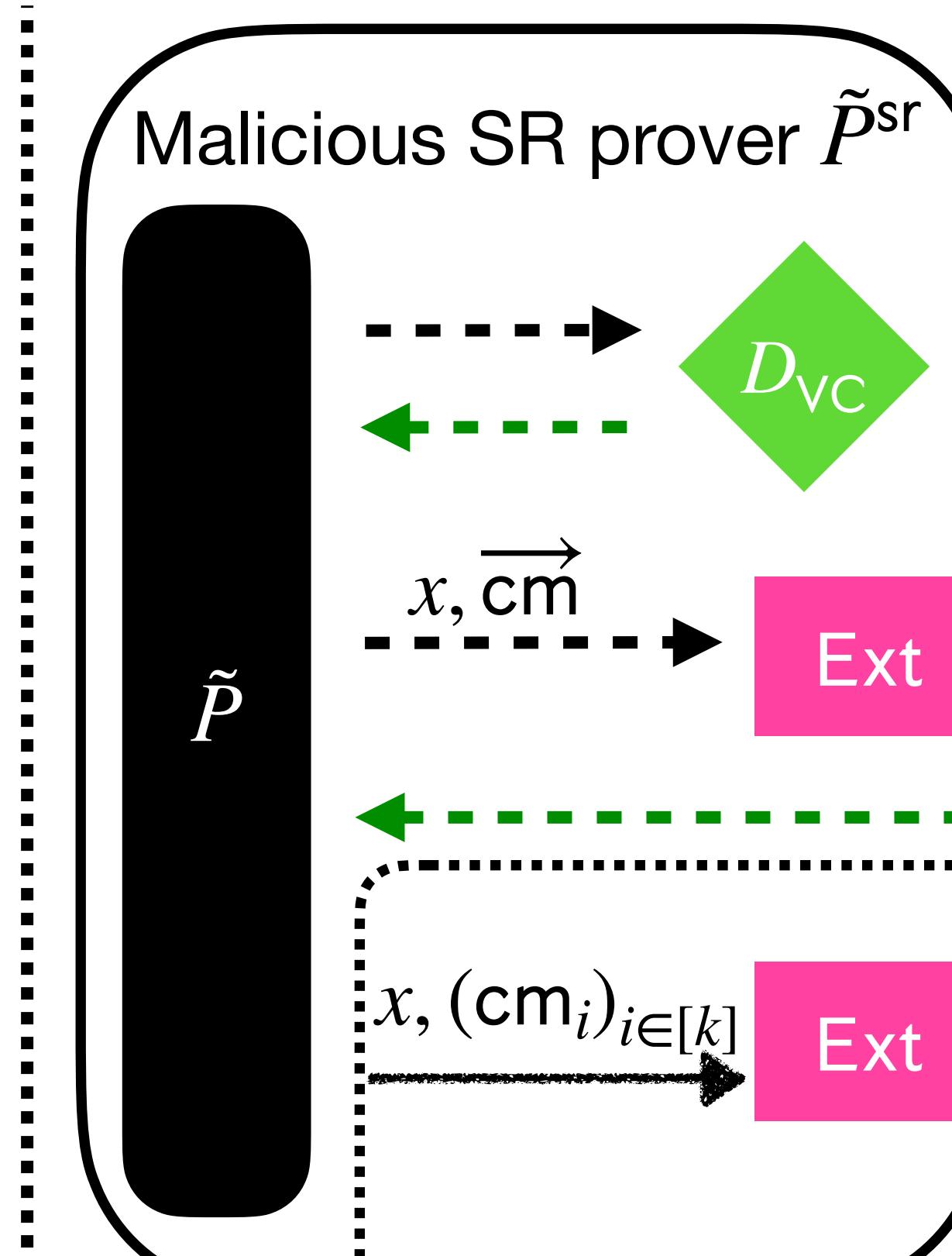
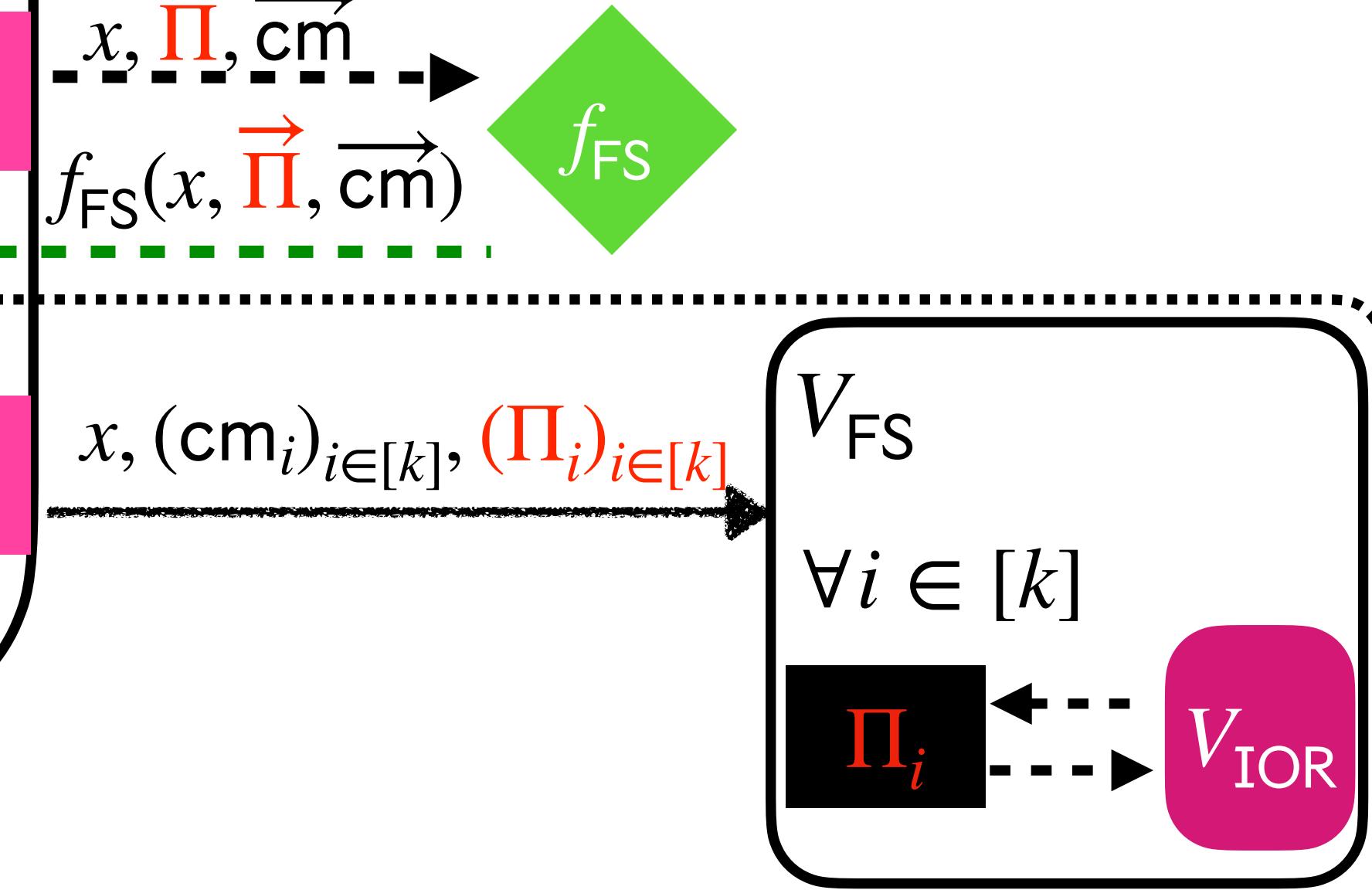


The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

How to derive the output of \tilde{P}^{sr} from the output of \tilde{P} ?

Malicious BCS prover

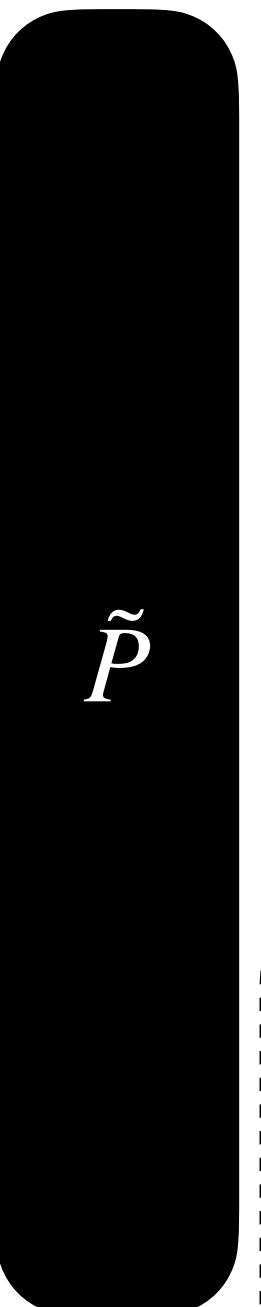
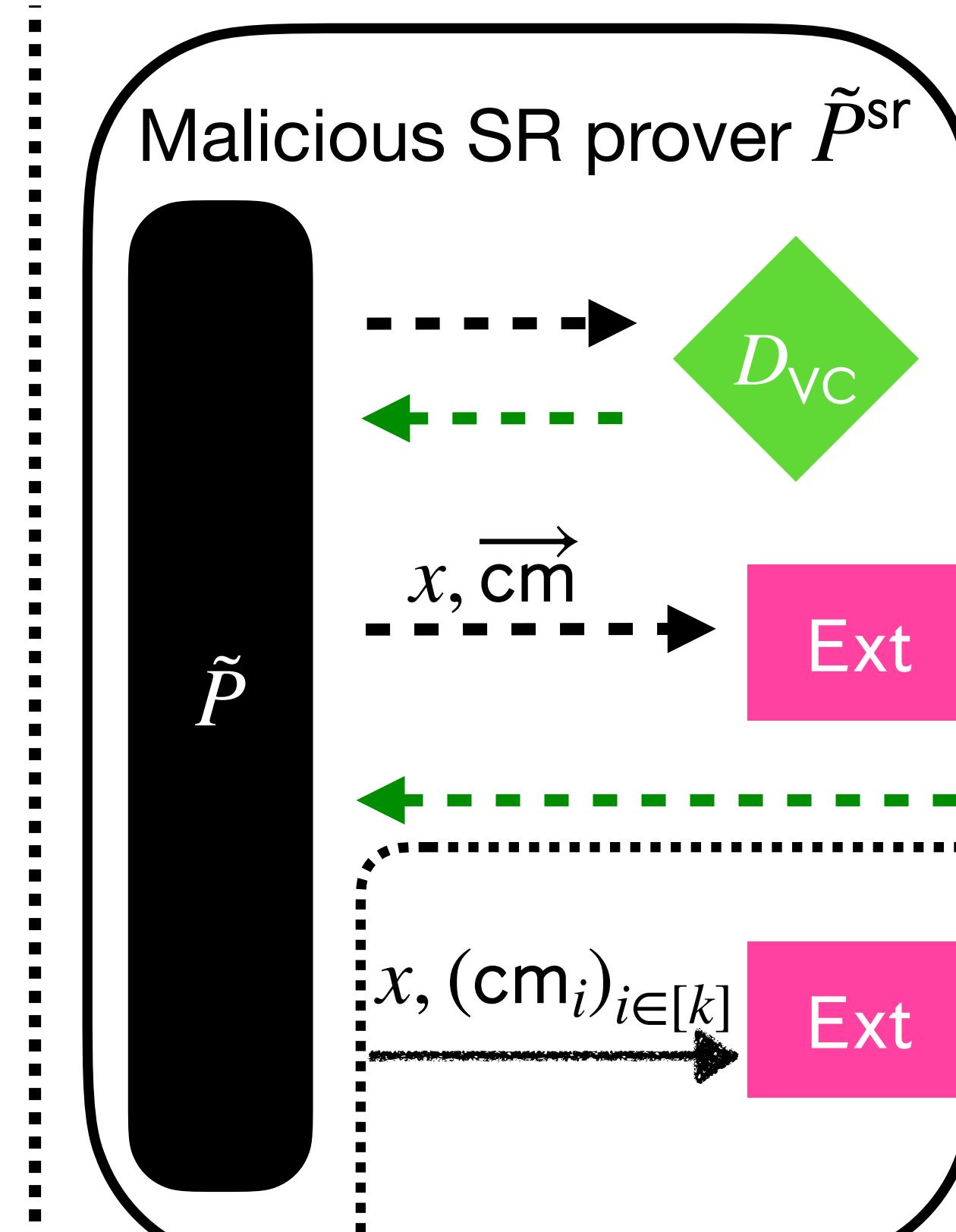
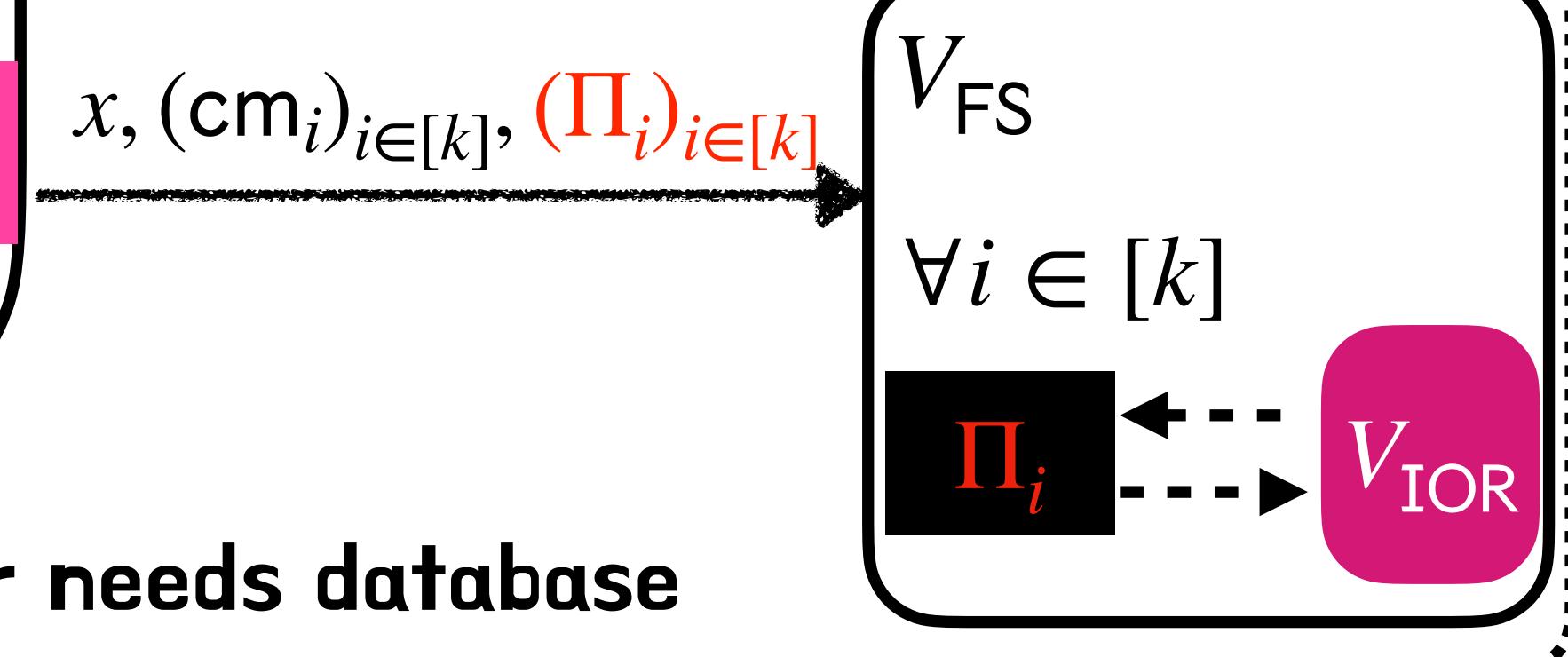


The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

How to derive the output of \tilde{P}^{sr} from the output of \tilde{P} ?

Malicious BCS prover

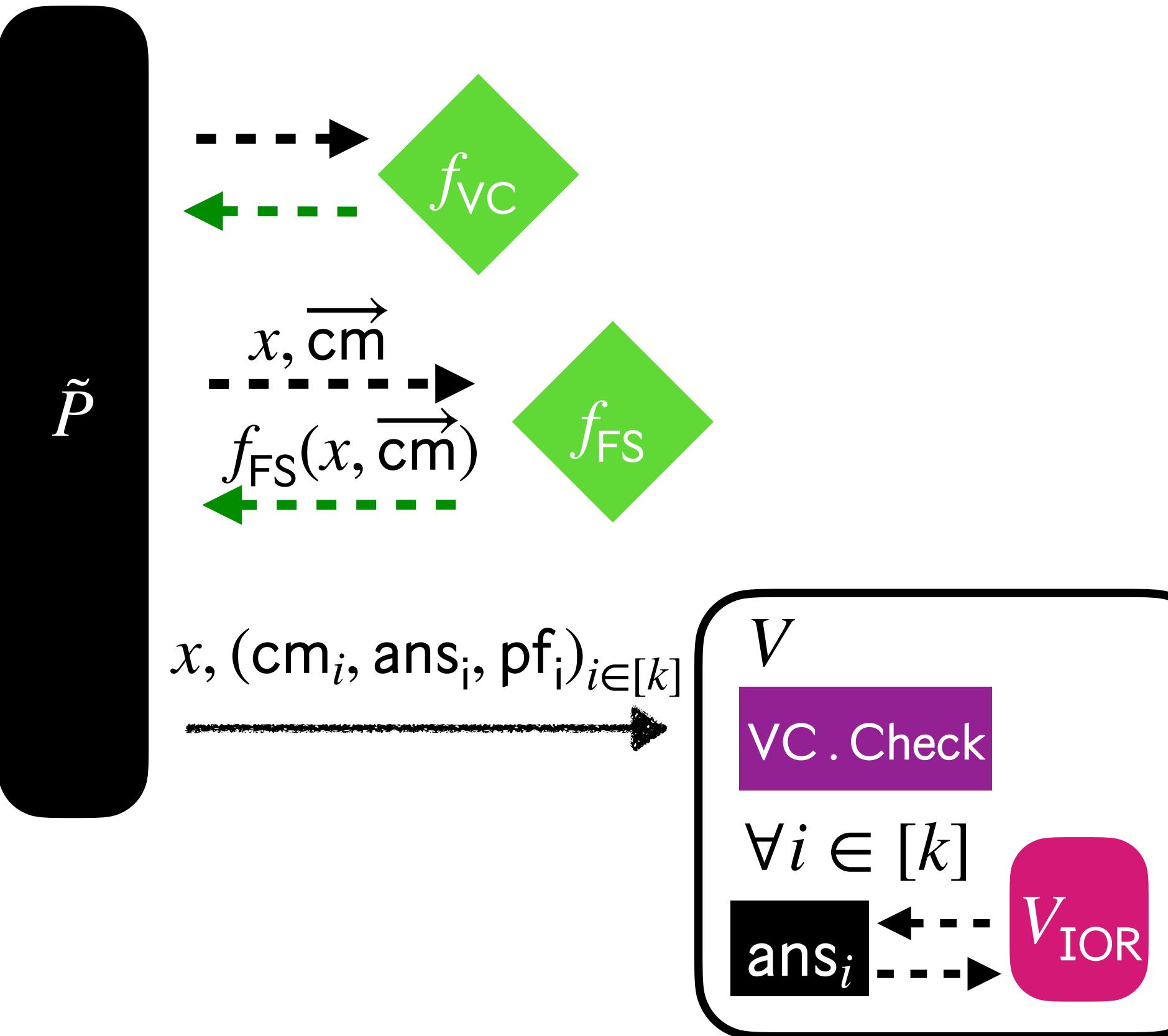
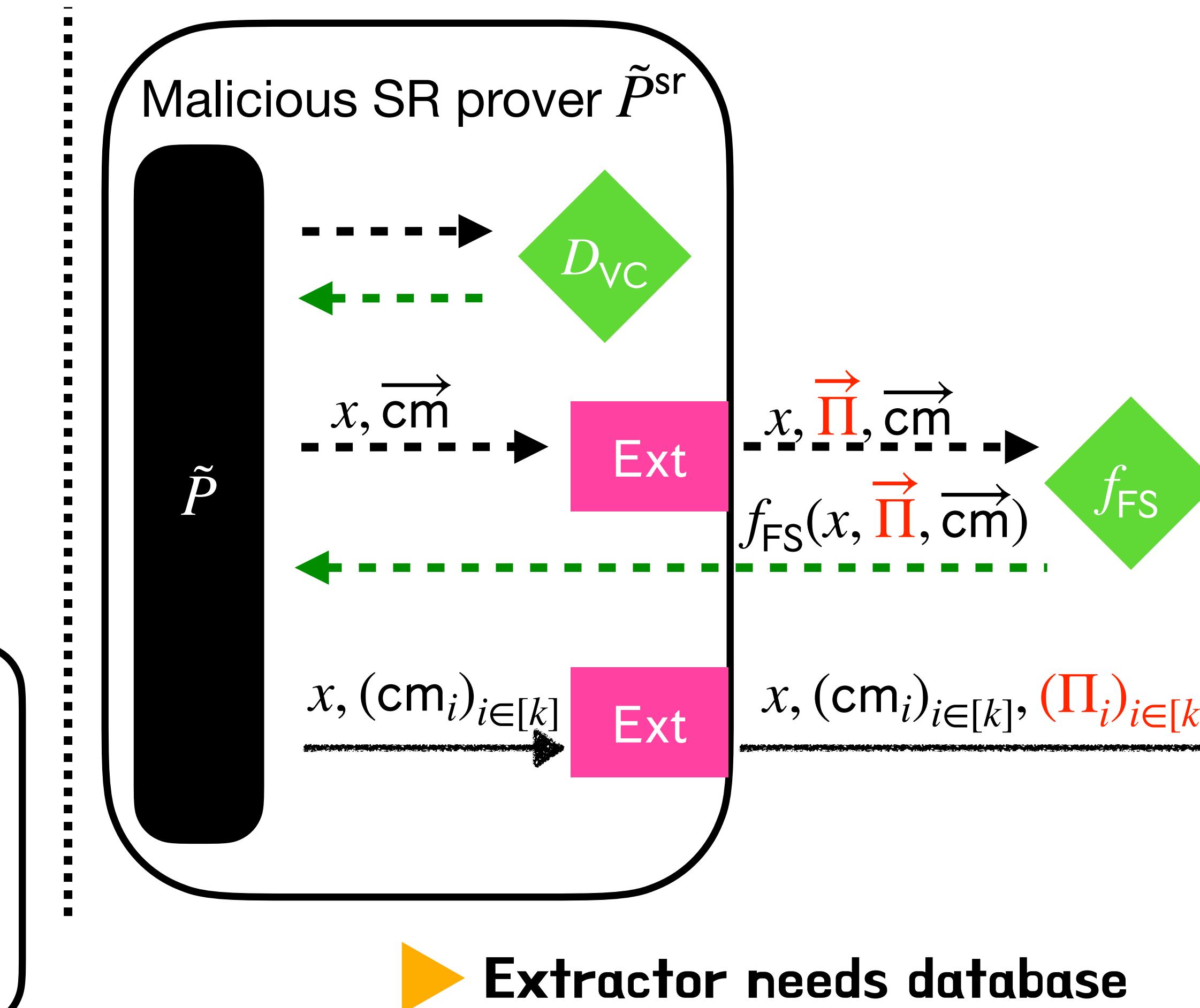


Extractor needs database

The construction in summary: \tilde{P}^{sr} simulates \tilde{P} .

Classical case

Malicious BCS prover



Goal: we want to show $\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$

Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Goal: we want to show

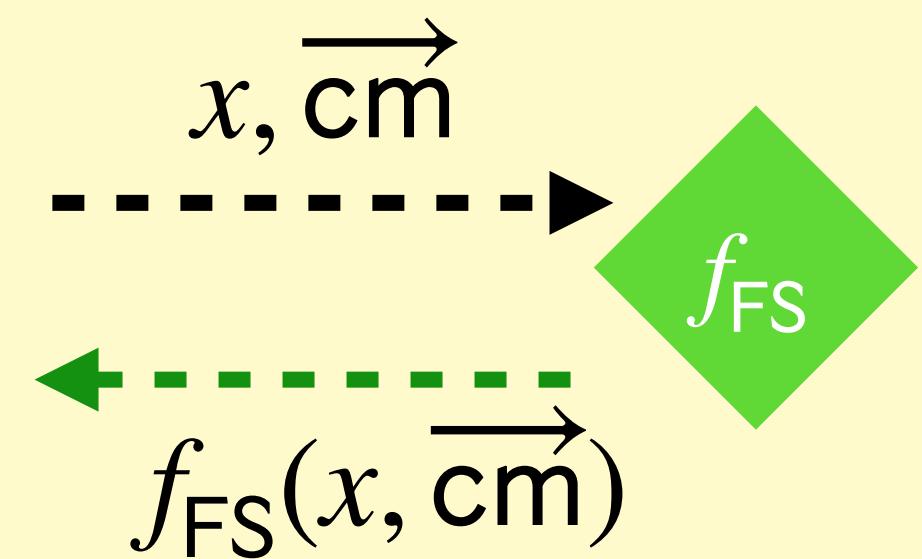
$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 1

Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

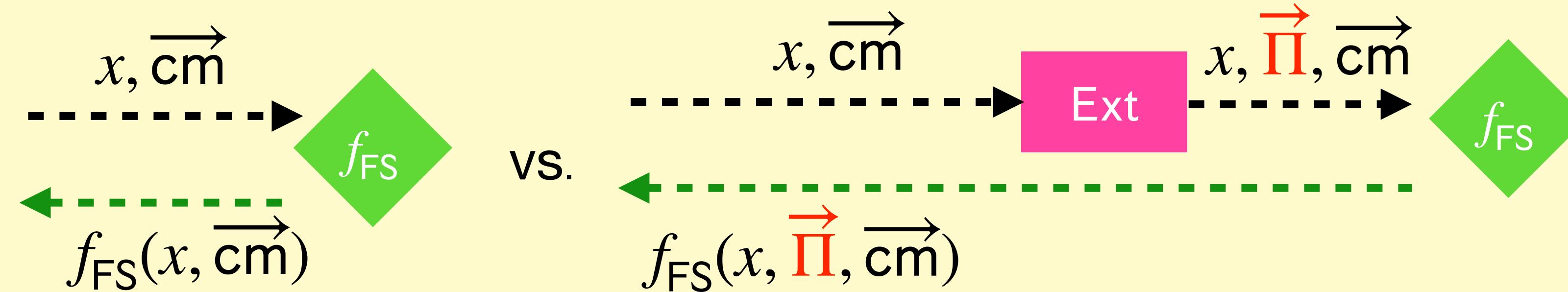
Difference 1



Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

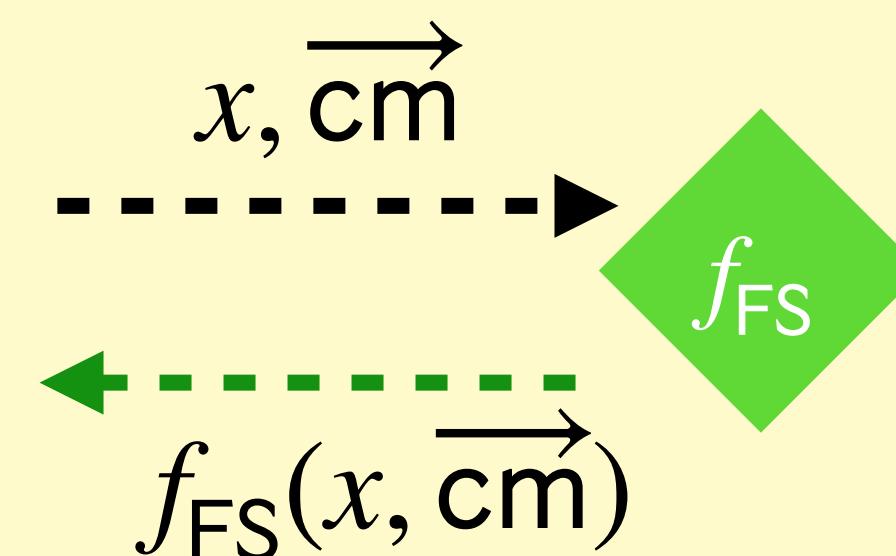
Difference 1



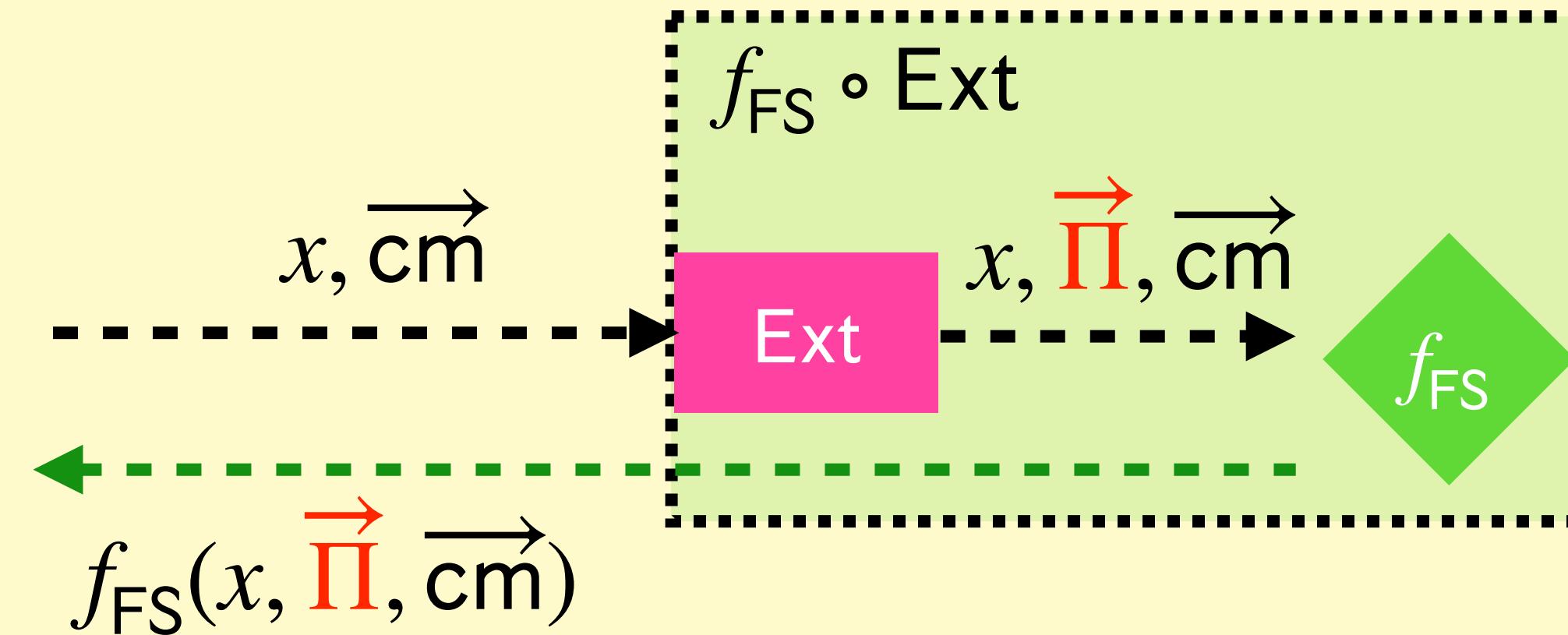
Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 1



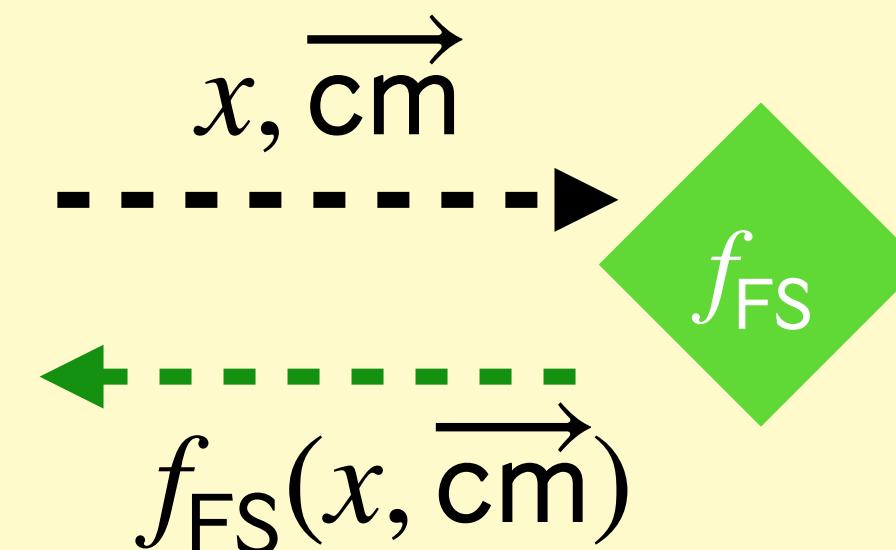
vs.



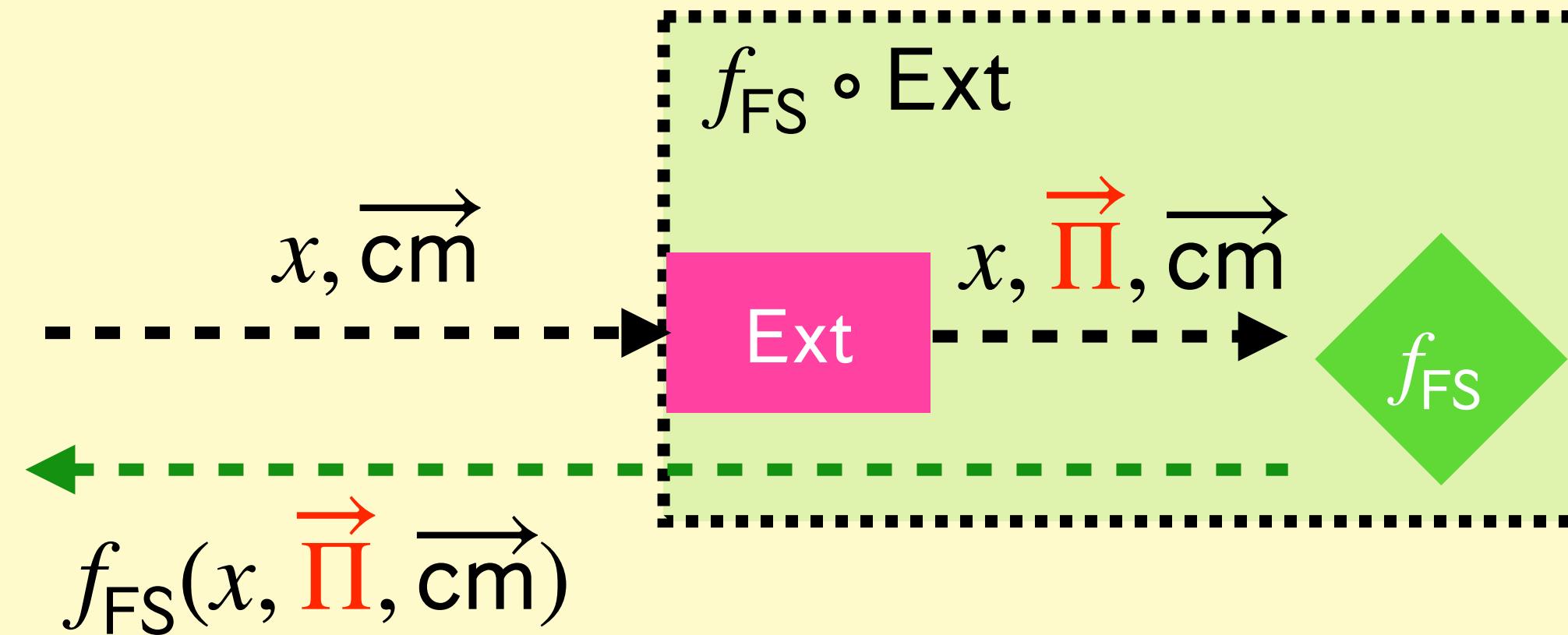
Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 1



vs.

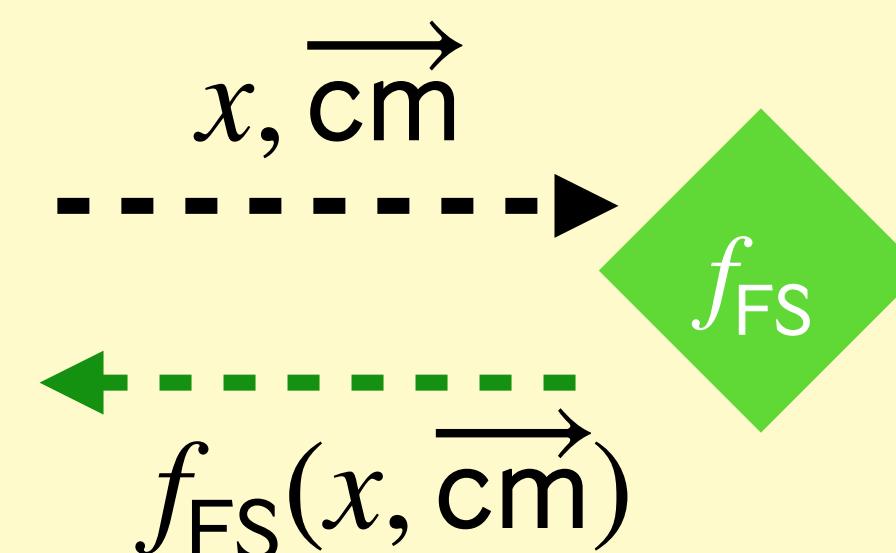


VC Property 1: Online consistency

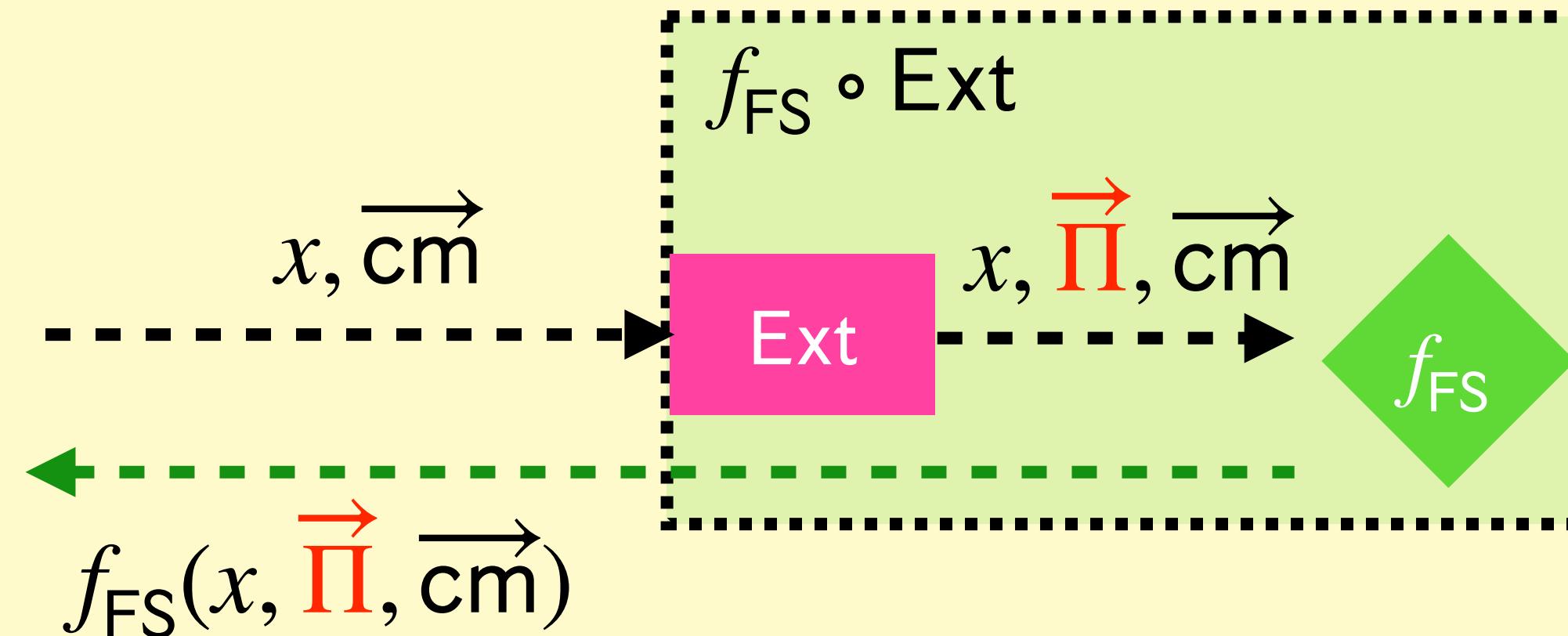
Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

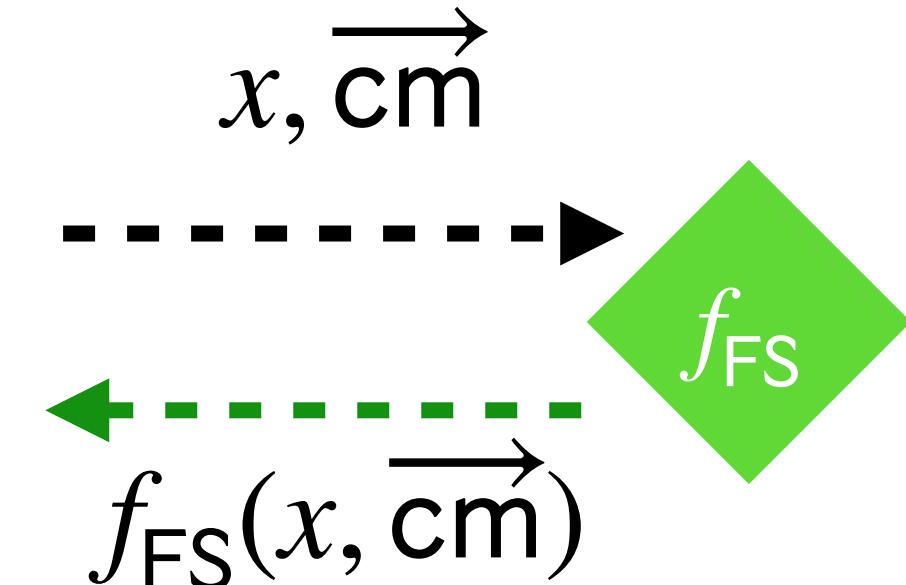
Difference 1



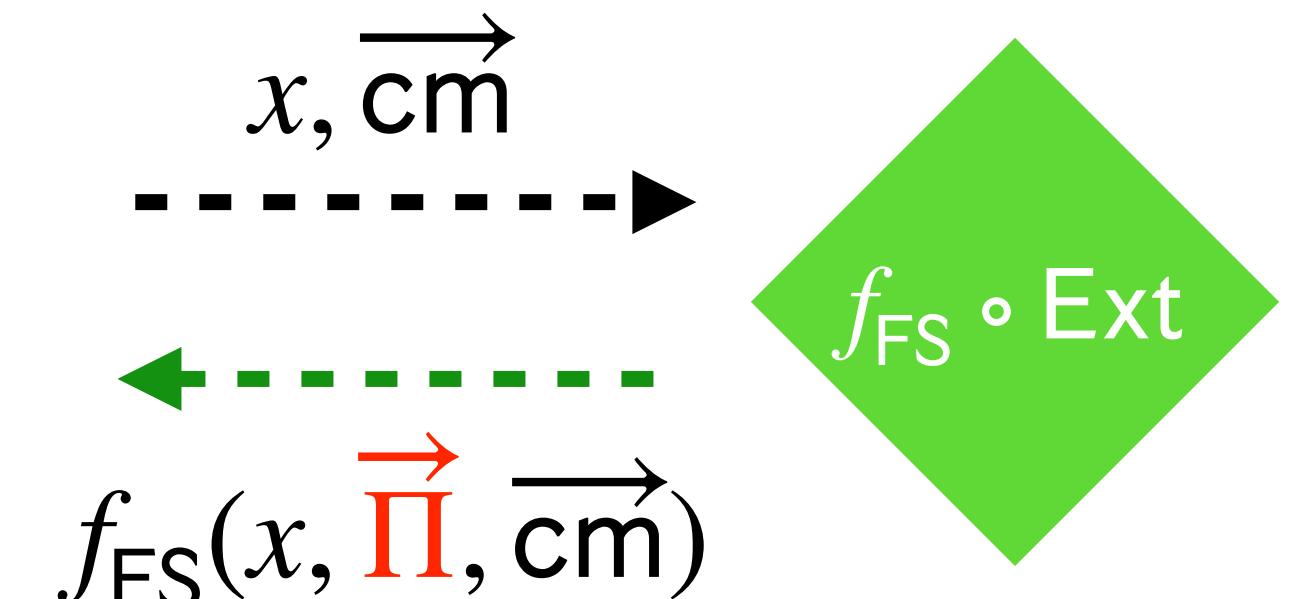
vs.



VC Property 1: Online consistency



$\approx \epsilon_{\text{VC,online}}$



Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Goal: we want to show

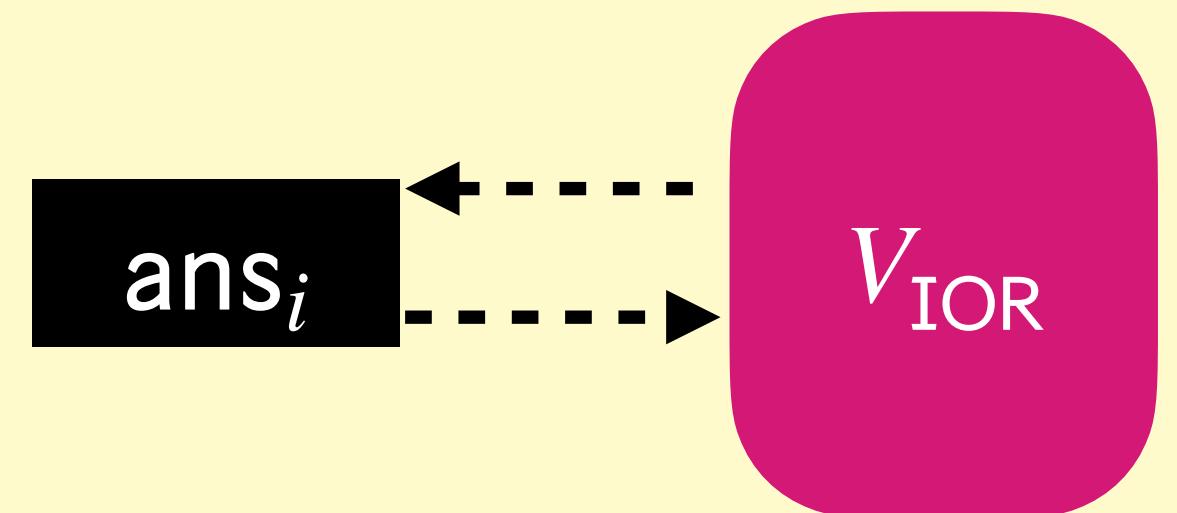
$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 2

Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

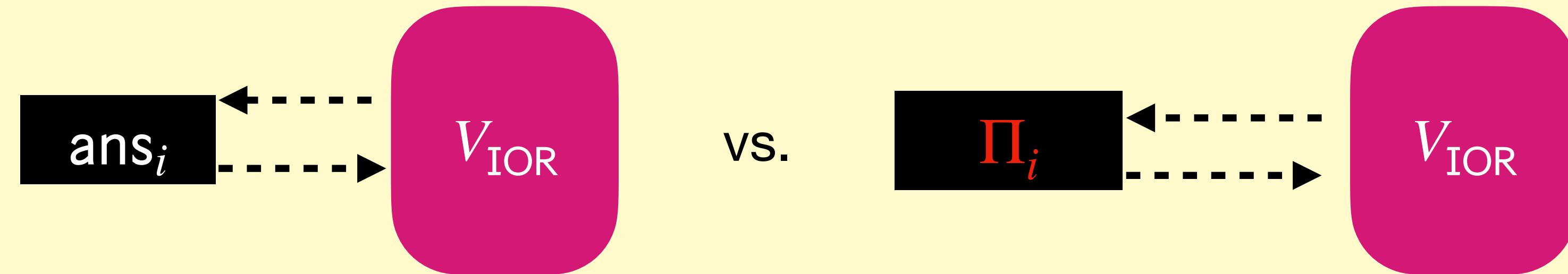
Difference 2



Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

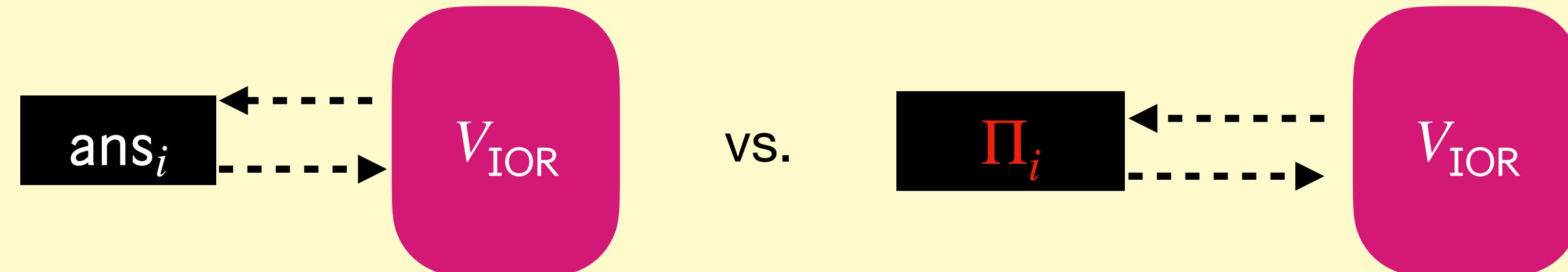
Difference 2



Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 2

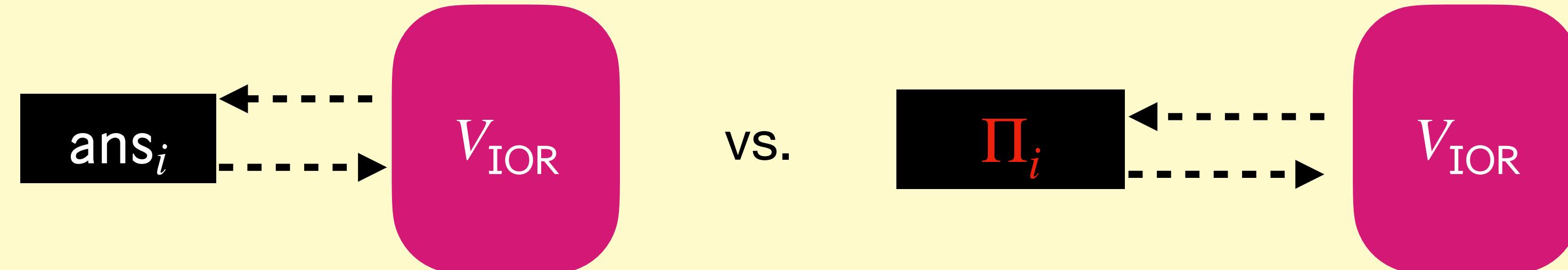


VC Property 2: Offline extractability

Goal: we want to show

$$\Pr[\tilde{P}^{\text{sr}} \text{ wins SR game}] \geq \Pr[\tilde{P} \text{ fools } V] - \epsilon_{\text{VC}}$$

Difference 2



VC Property 2: Offline extractability

What happens in the quantum case?

Goal: we want to construct a PQSR prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

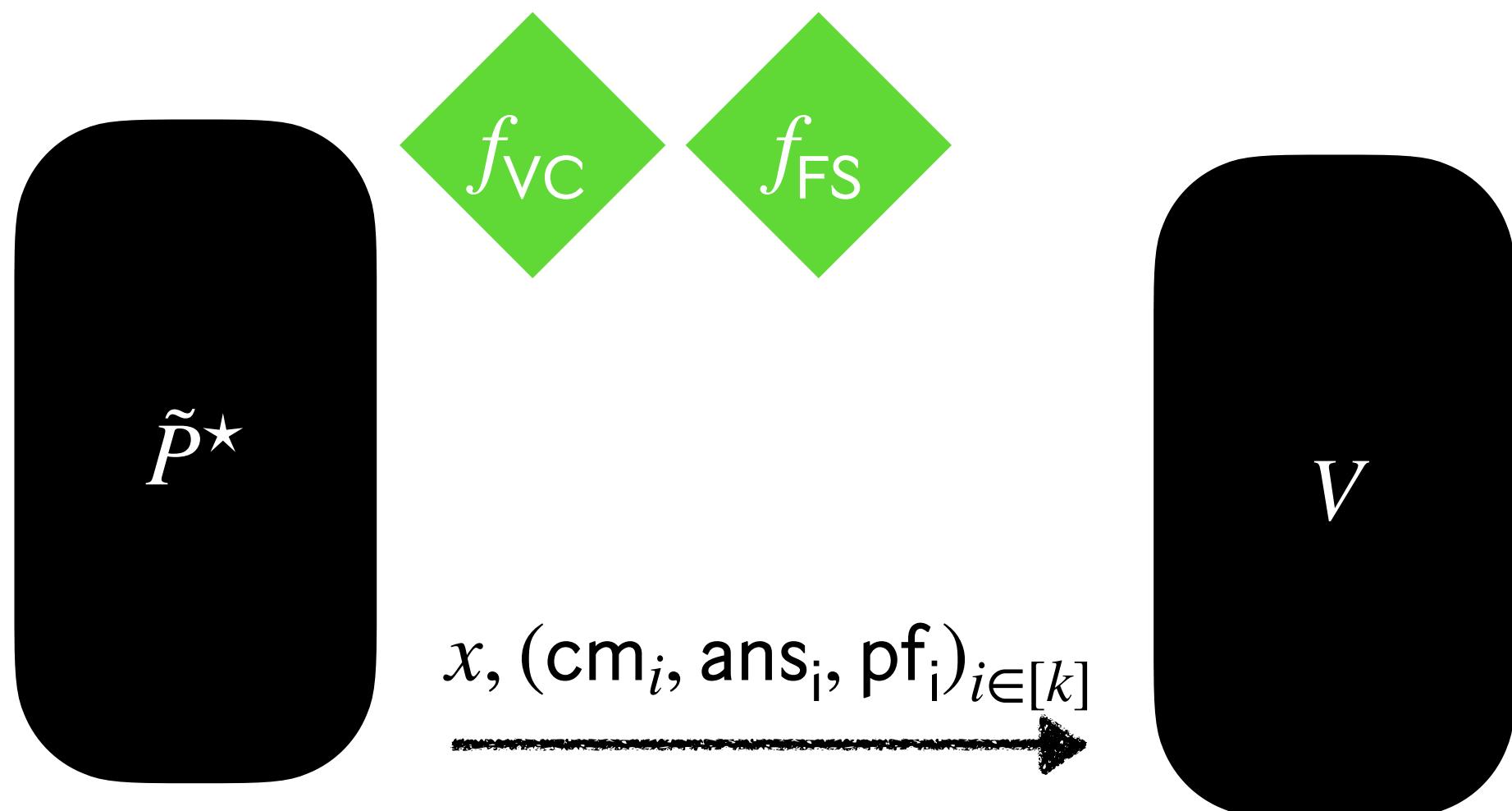
Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Malicious BCS prover

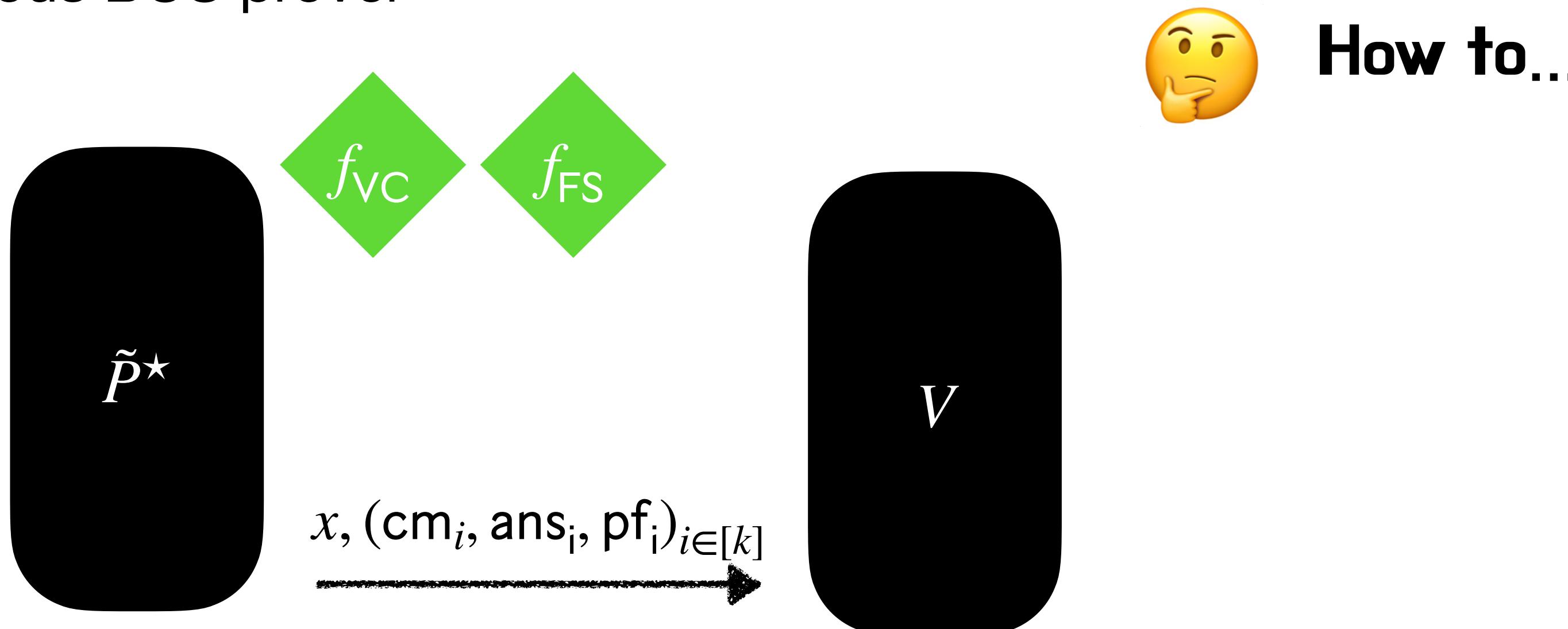


Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Malicious BCS prover

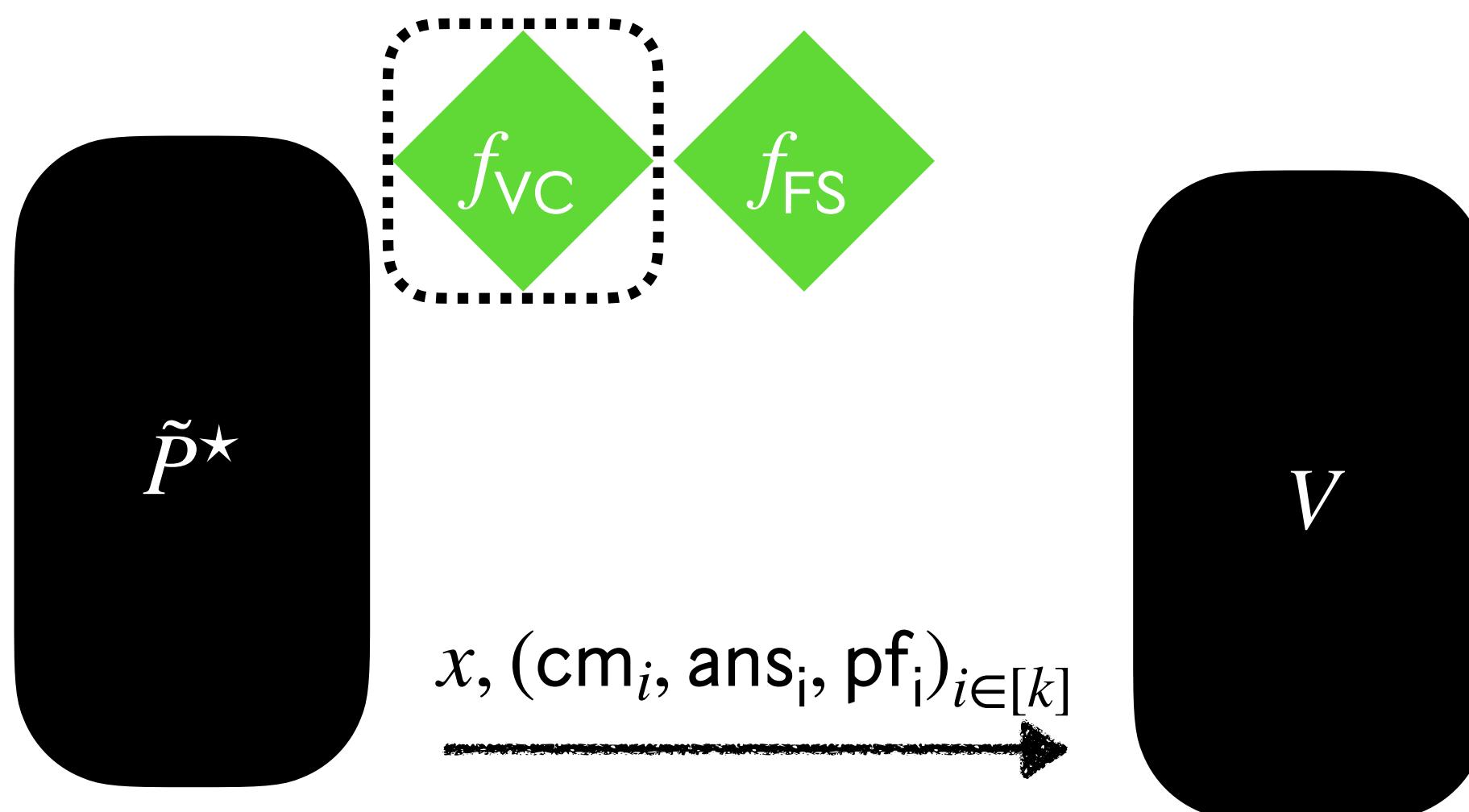


Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Malicious BCS prover



How to...

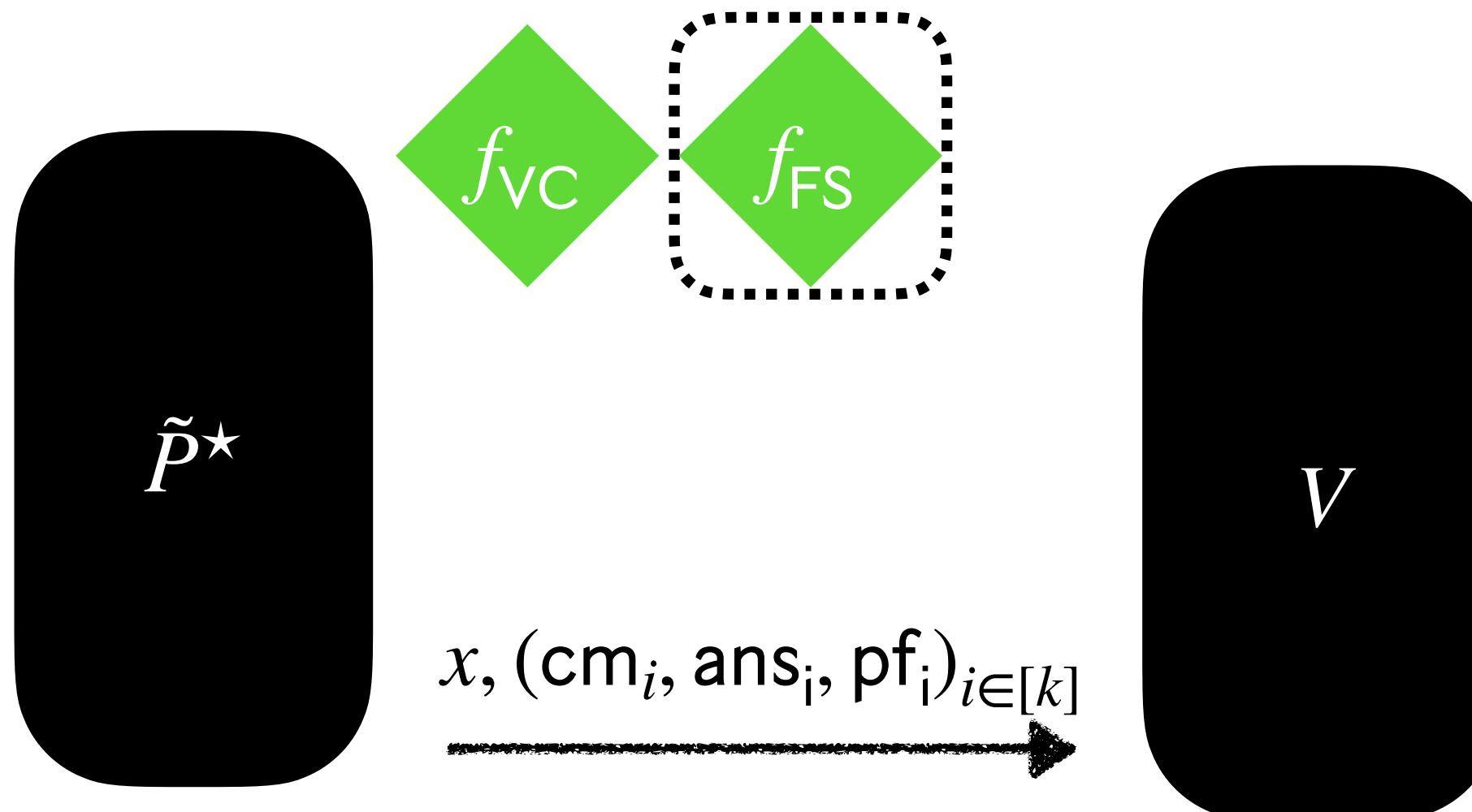
1. Answer **quantum** f_{VC} queries?

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Malicious BCS prover



How to...

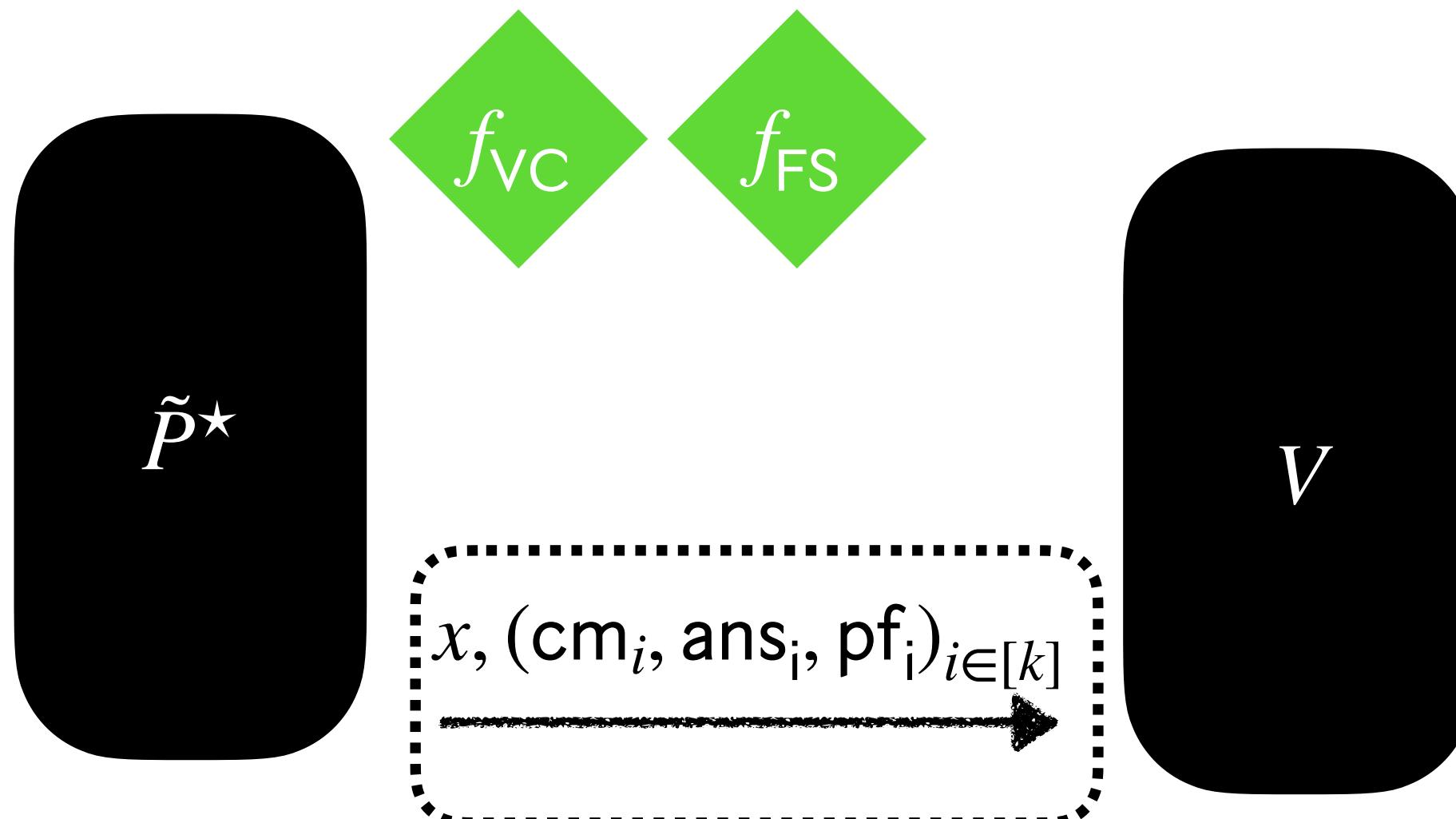
1. Answer **quantum** f_{VC} queries?
2. Answer **quantum** f_{FS} queries?

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Our construction: $\tilde{P}^{\star, \text{sr}}$ **simulates** \tilde{P}^{\star} .

Malicious BCS prover



How to...

1. Answer **quantum** f_{VC} queries?
2. Answer **quantum** f_{FS} queries?
3. Derive the output of $\tilde{P}^{\star, \text{sr}}$ from the output of \tilde{P}^{\star} ?

Goal: we want to construct a PQSR prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

The VC extractor needs some trapdoor information about adversary's queries.

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

The VC extractor needs some trapdoor information about adversary's queries.

Starting point: Use compressed oracle!

Goal: we want to construct a **PQSR** prover $\tilde{P}^{\star, \text{sr}}$ such that

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

The VC extractor needs some trapdoor information about adversary's queries.

Starting point: Use compressed oracle!

It gives you “Quantum Database” \mathcal{D}_{VC} ,
but additional care is required to simulate \tilde{P}^{\star} without much disturbance.

Our construction of $\tilde{P}^{\star, \text{sr}}$

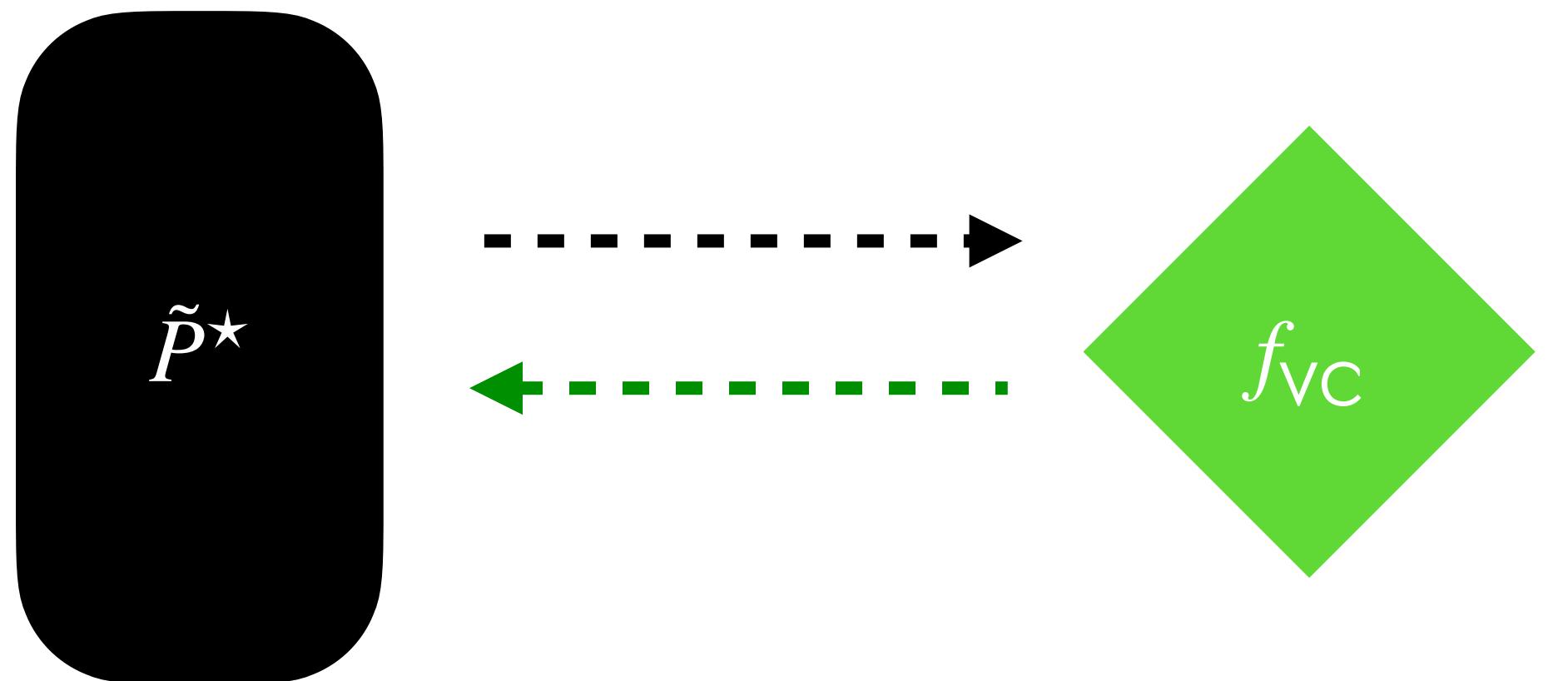
Quantum case

Step 1: how to answer **quantum** f_{VC} queries?

Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 1: how to answer **quantum** f_{VC} queries?

Malicious BCS prover

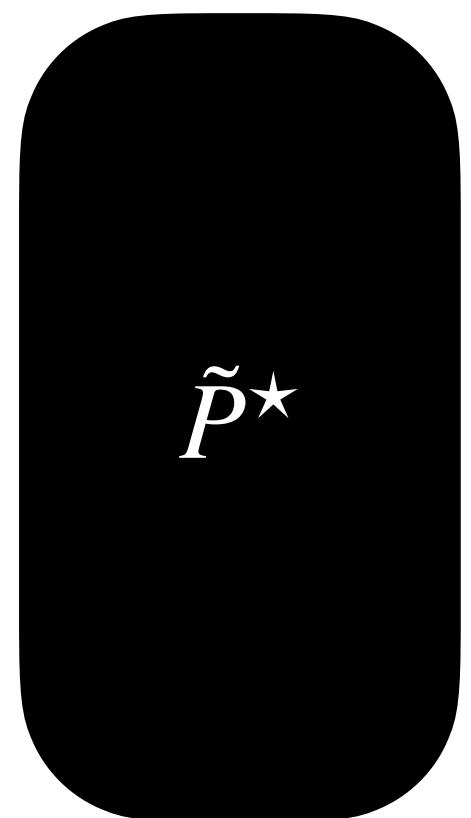
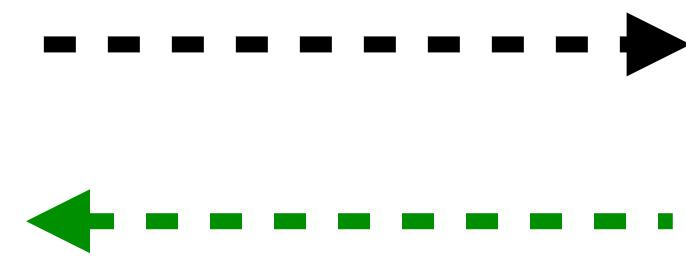
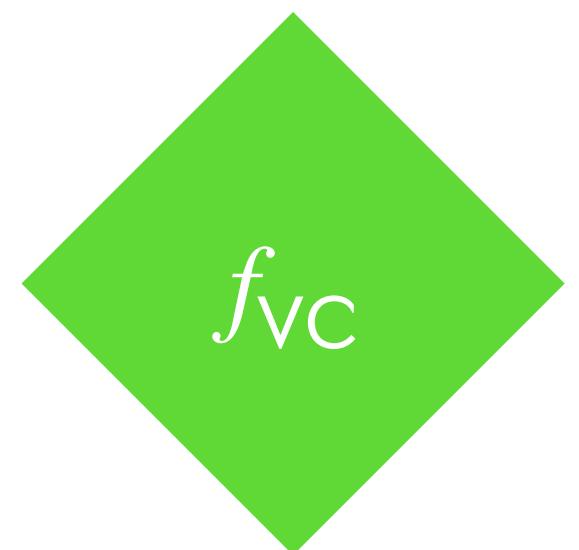


Our construction of $\tilde{P}^{\star, \text{sr}}$

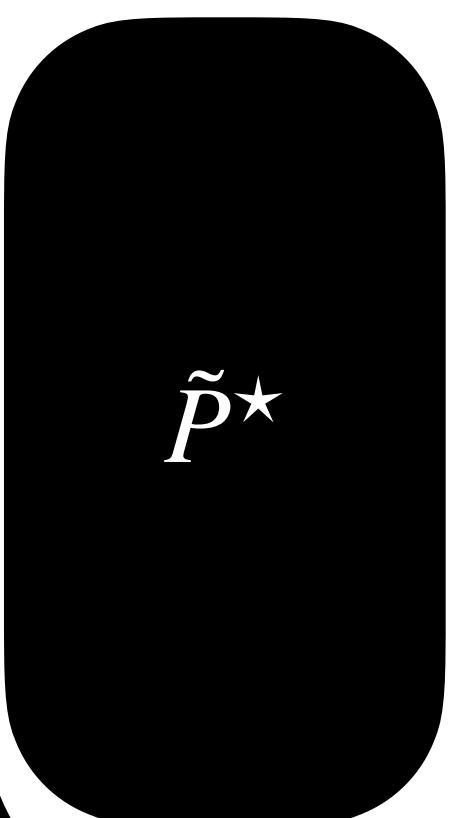
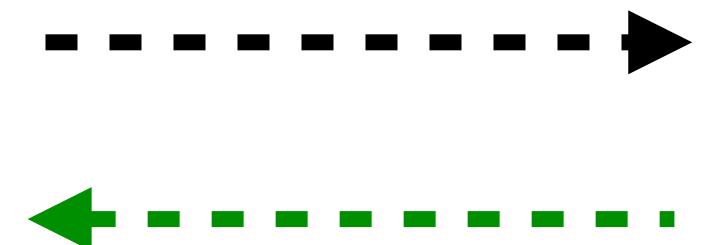
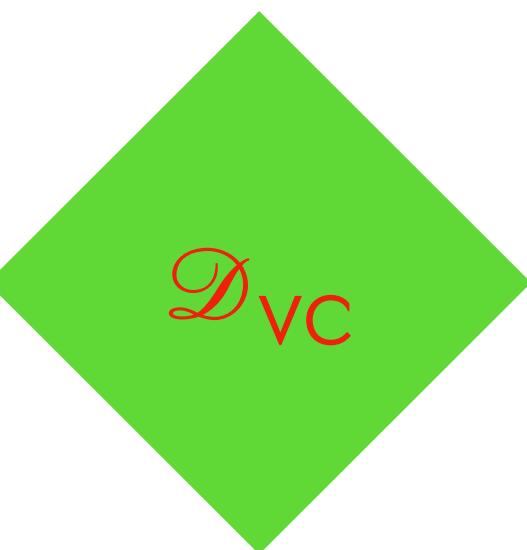
Quantum case

Step 1: how to answer **quantum** f_{VC} queries?

Malicious BCS prover



Malicious SR prover $\tilde{P}^{\star, \text{sr}}$



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer **quantum** f_{FS} queries?

Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer **quantum** f_{FS} queries?

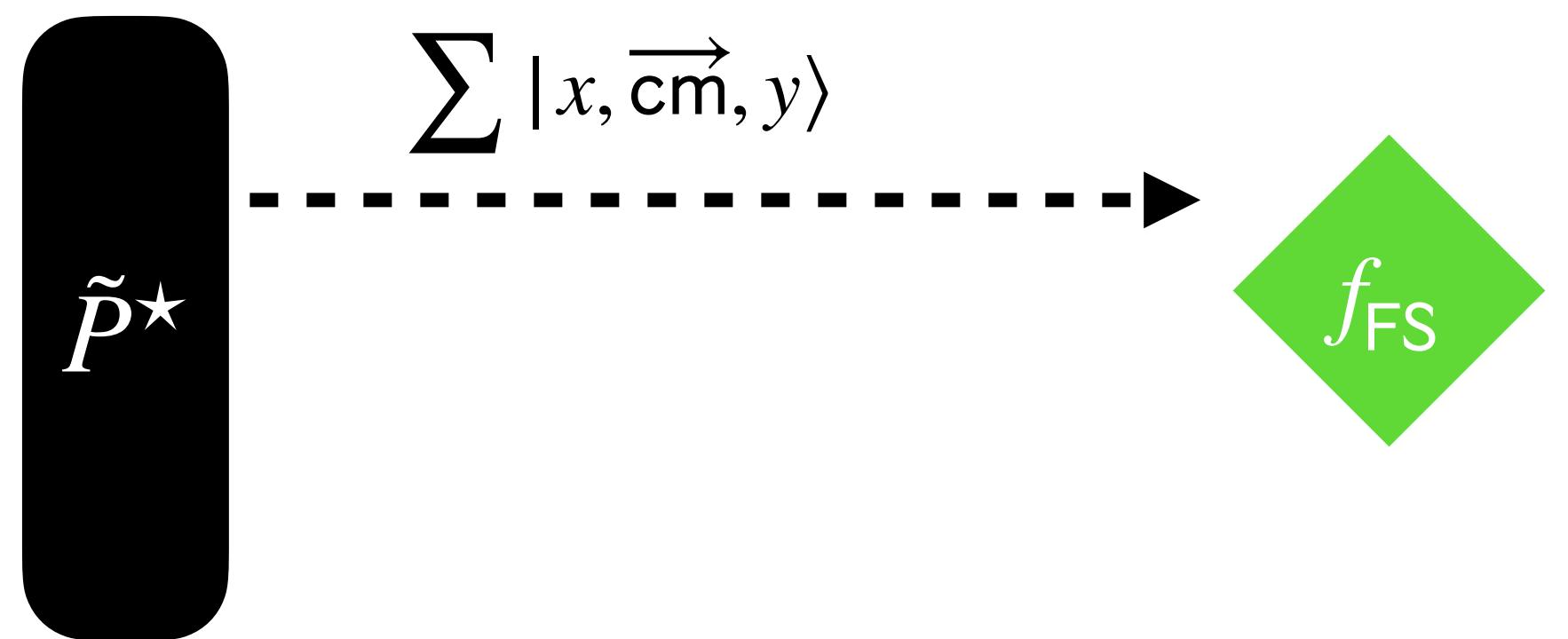
\tilde{P}^{\star}

f_{FS}

Our construction of $\tilde{P}^{\star, \text{sr}}$

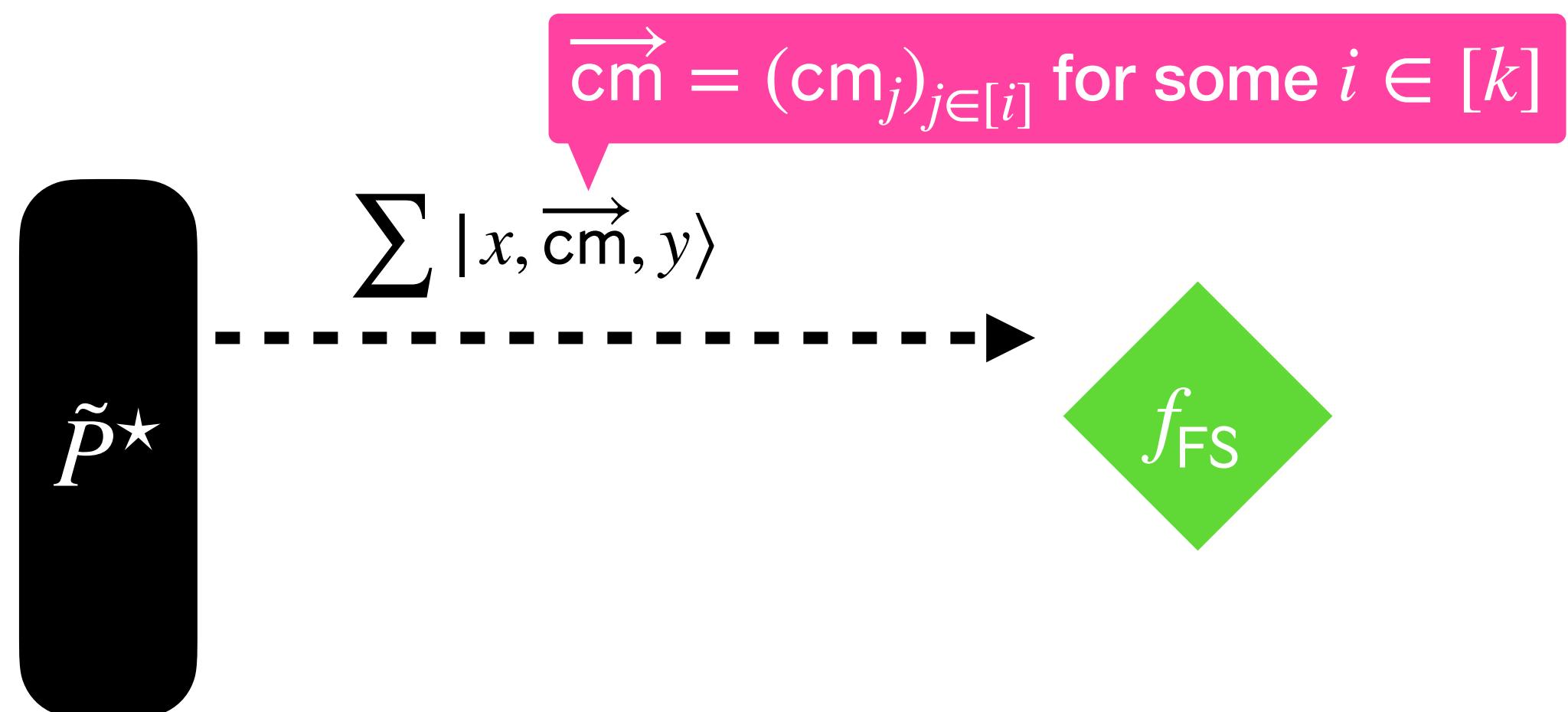
Quantum case

Step 2: how to answer **quantum** f_{FS} queries?



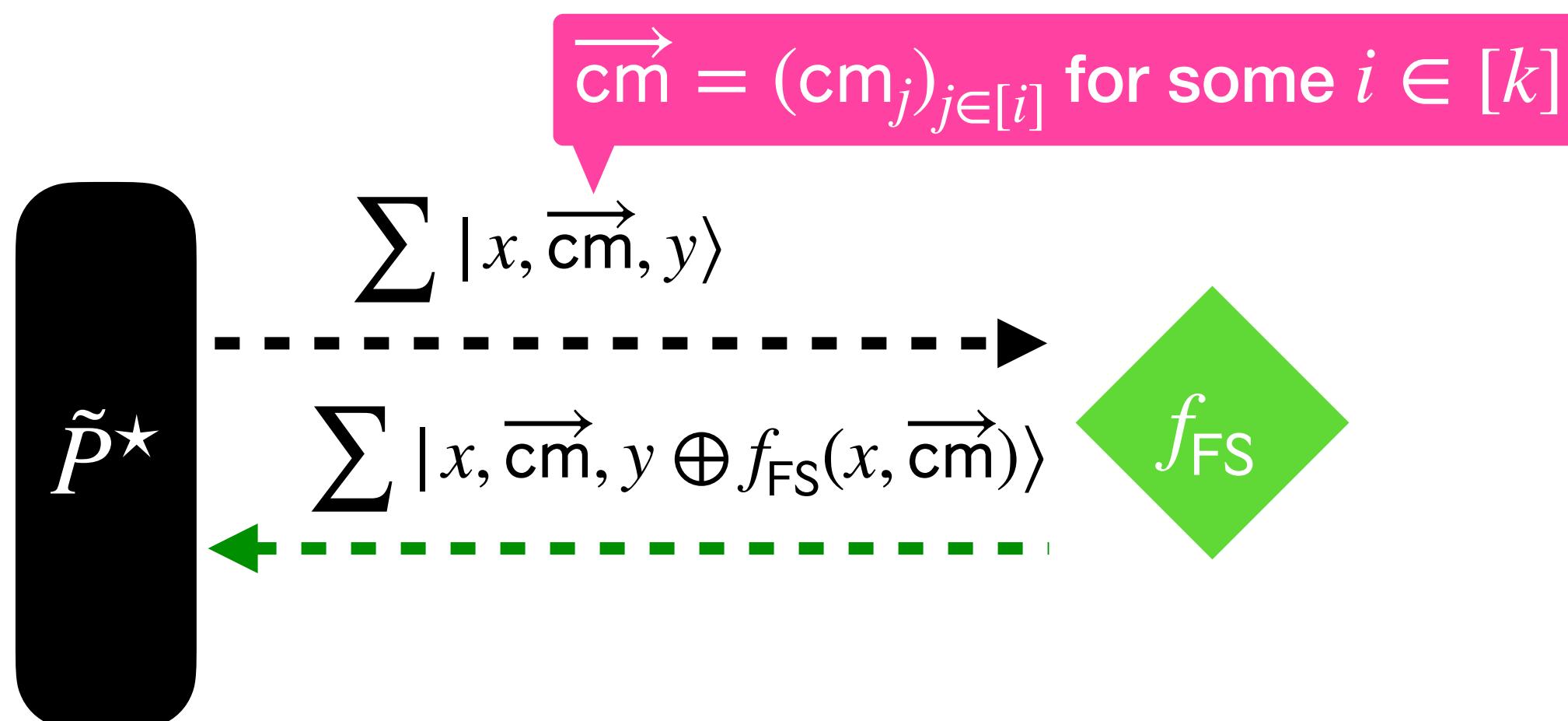
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 2: how to answer **quantum** f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

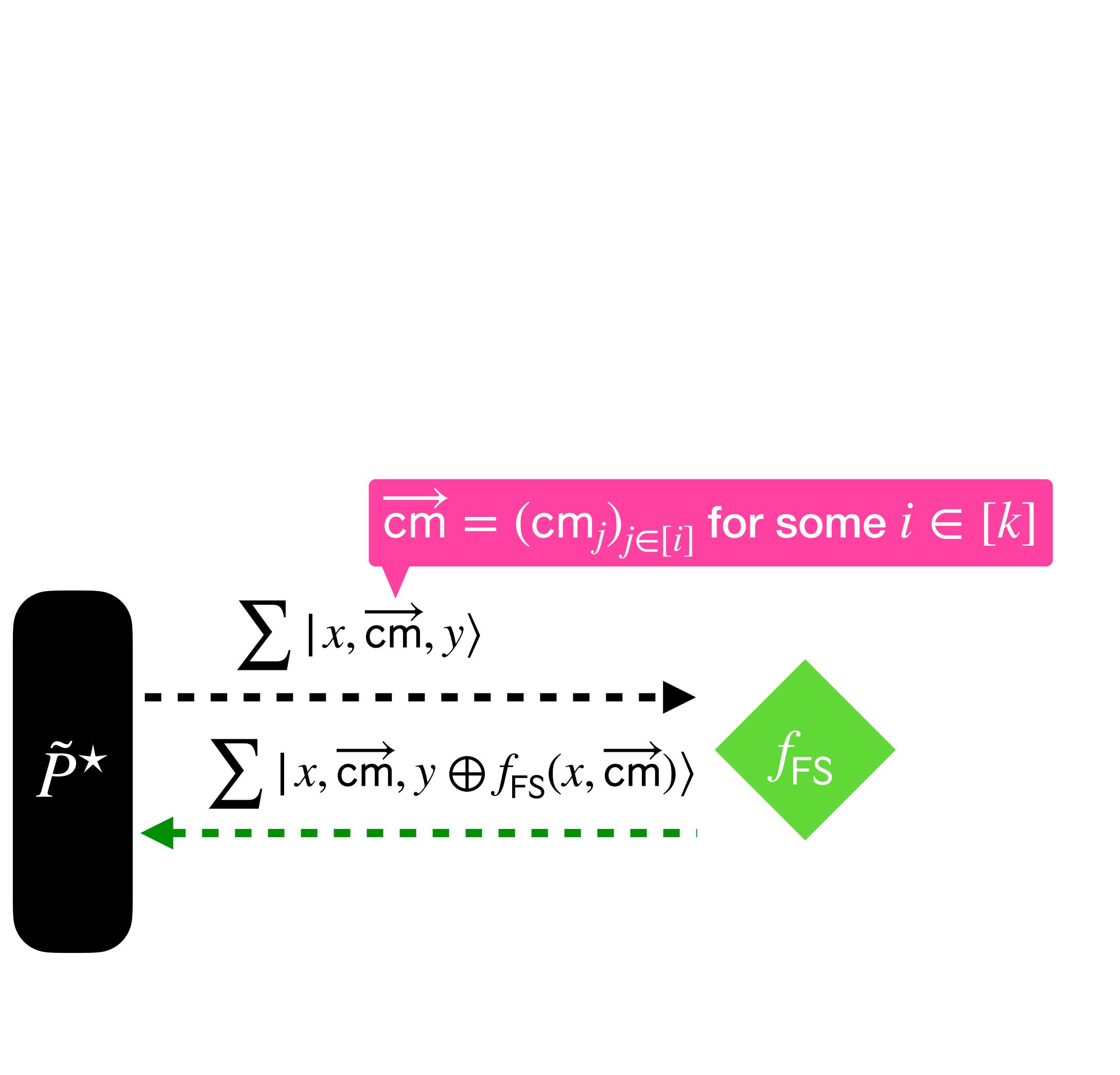
Step 2: how to answer **quantum** f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

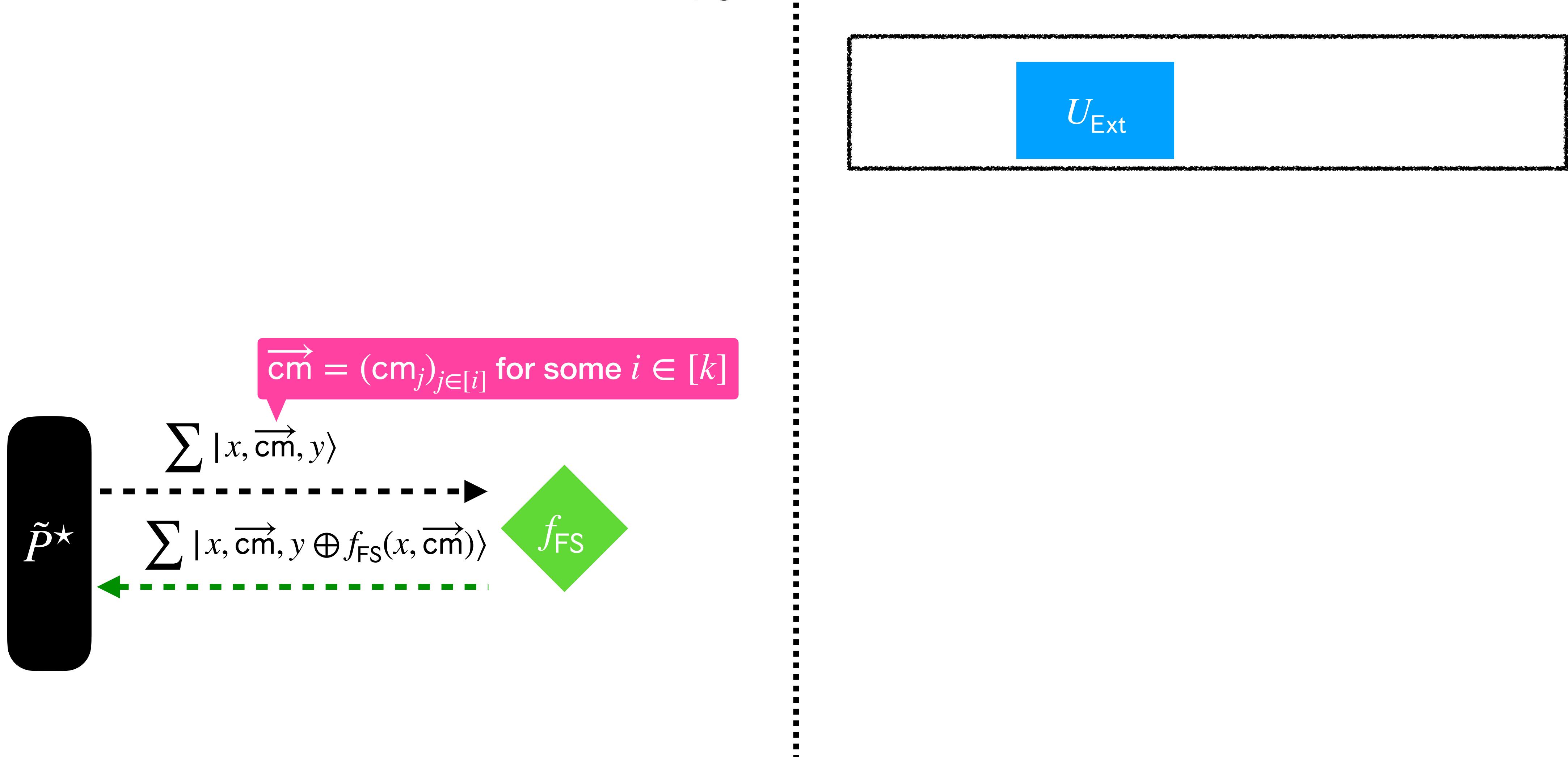
Step 2: how to answer **quantum** f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

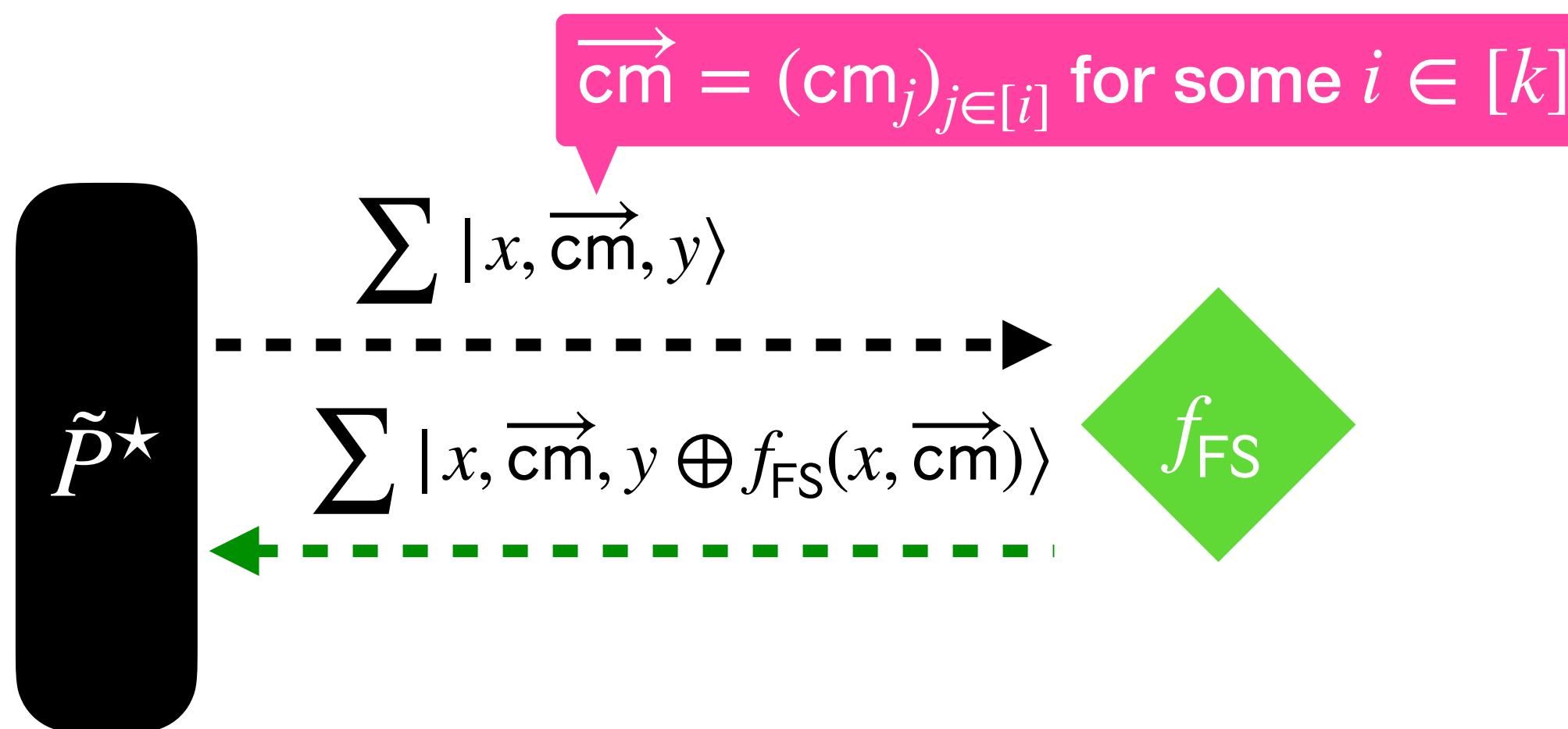
Step 2: how to answer quantum f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

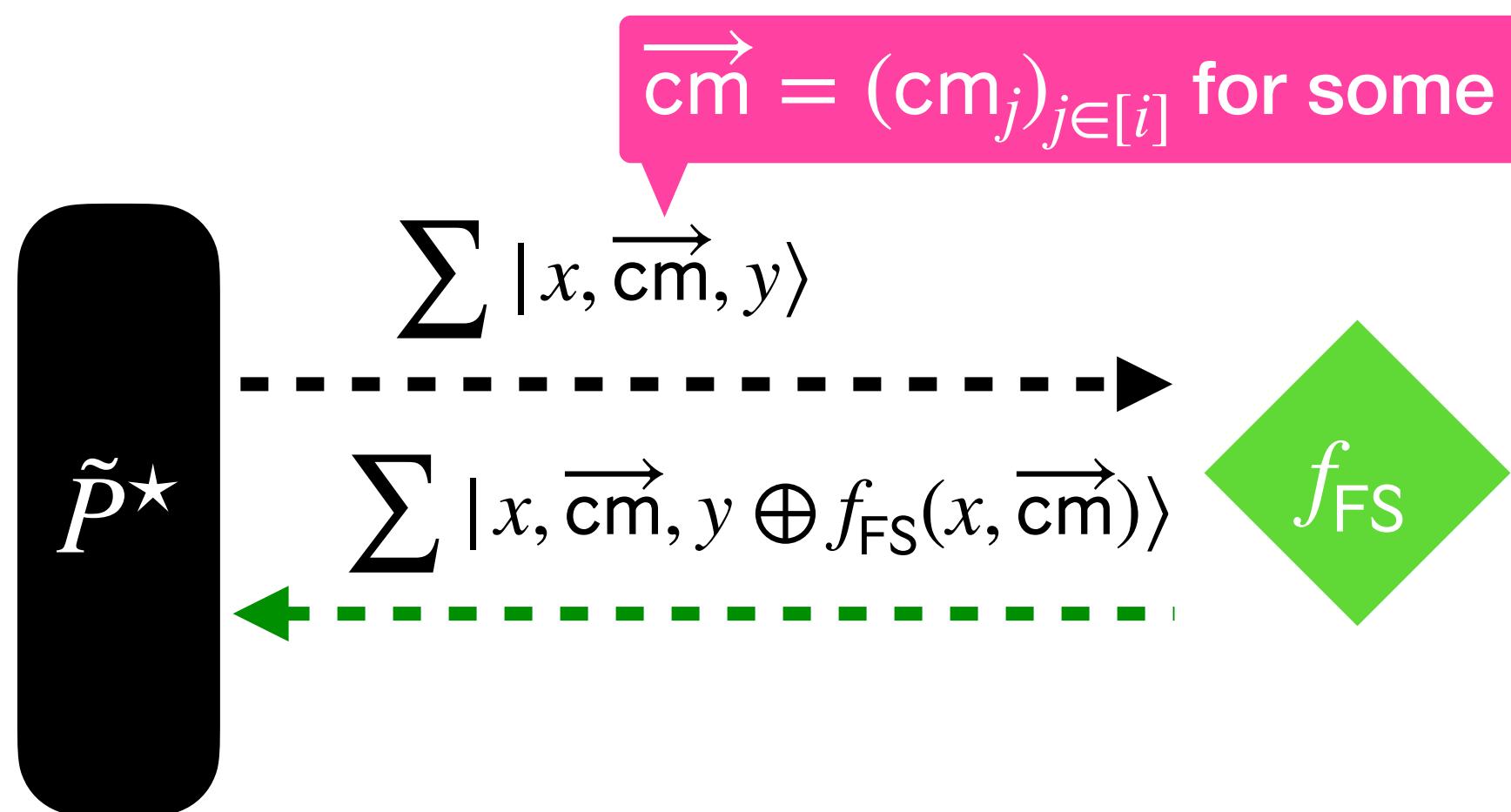
Step 2: how to answer quantum f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

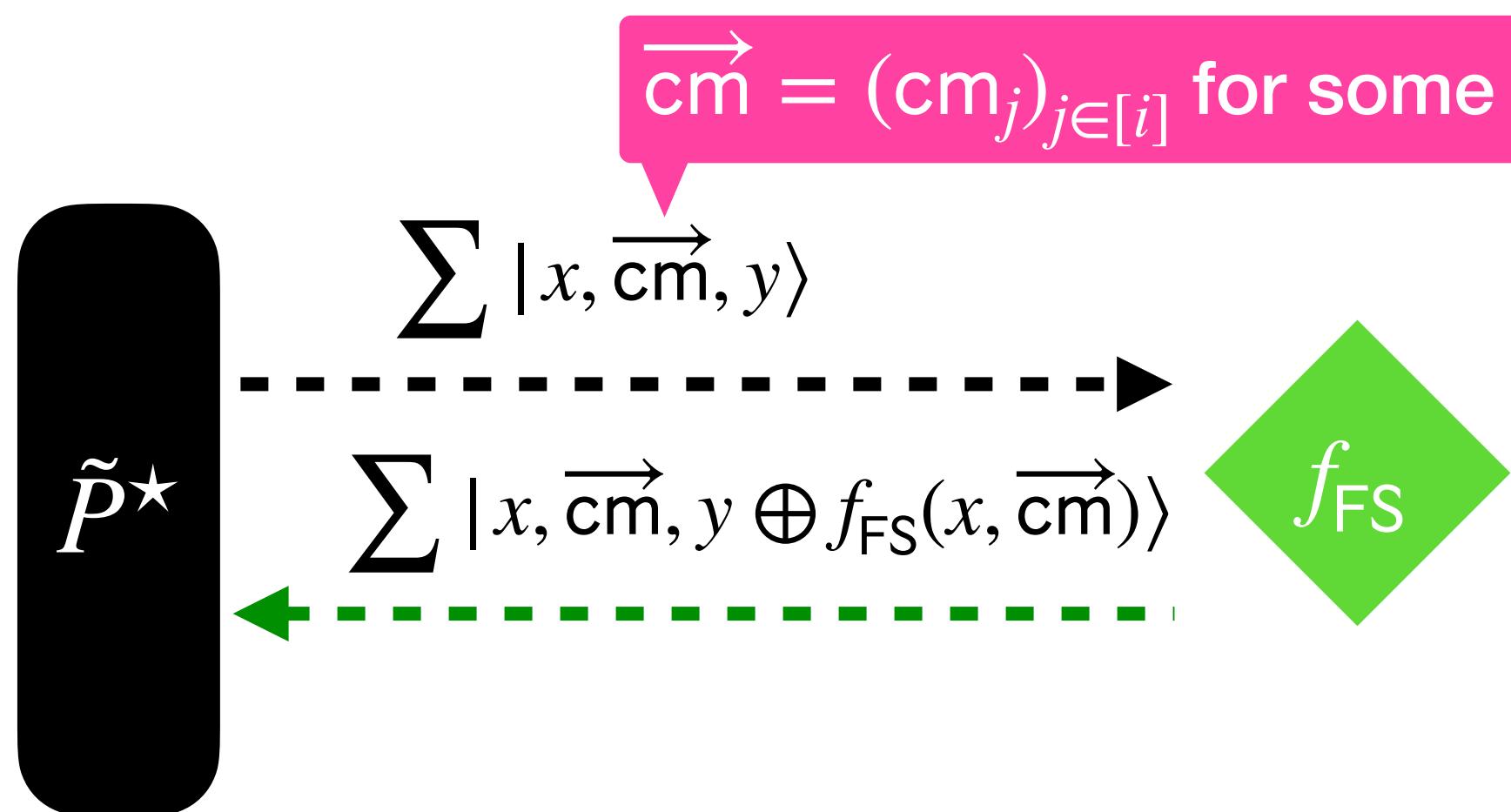
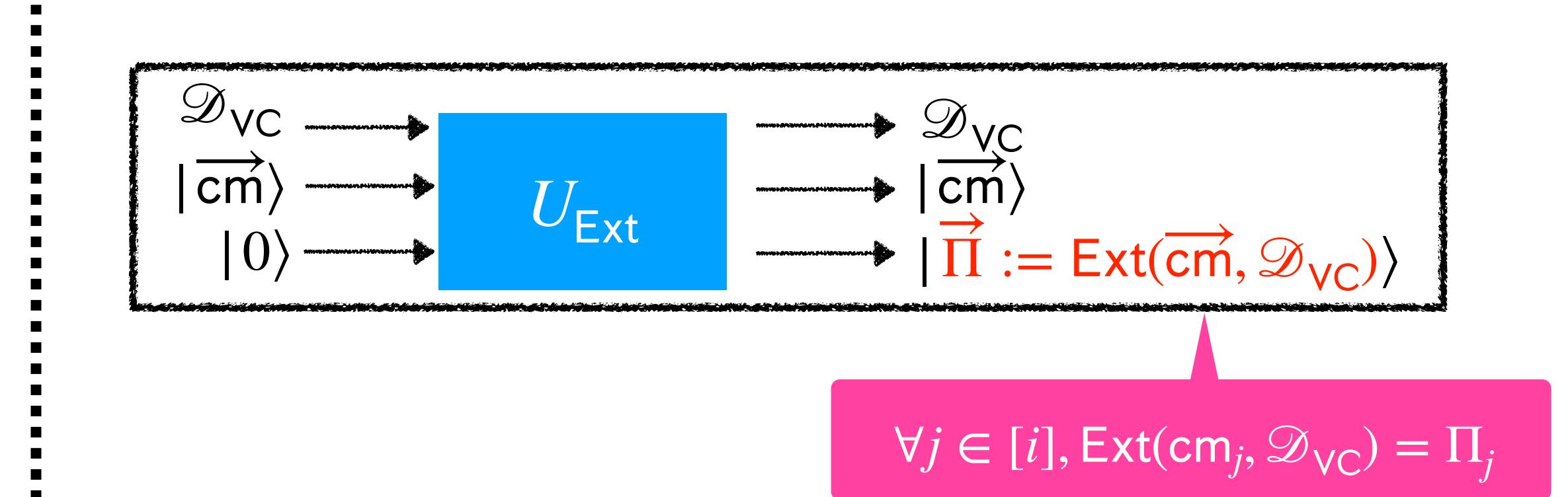
Step 2: how to answer quantum f_{FS} queries?



Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

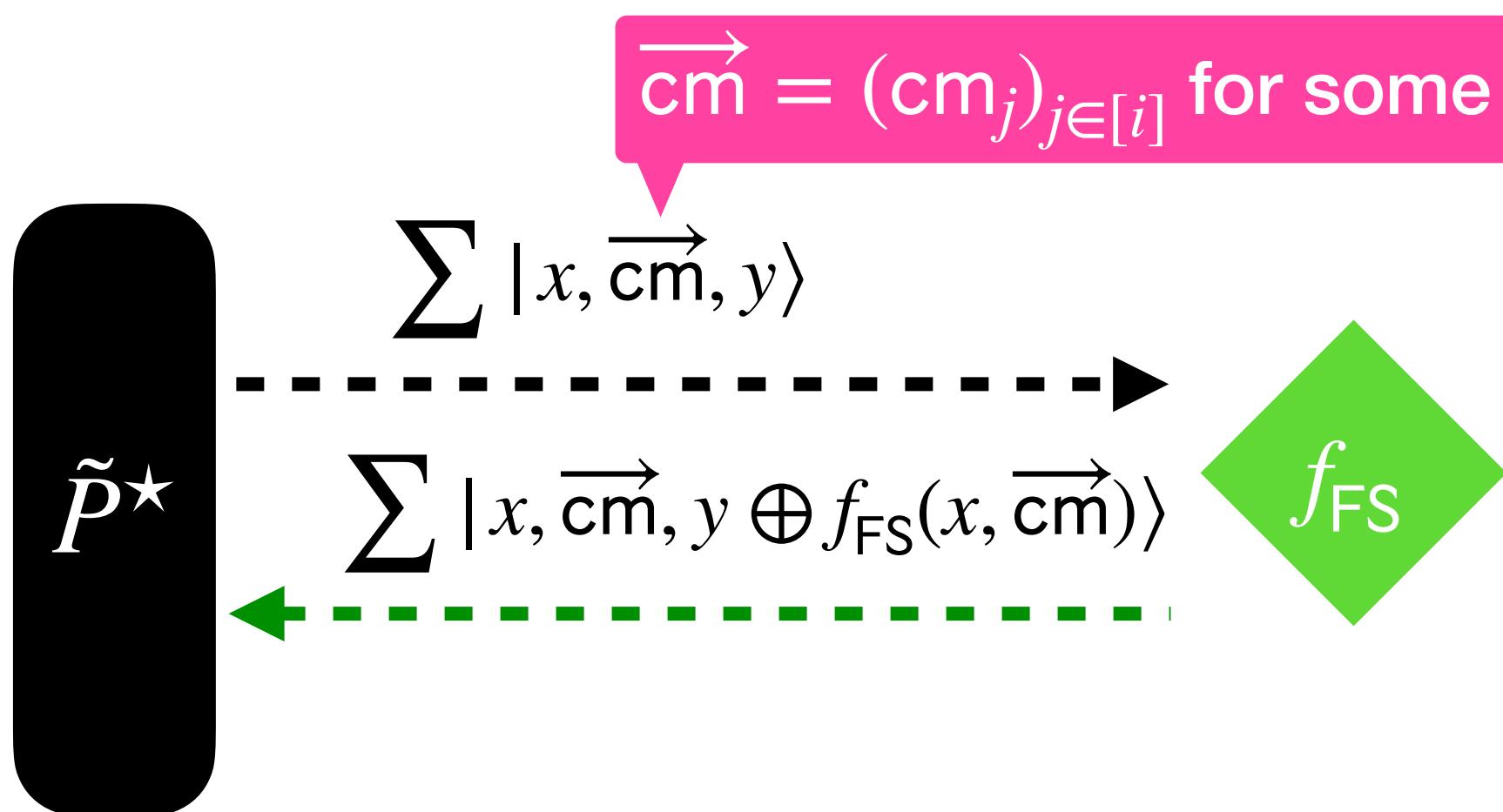
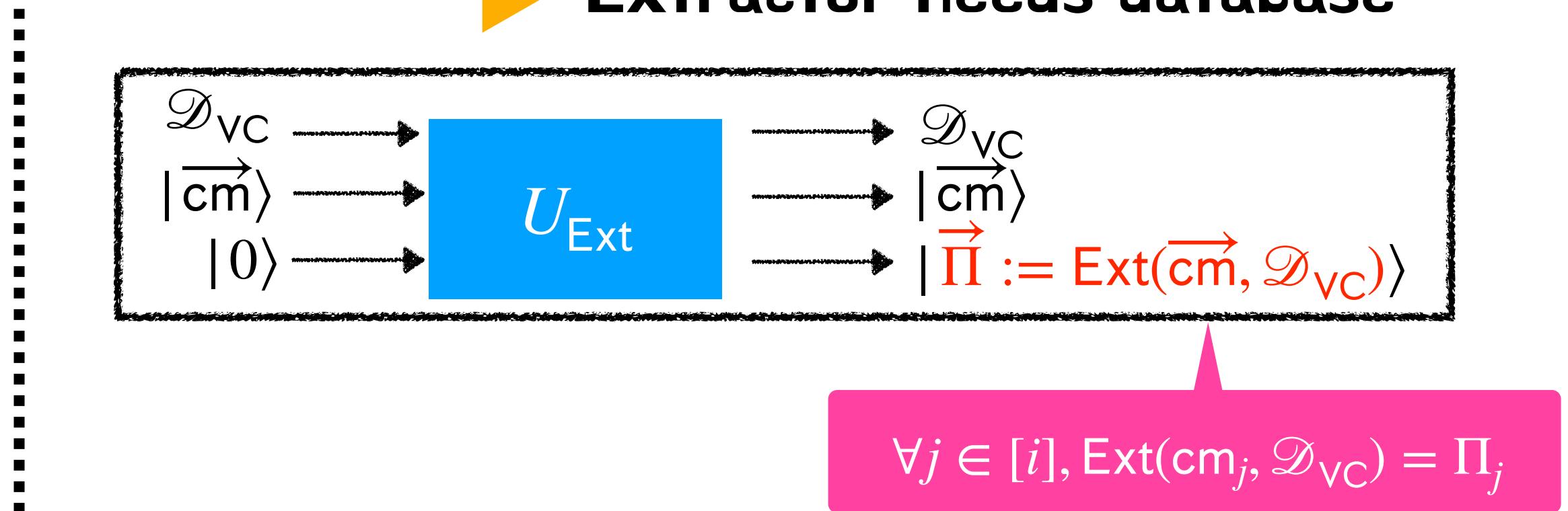


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

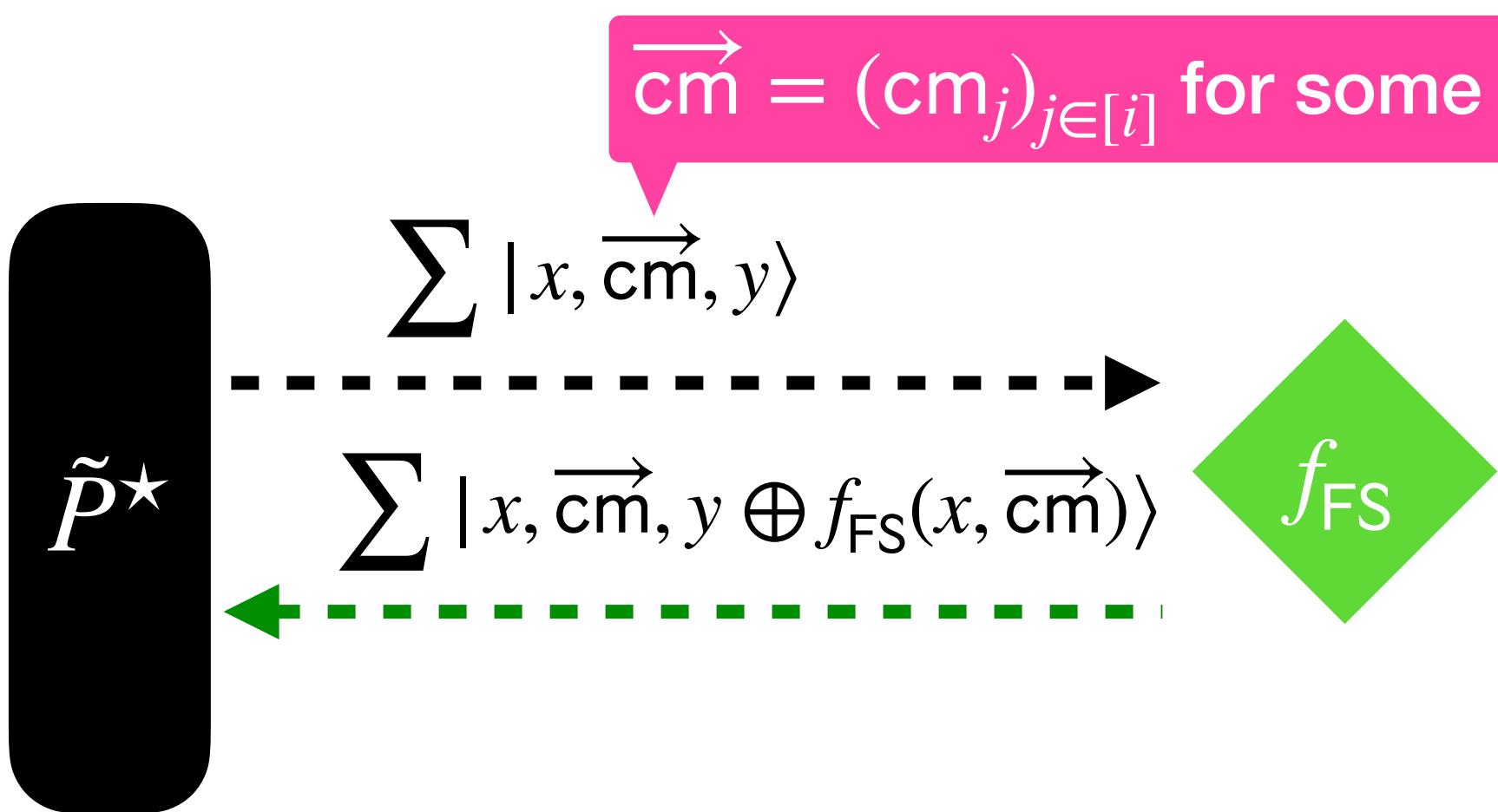
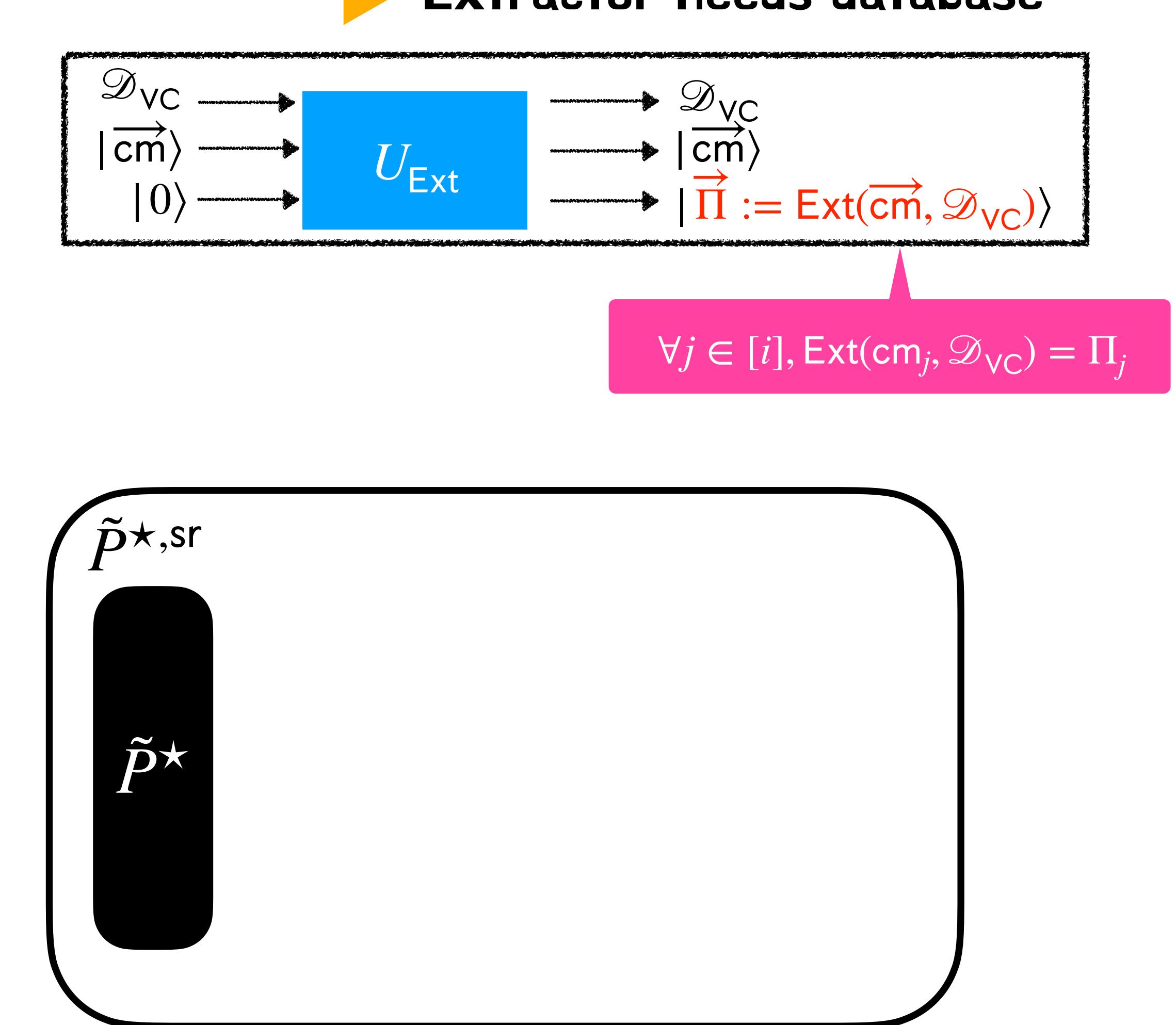


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

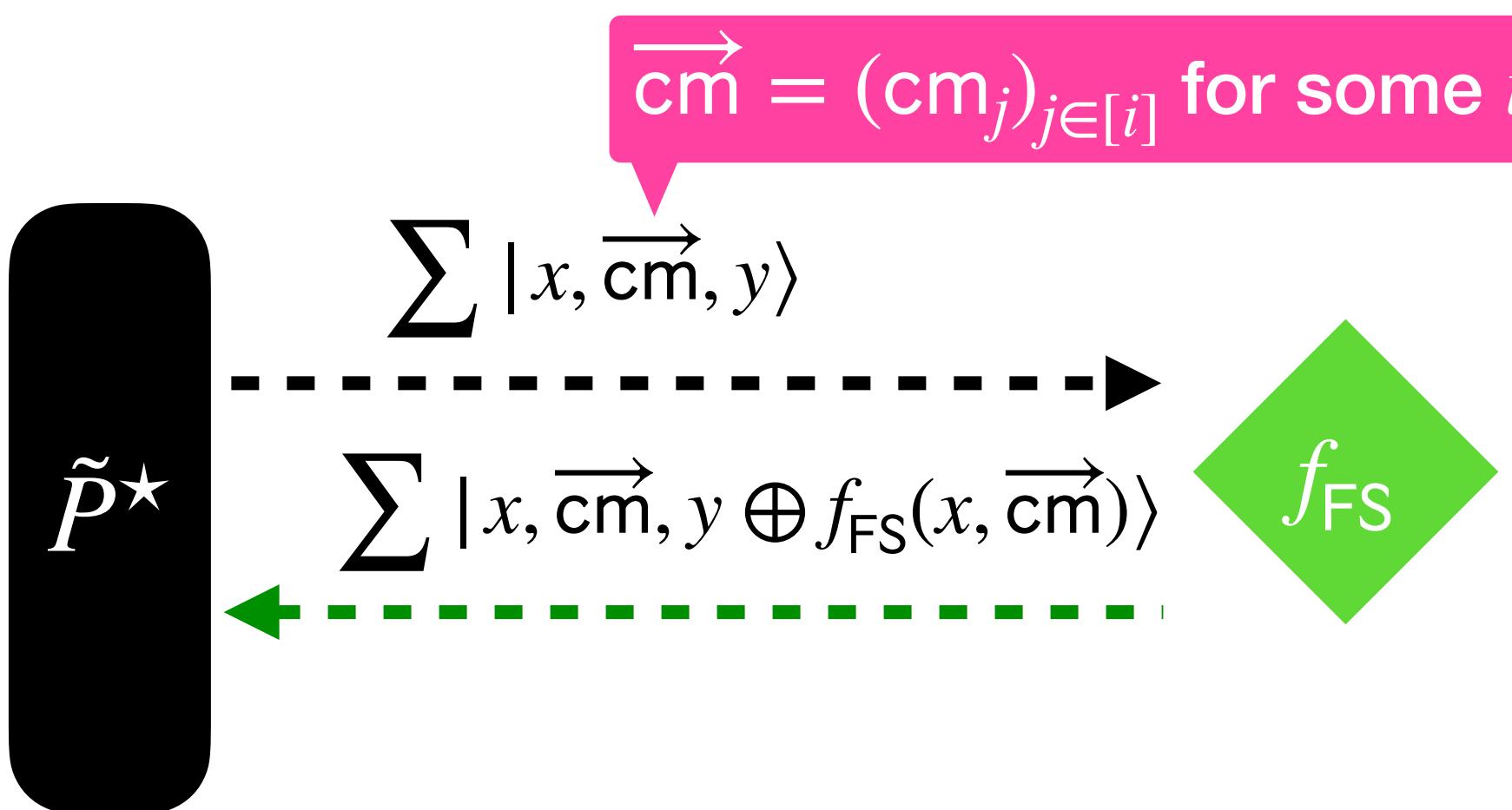
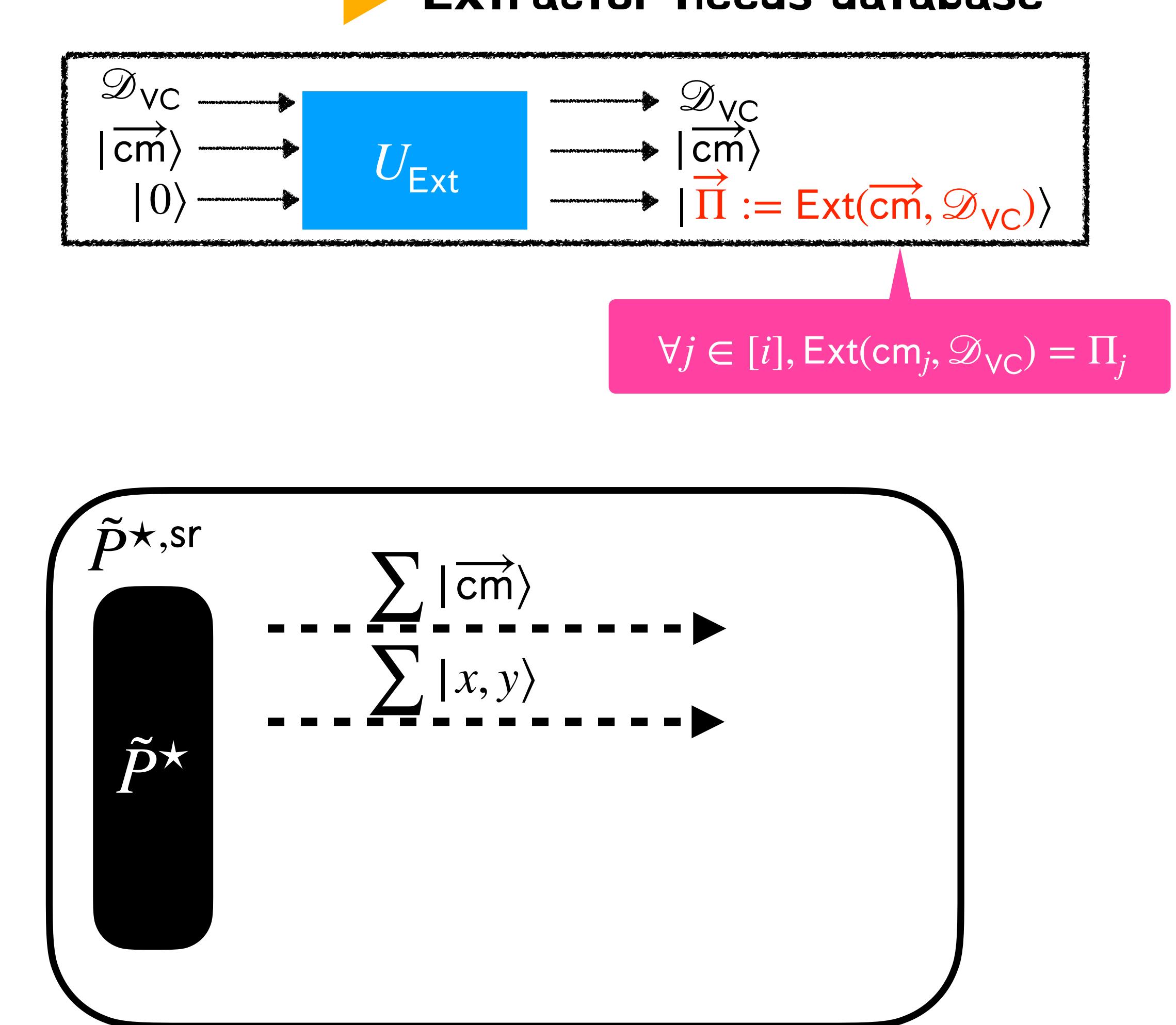


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

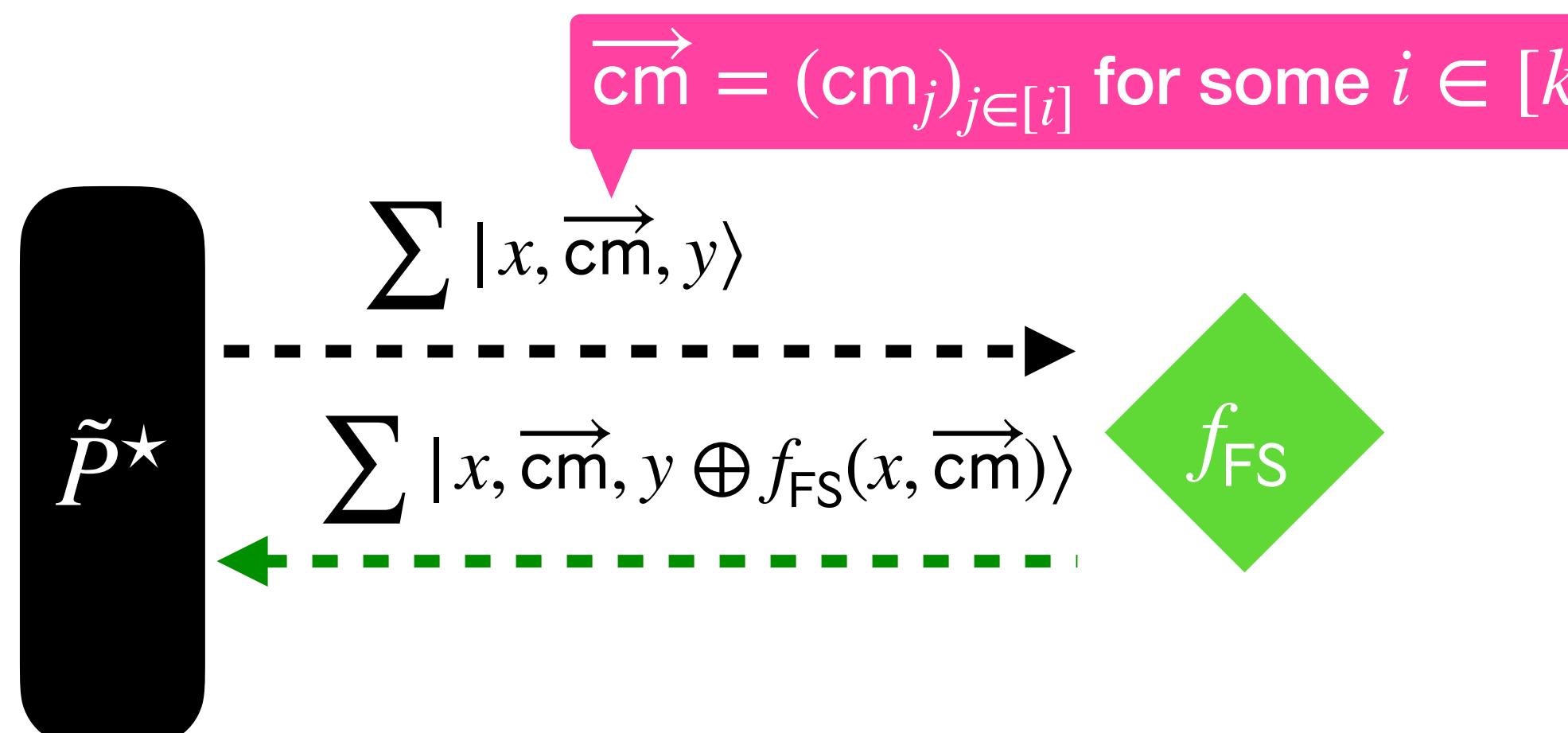
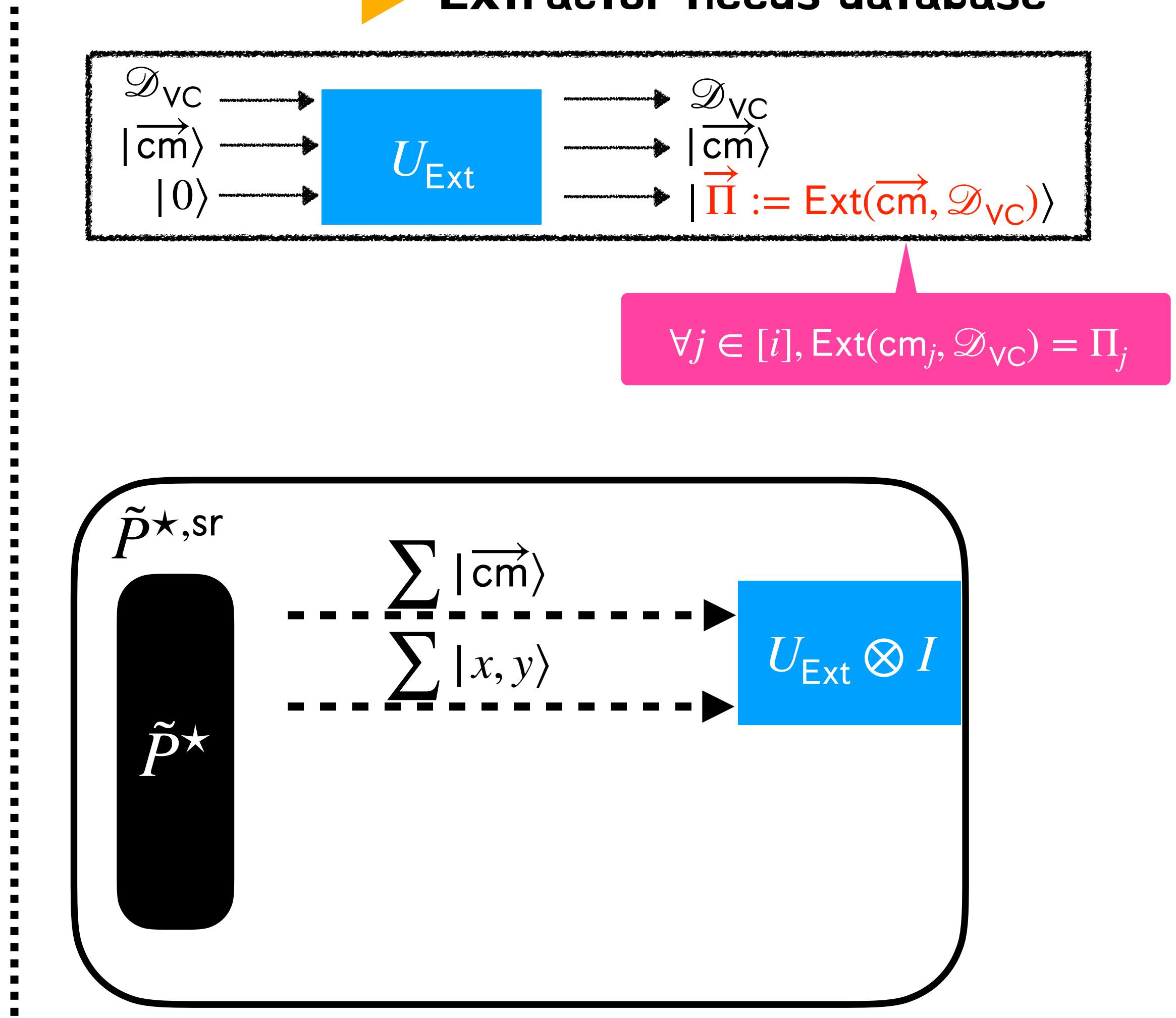


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

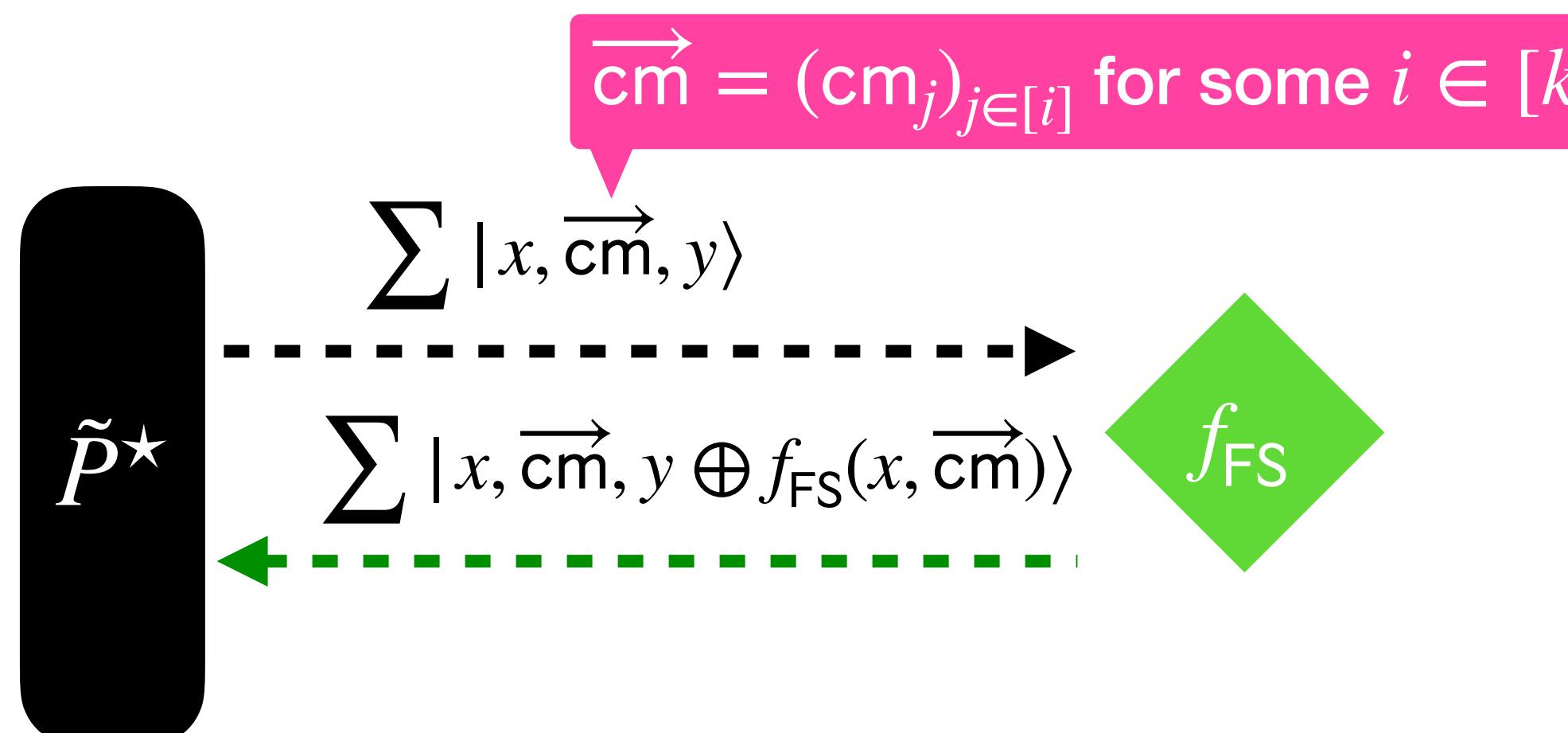
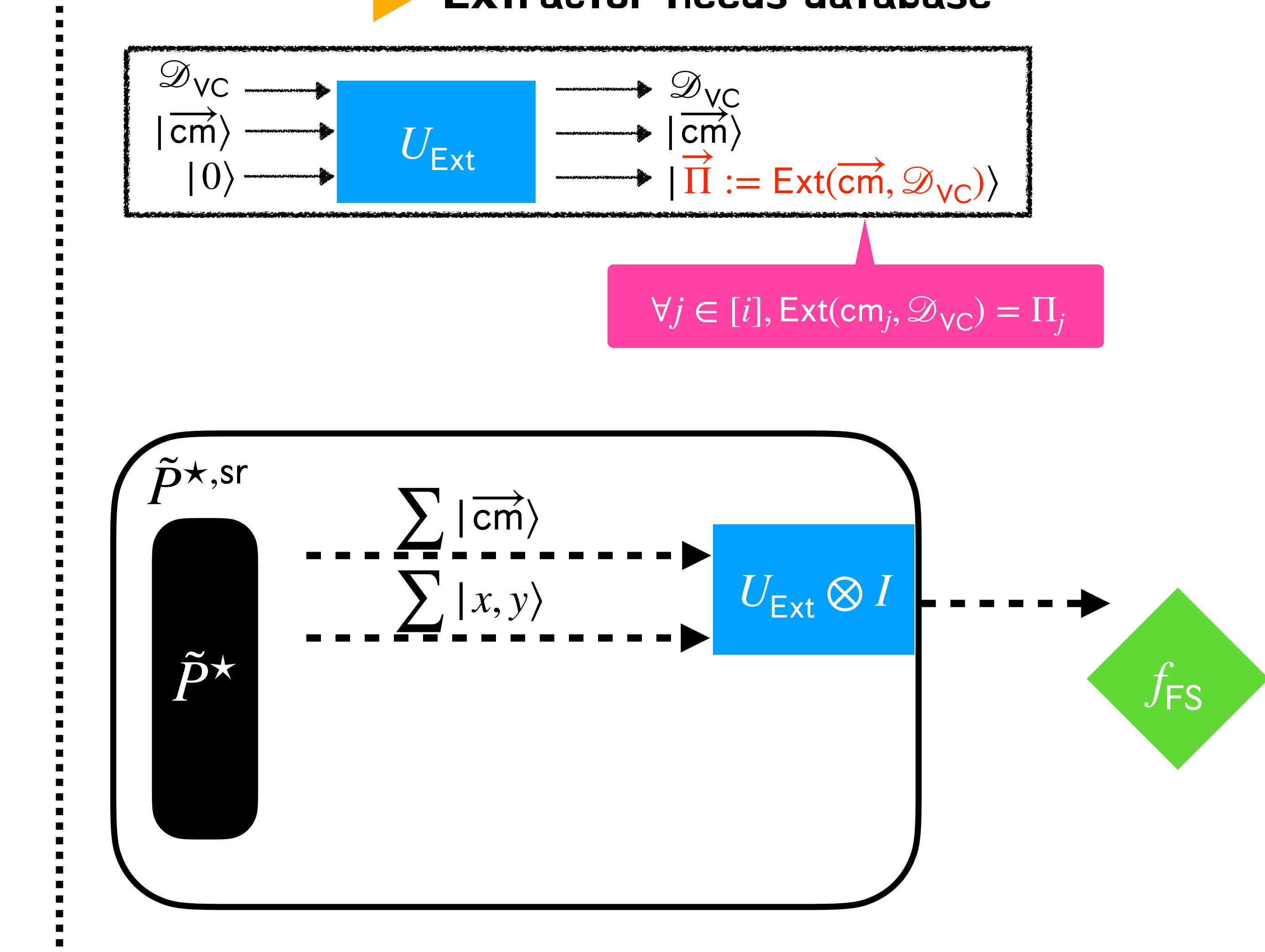


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

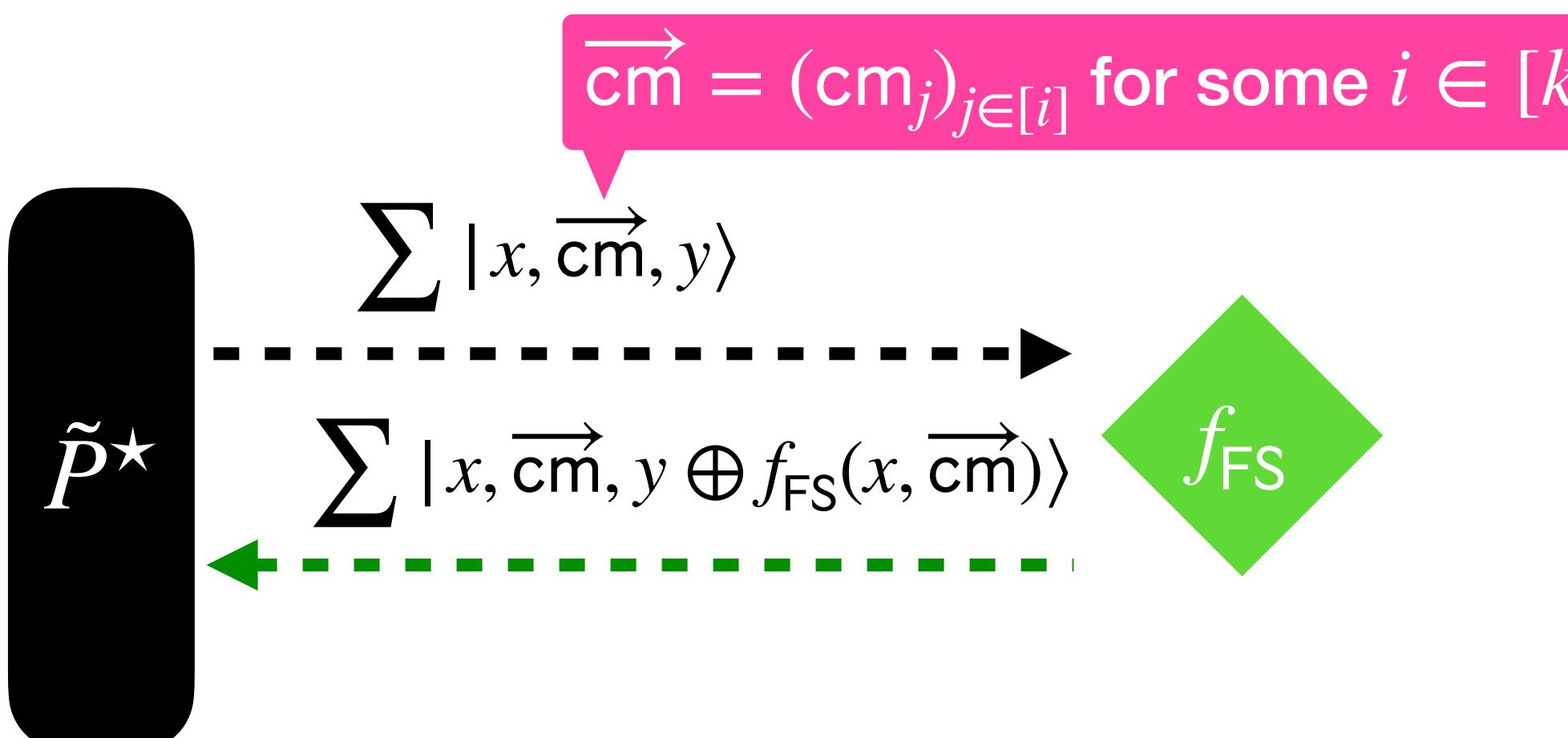
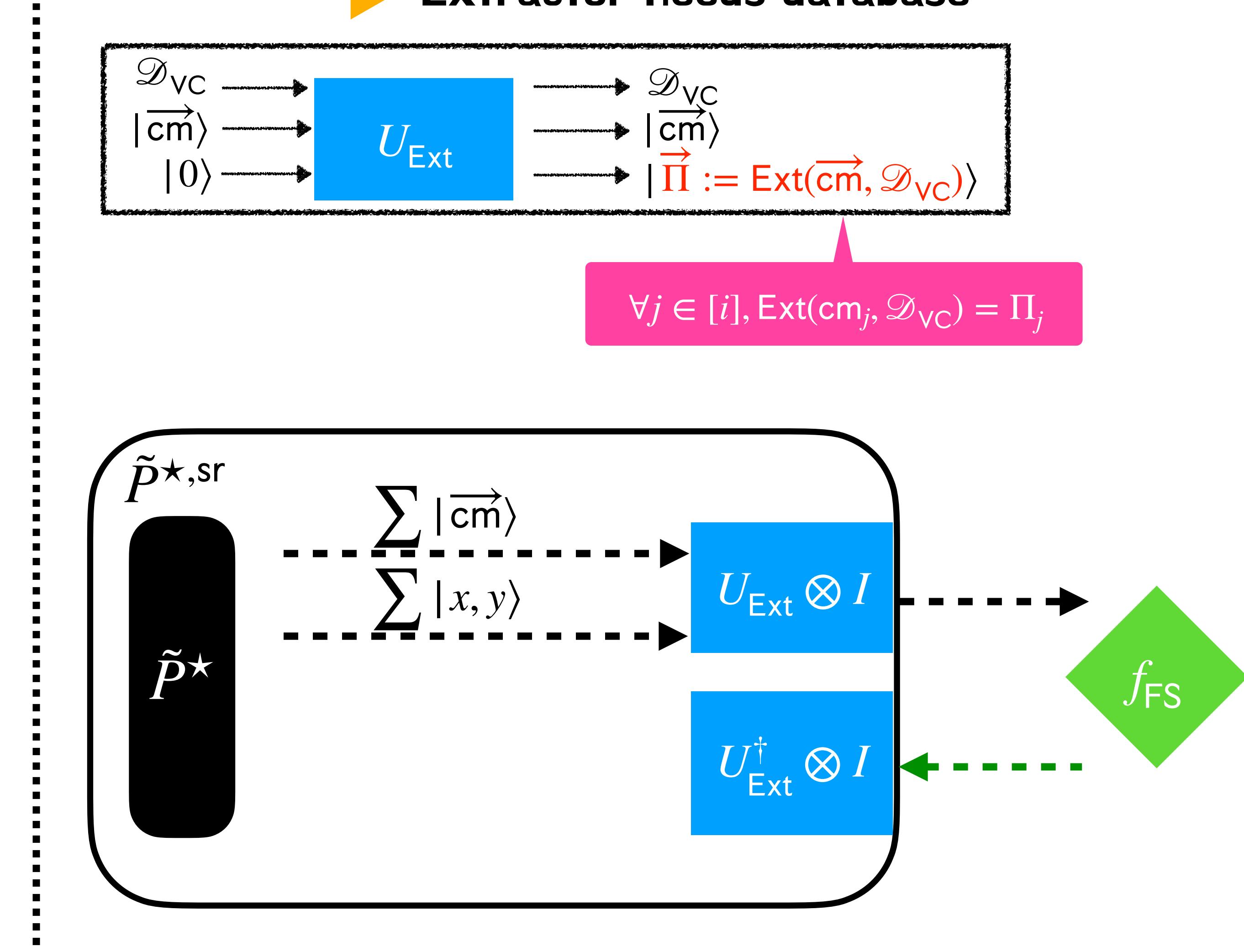


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

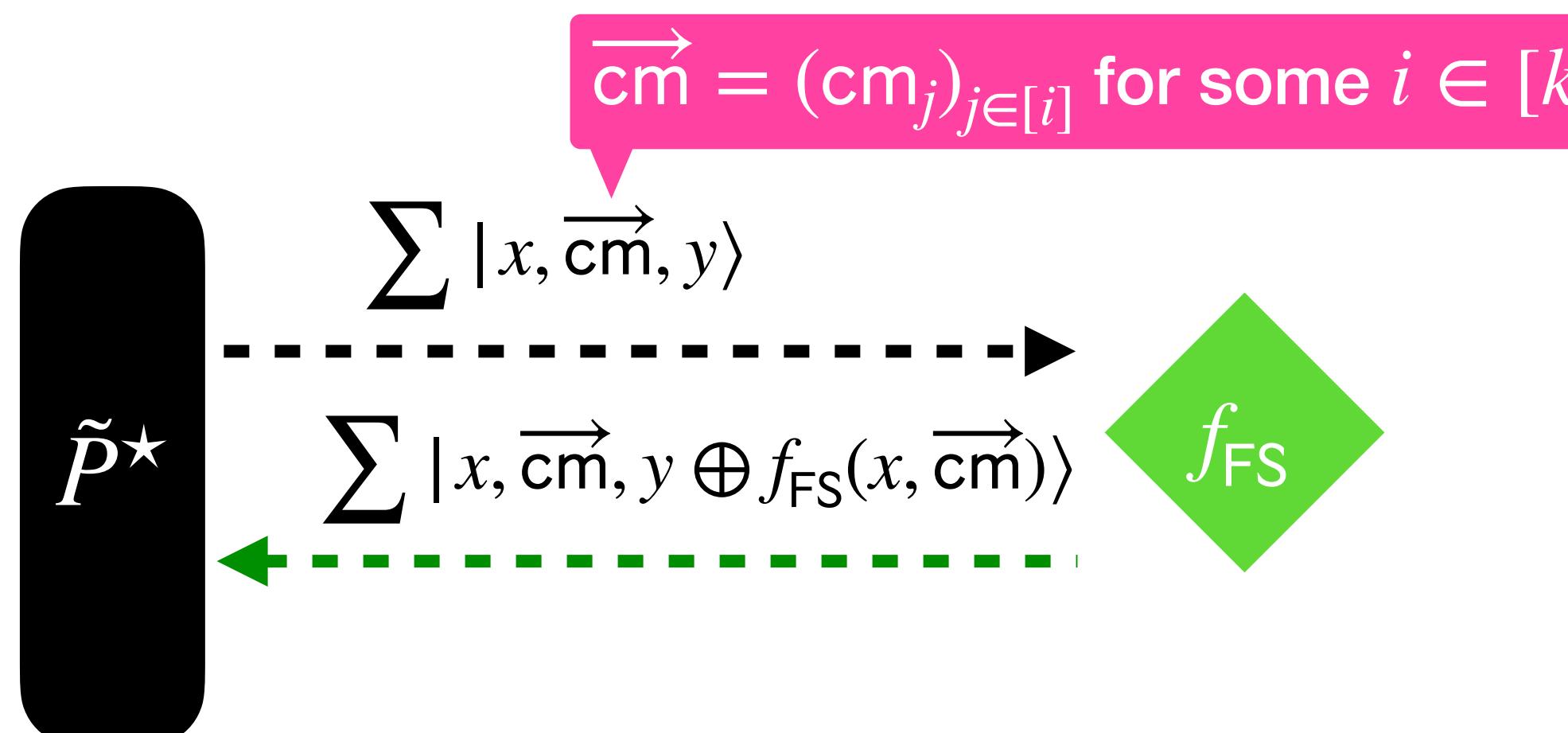
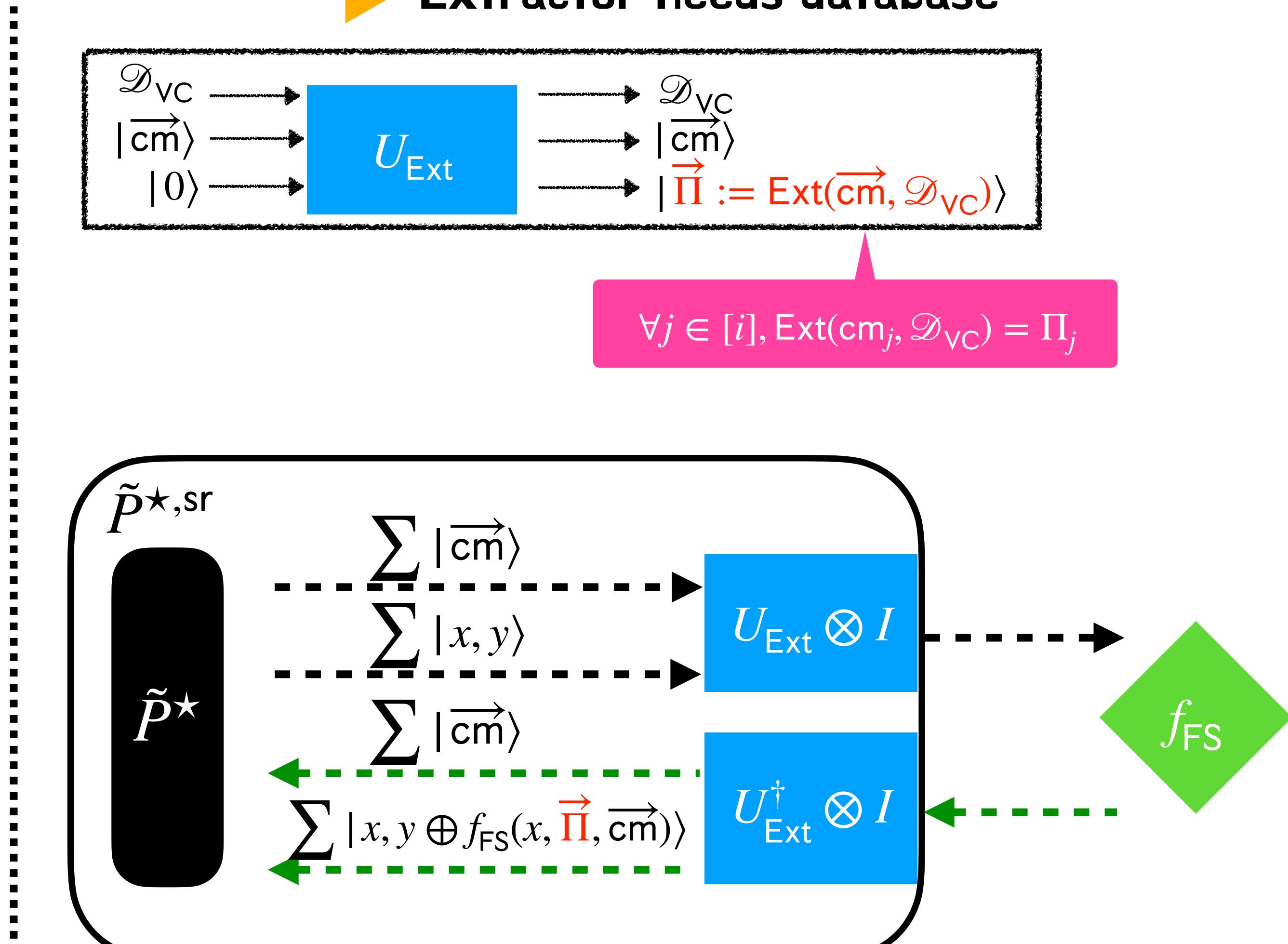


Our construction of $\tilde{P}^{\star, \text{sr}}$

Quantum case

Step 2: how to answer quantum f_{FS} queries?

► Extractor needs database

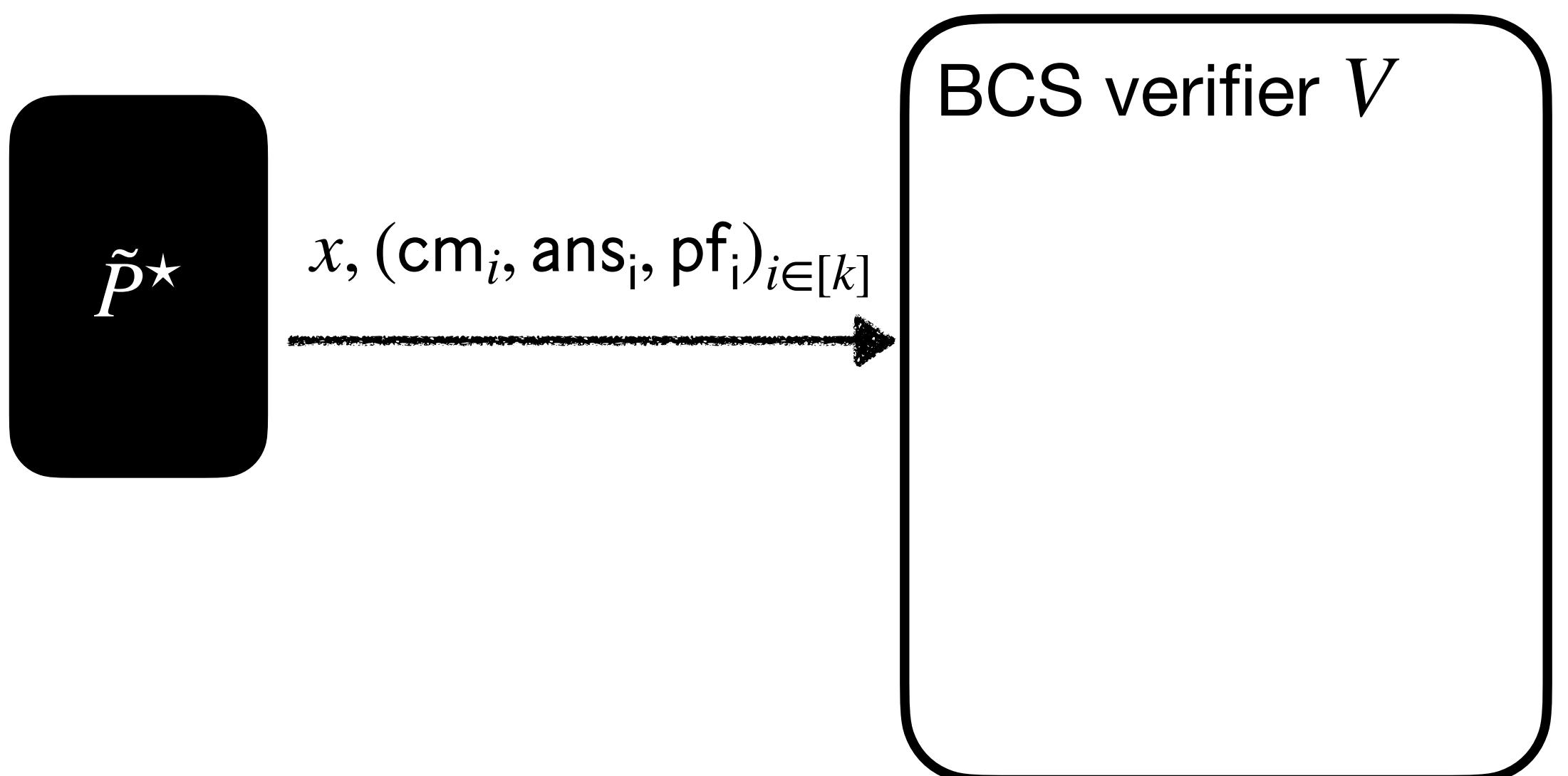


Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output

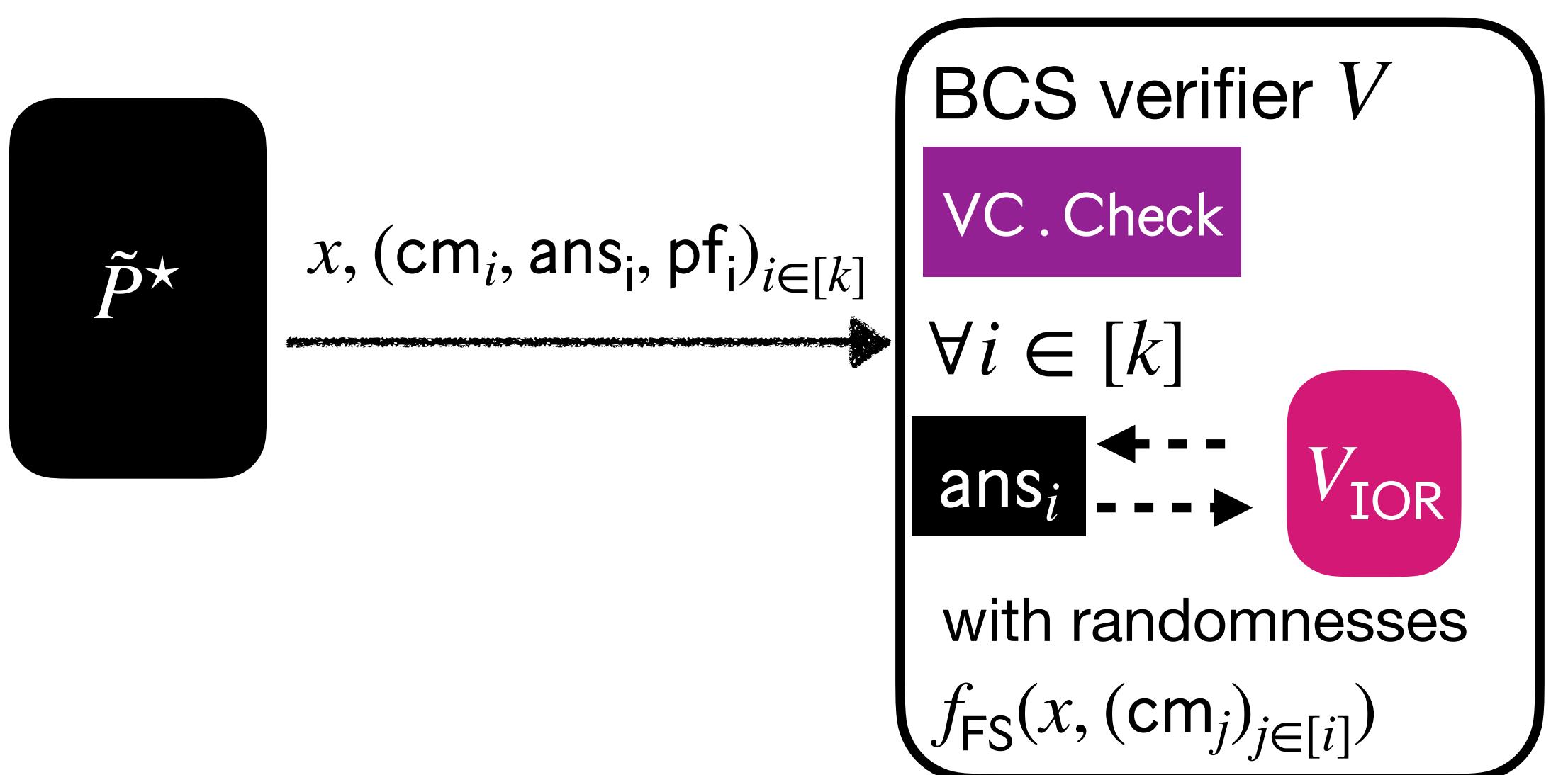
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output



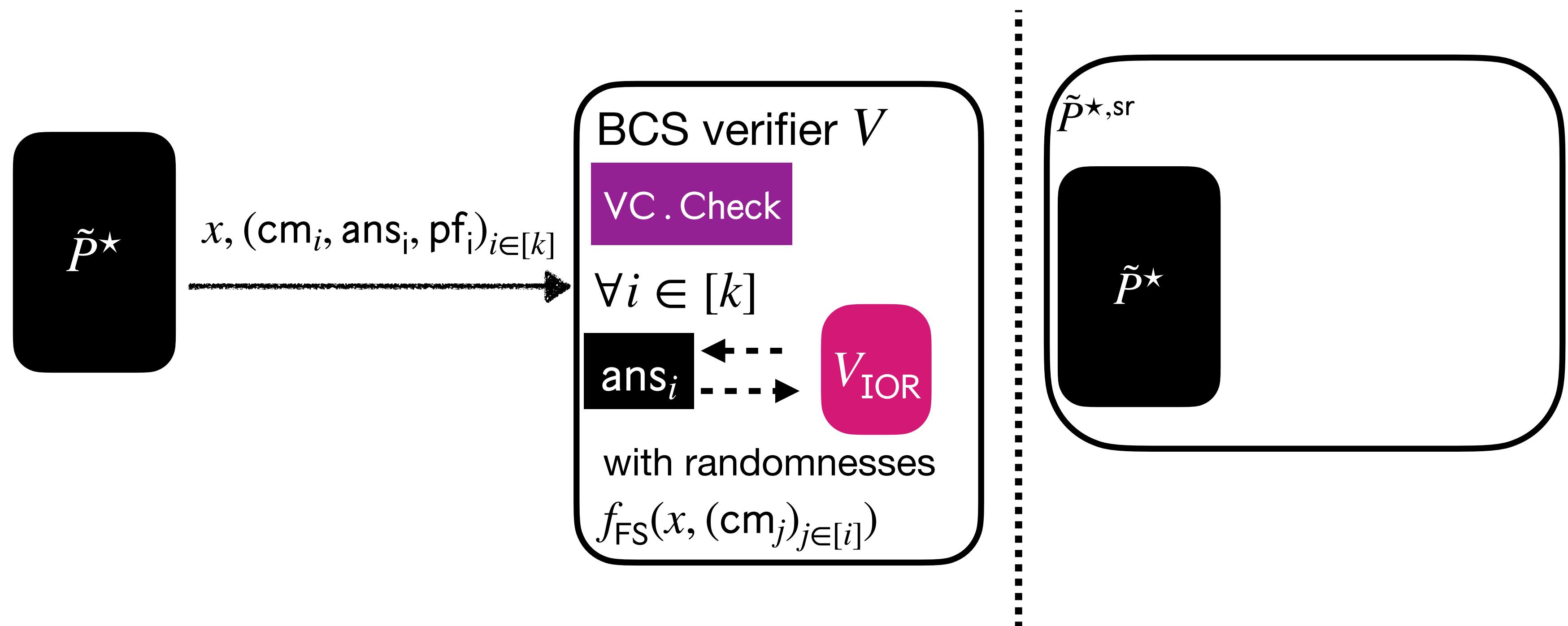
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output



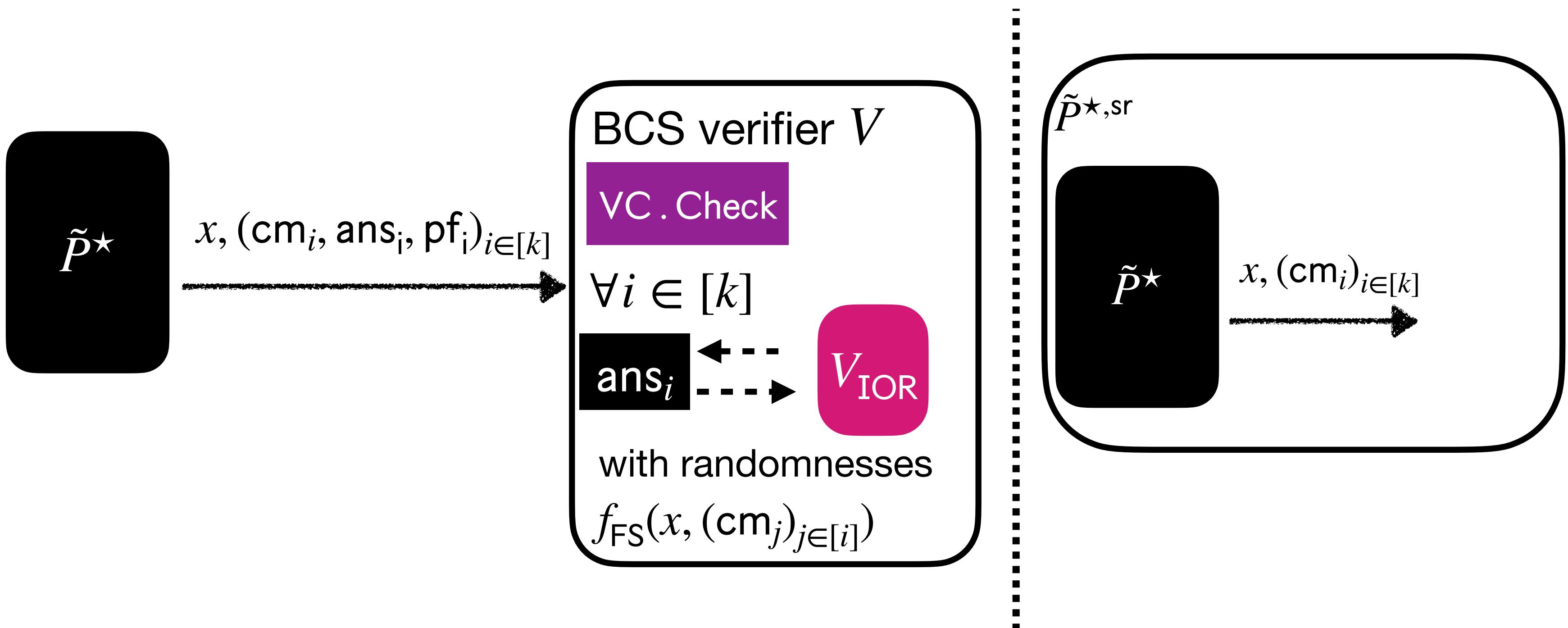
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output



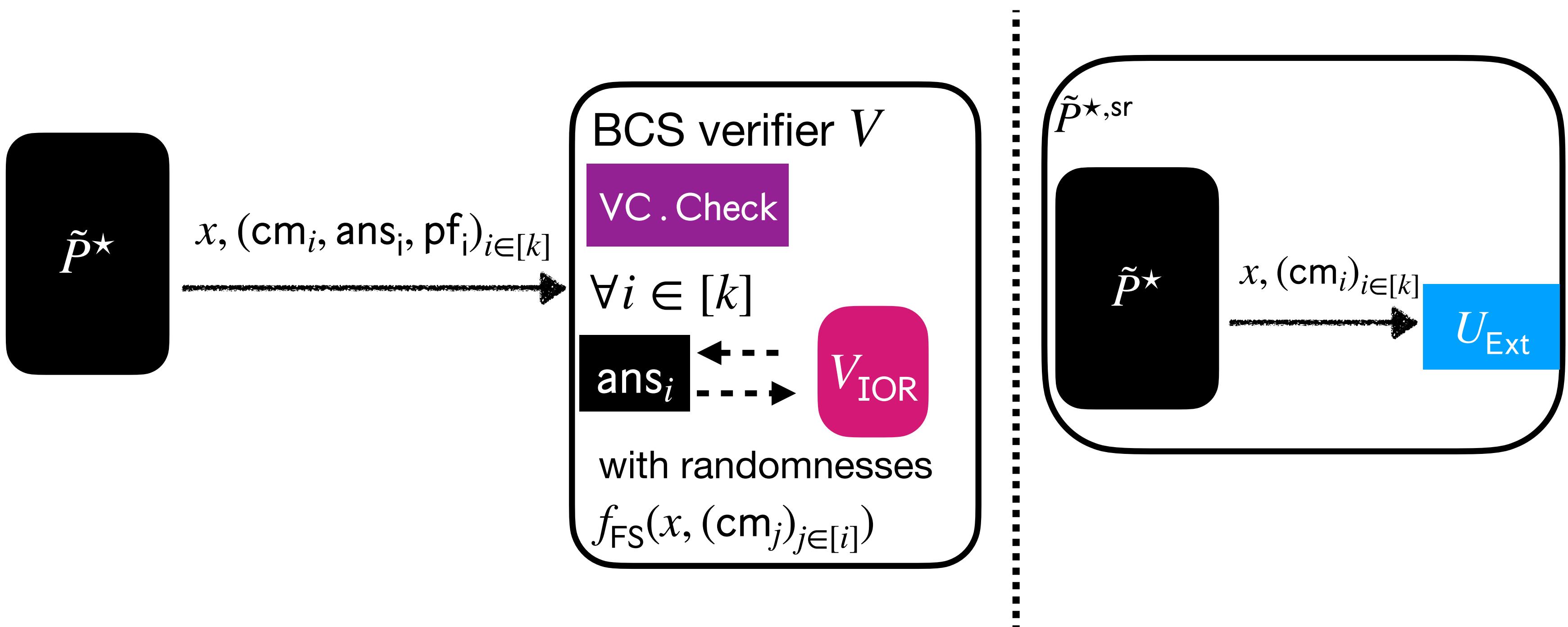
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output



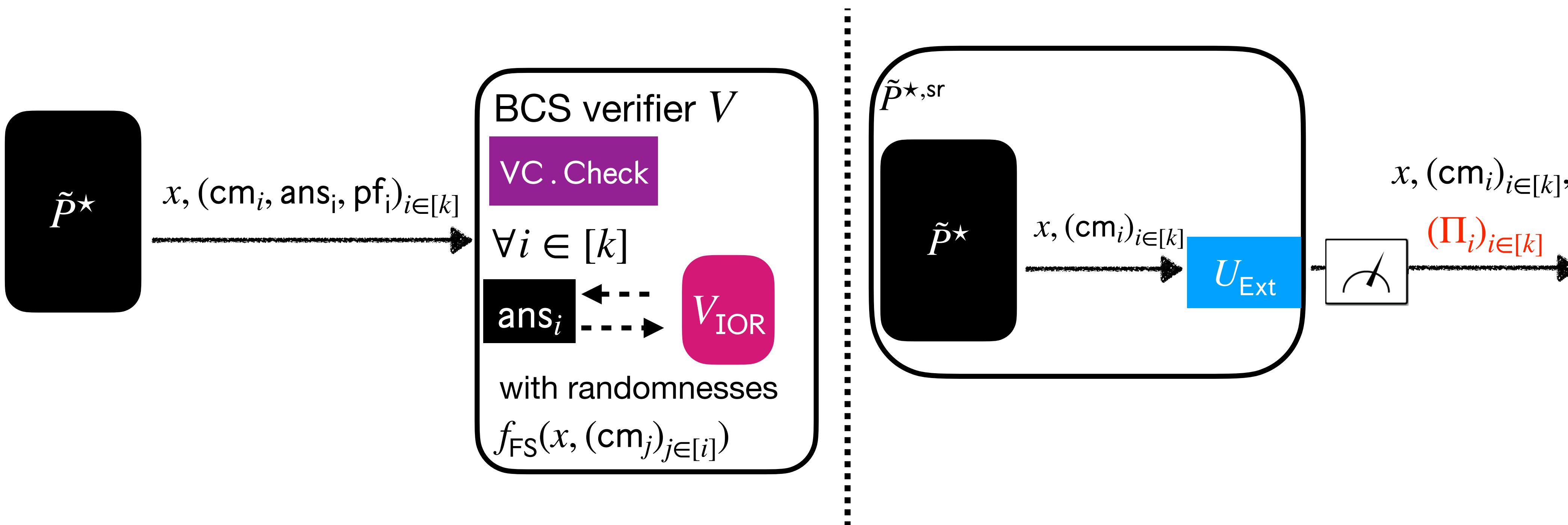
Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output



Our construction of $\tilde{P}^{\star, \text{sr}}$

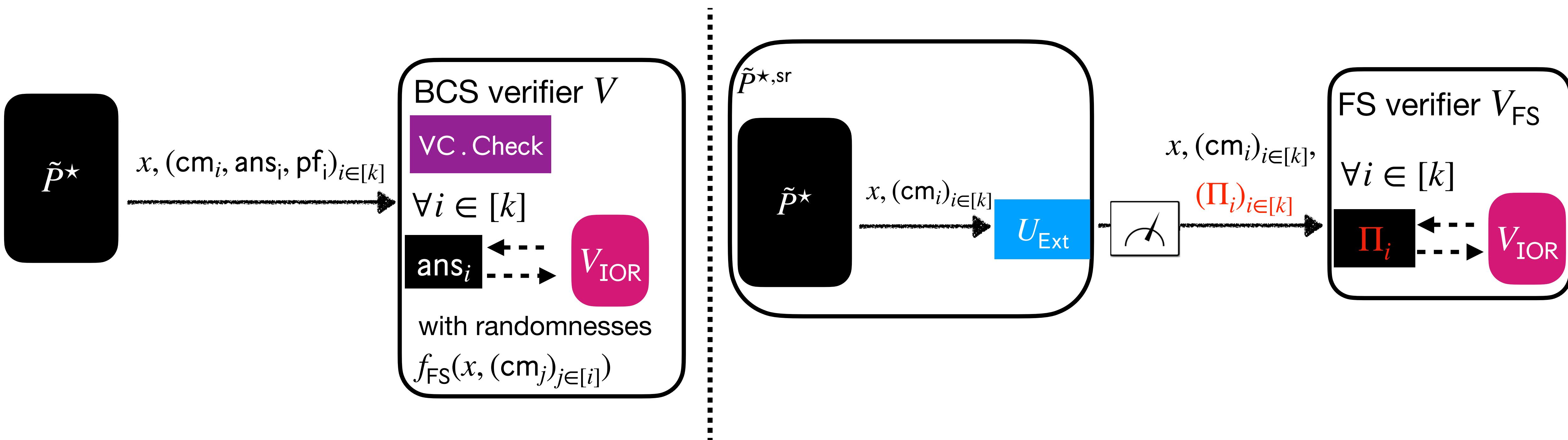
Step 3: how to derive the output



Our construction of $\tilde{P}^{\star, \text{sr}}$

Step 3: how to derive the output

Quantum case



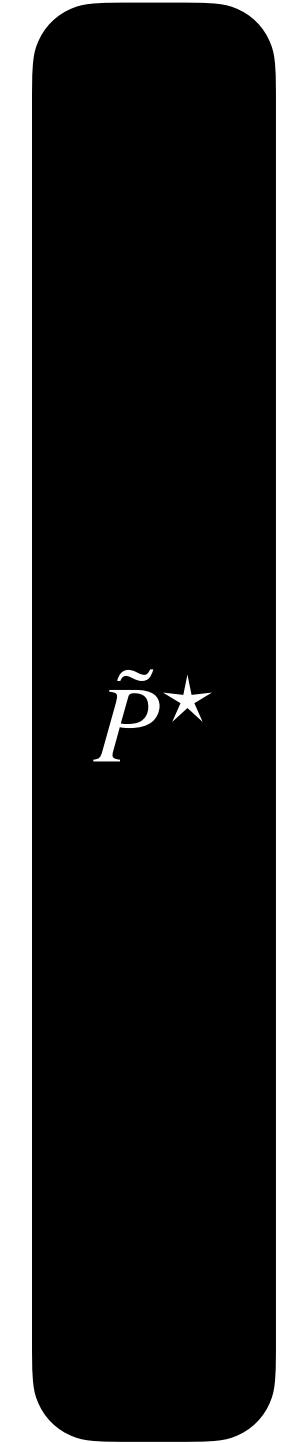
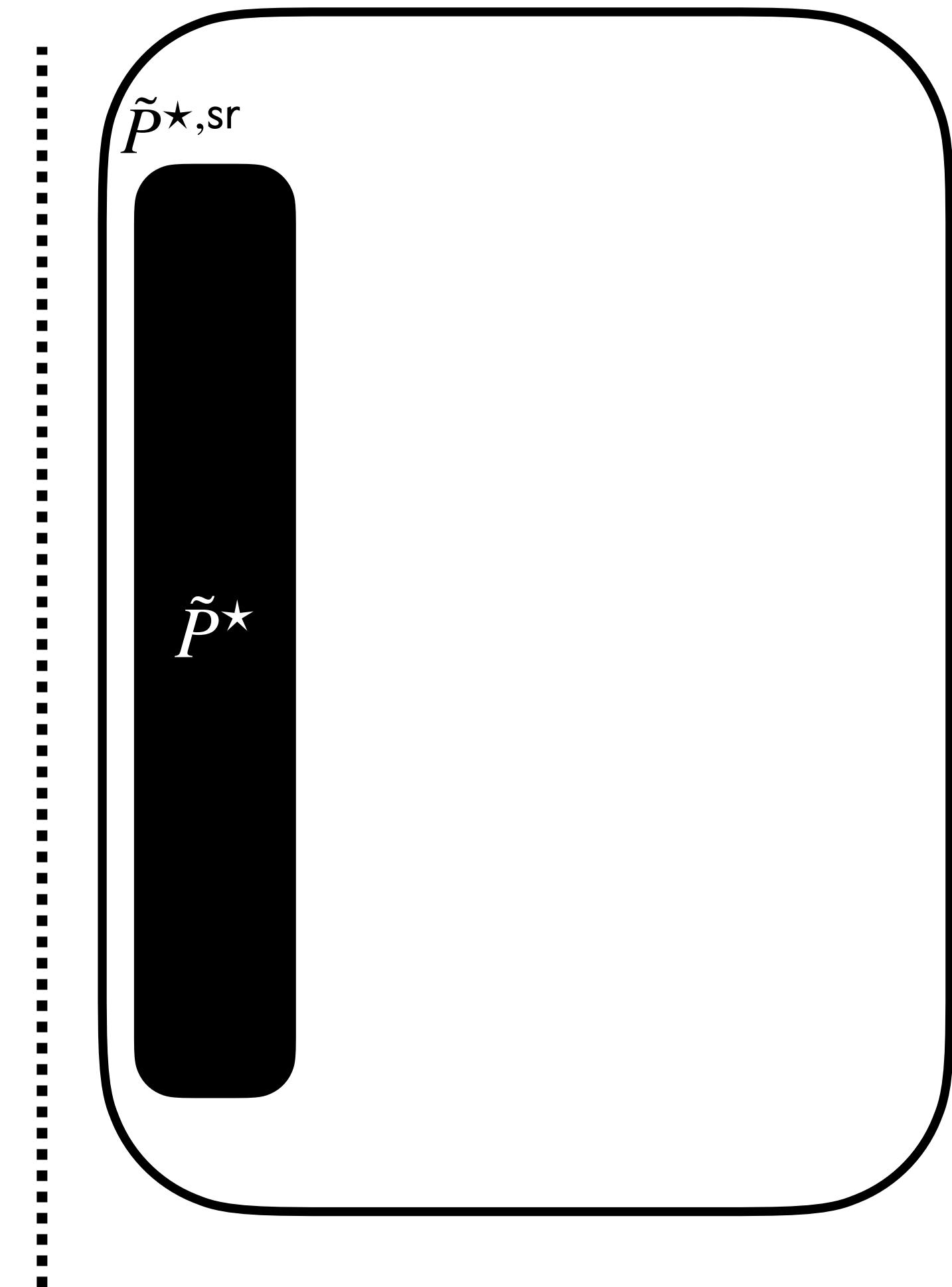
Quantum case

Our construction in summary: $\tilde{P}^{\star, \text{sr}}$ simulates \tilde{P}^{\star} .

Quantum case

Our construction in summary: $\tilde{P}^{\star,\text{sr}}$ simulates \tilde{P}^{\star} .

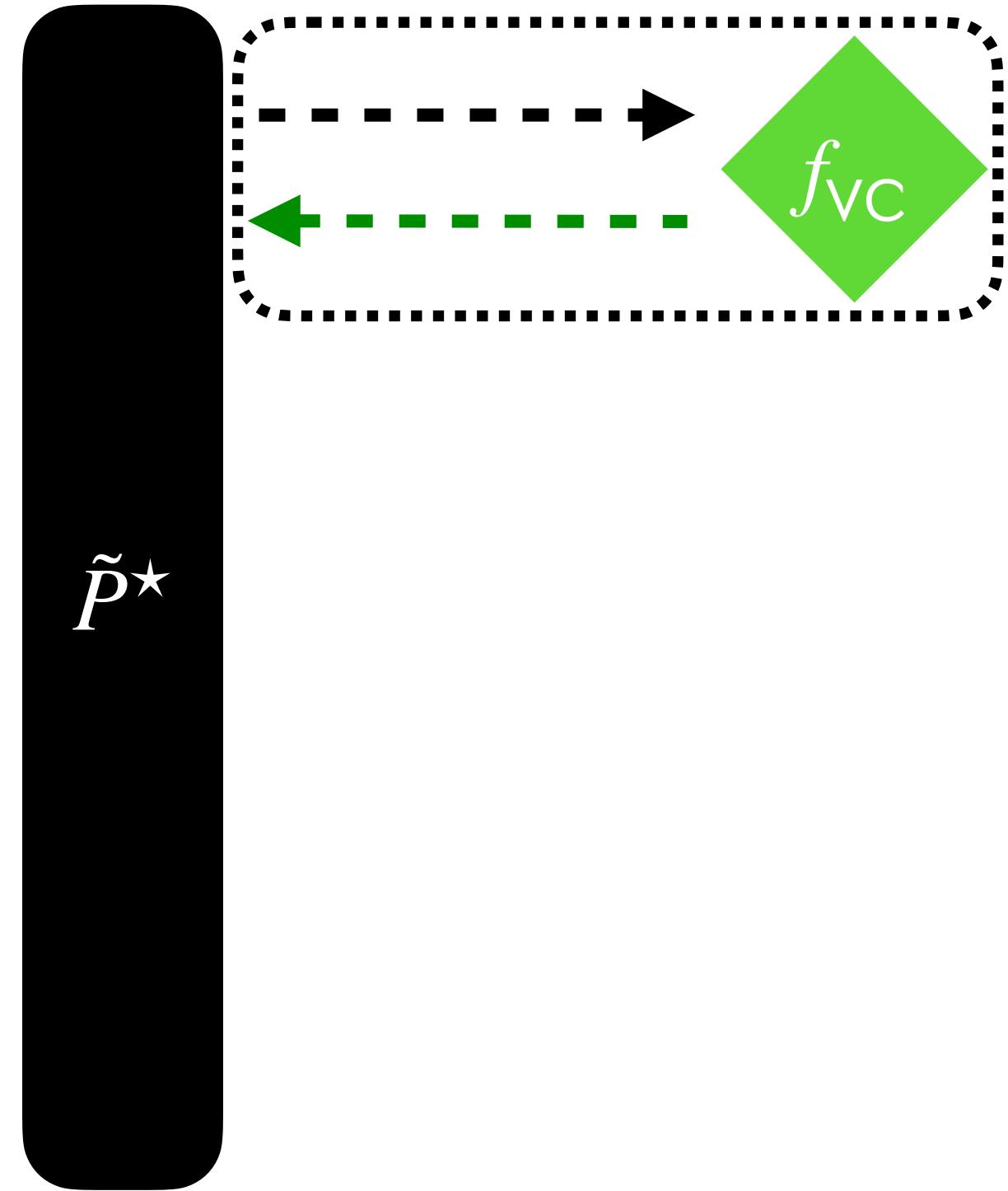
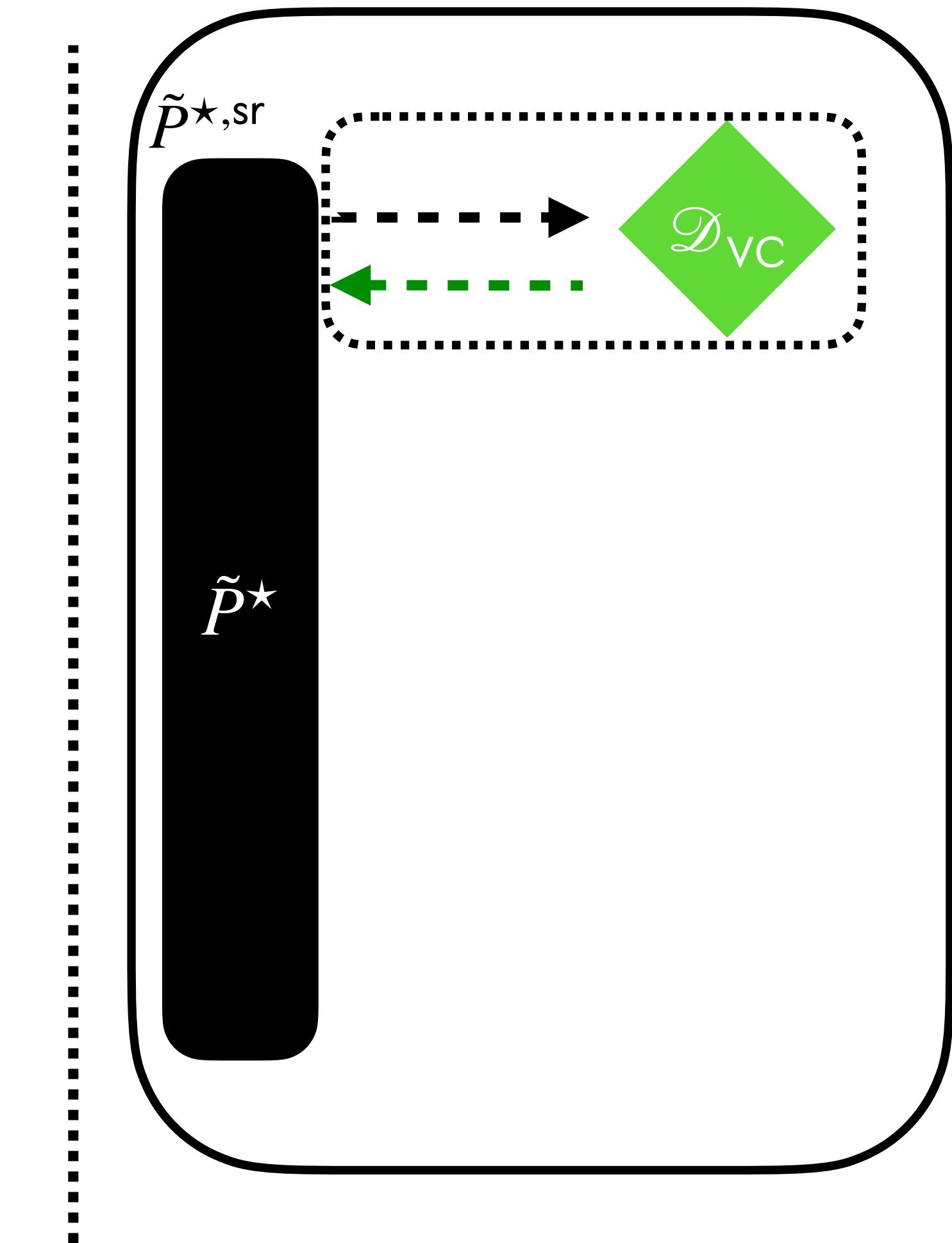
Quantum case



Our construction in summary: $\tilde{P}^{\star, \text{sr}}$ simulates \tilde{P}^{\star} .

Quantum case

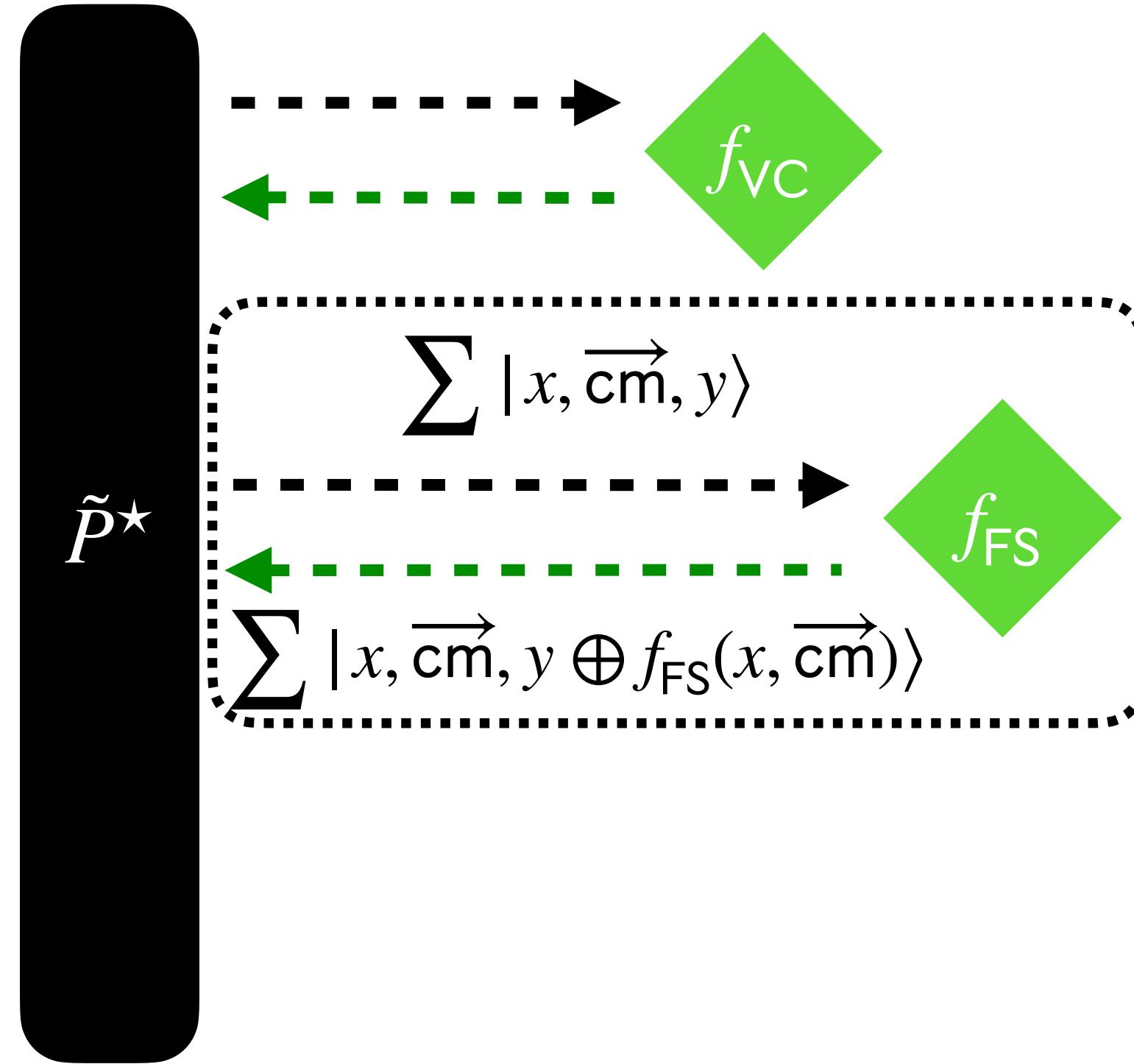
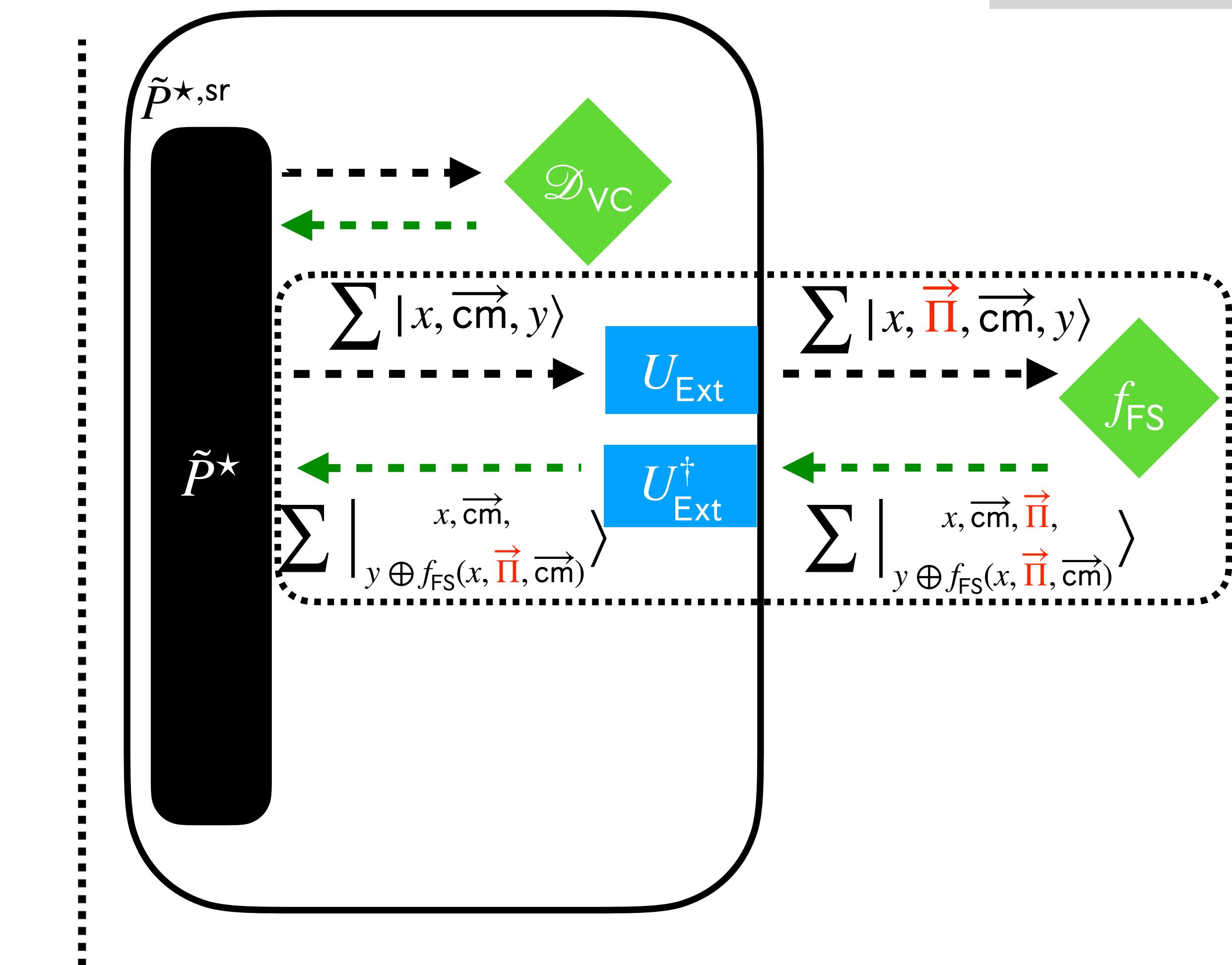
How to answer quantum f_{VC} queries?



Our construction in summary: $\tilde{P}^{\star, \text{sr}}$ simulates \tilde{P}^{\star} .

Quantum case

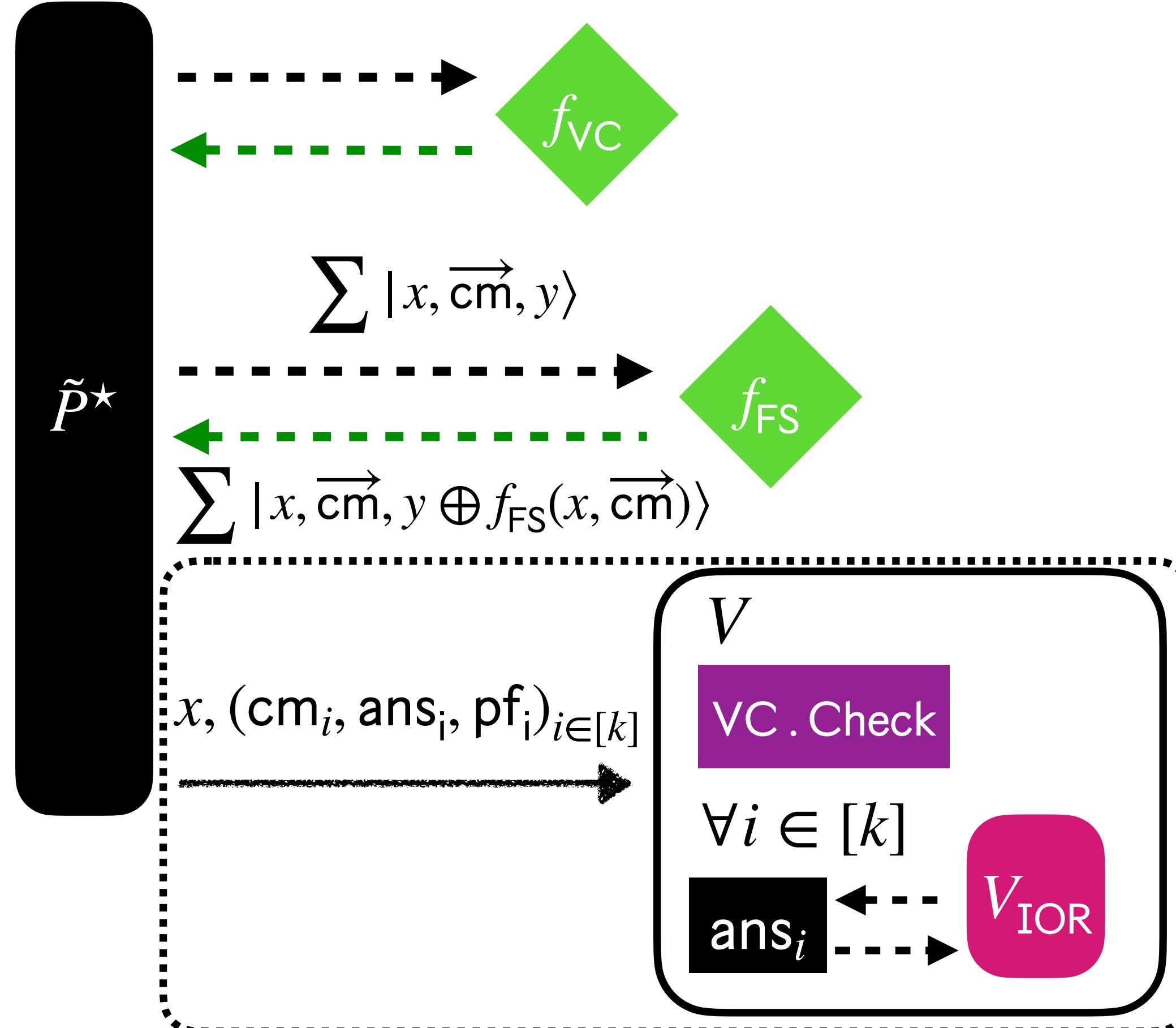
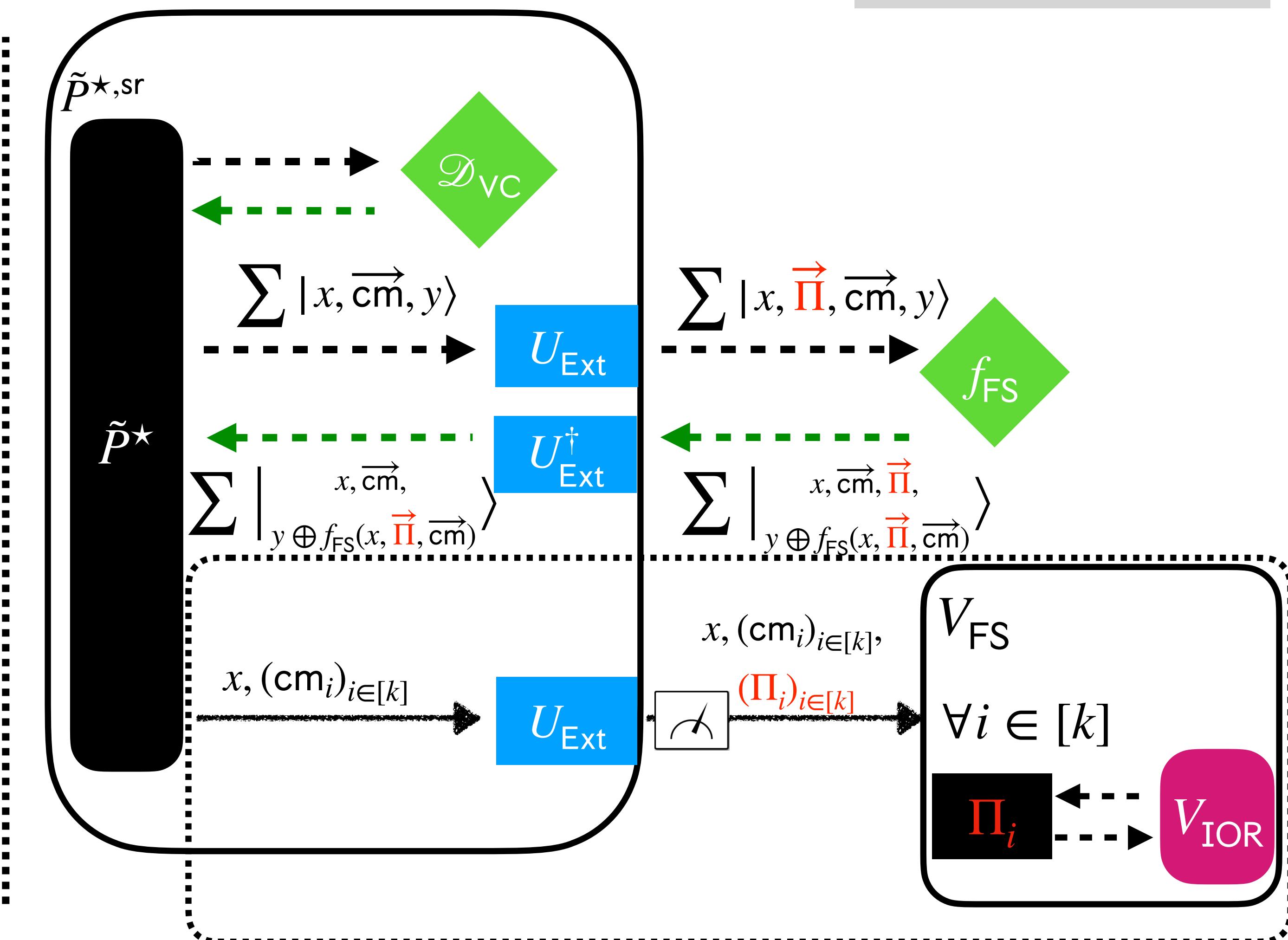
How to answer quantum f_{FS} queries?



Our construction in summary: $\tilde{P}^{\star, \text{sr}}$ simulates \tilde{P}^{\star} .

Quantum case

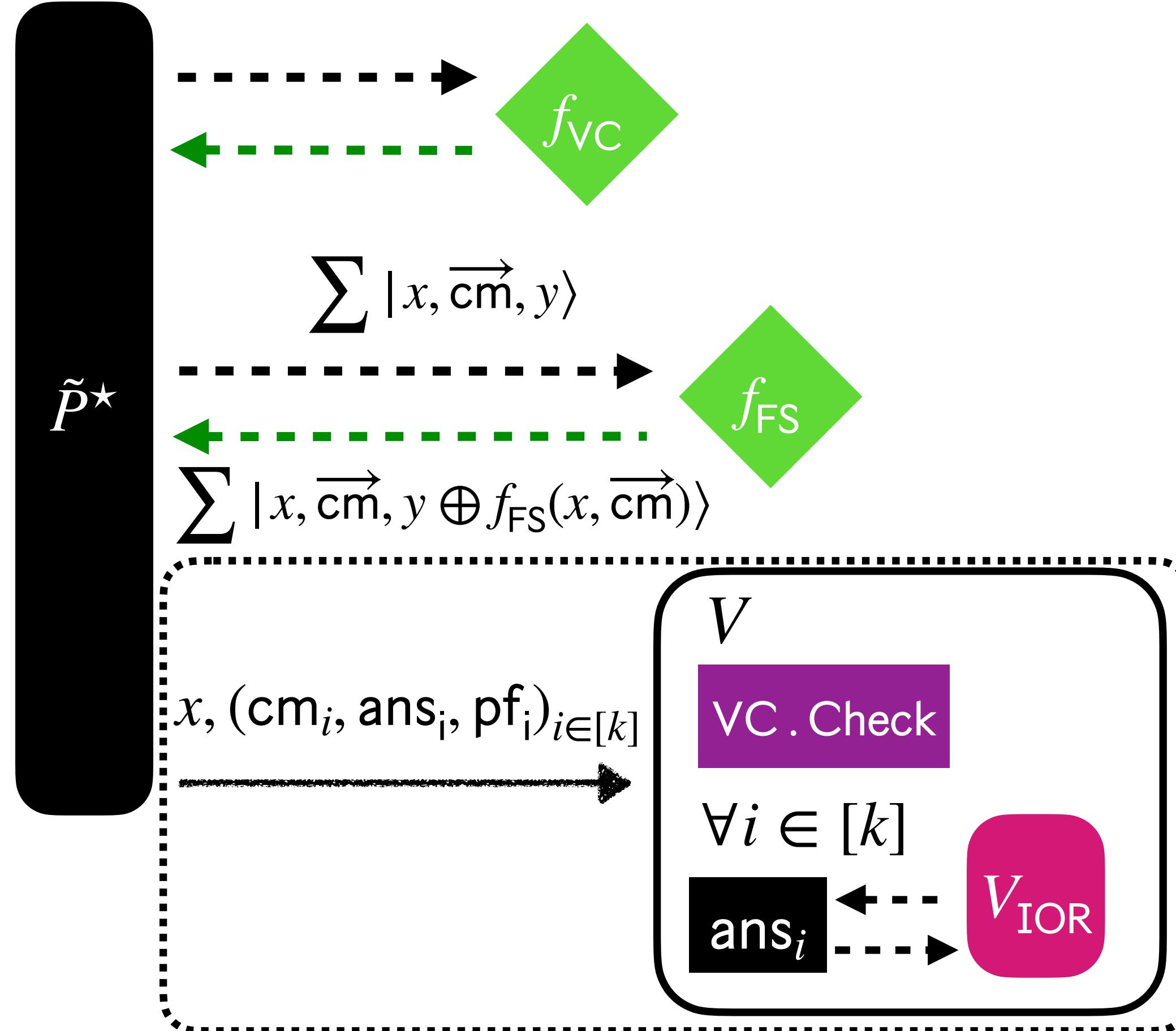
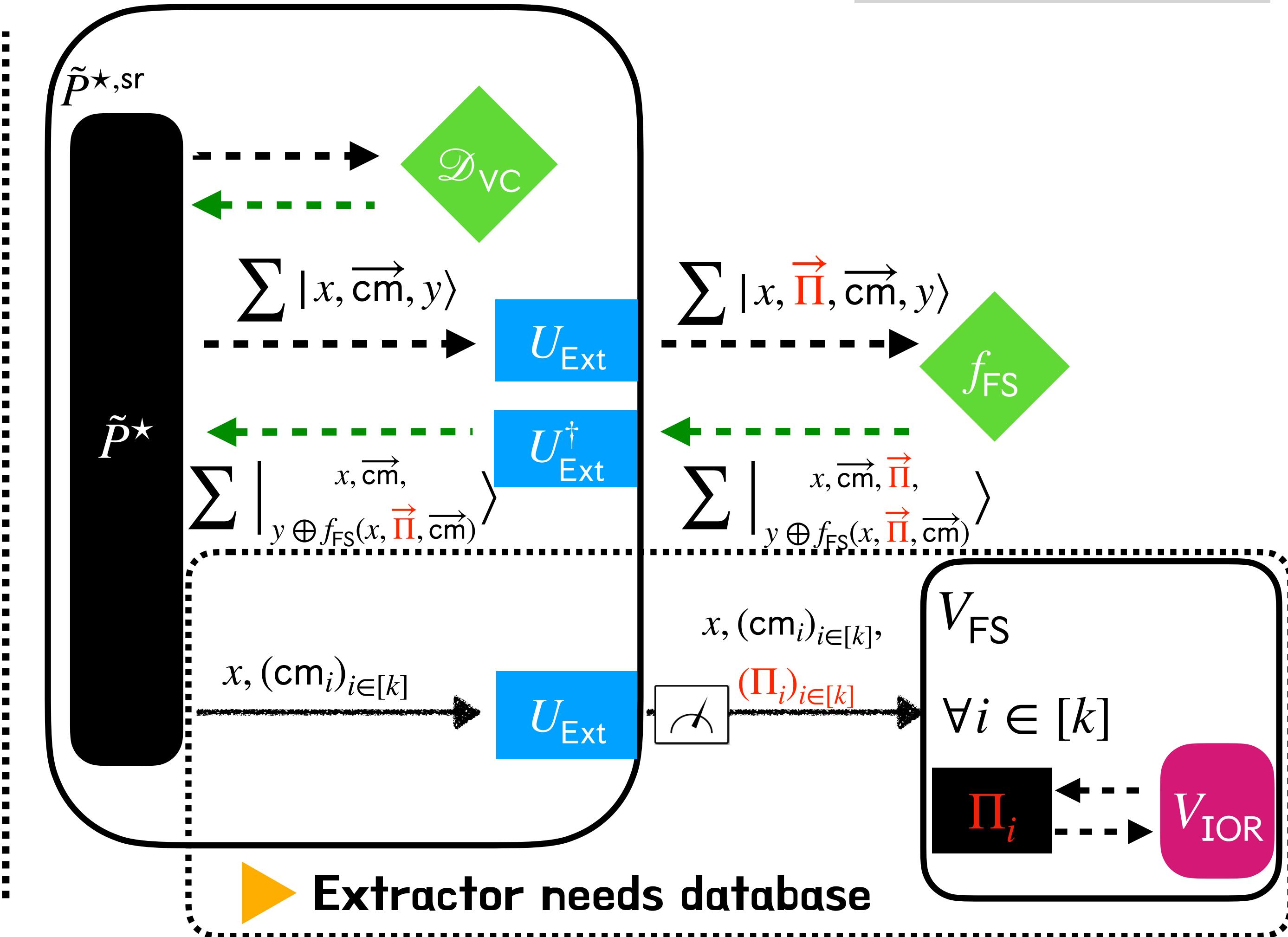
How to derive the output?



Our construction in summary: $\tilde{P}^{\star, \text{sr}}$ simulates \tilde{P}^{\star} .

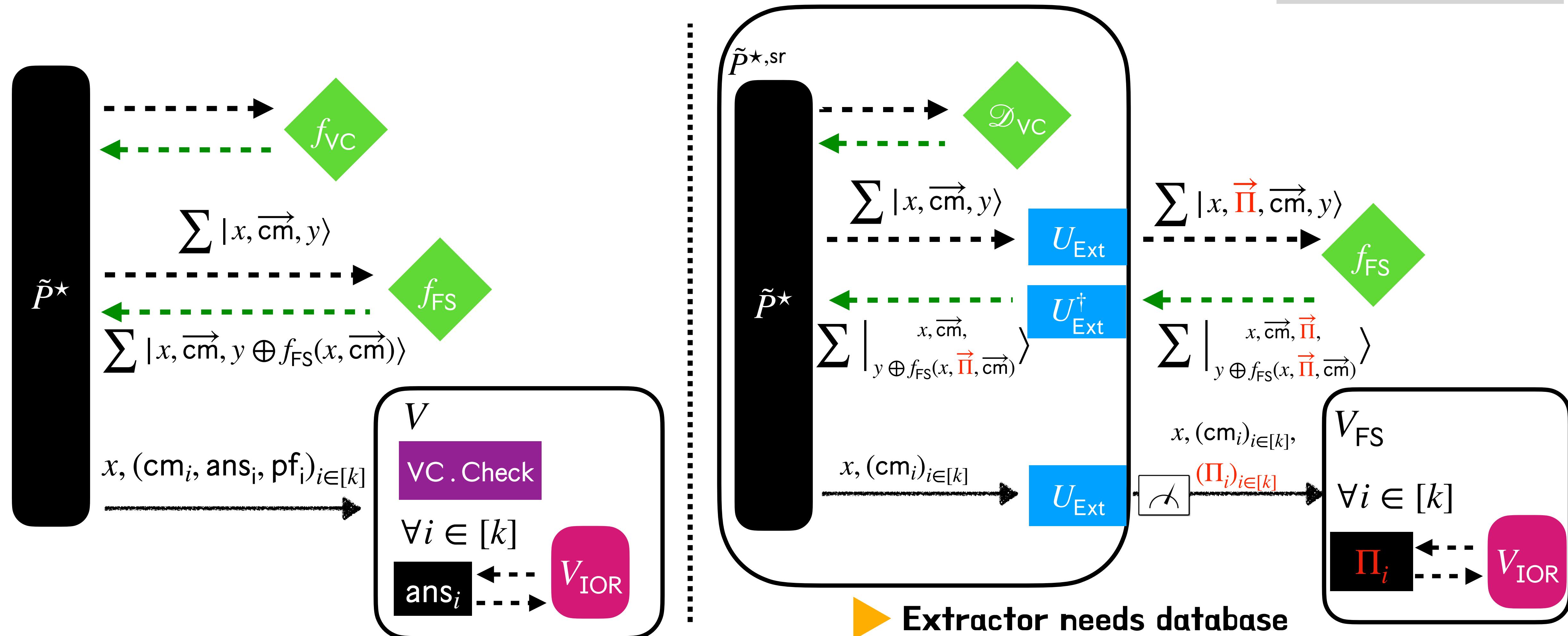
Quantum case

How to derive the output?



Our construction in summary: $\tilde{P}^{\star,\text{sr}}$ simulates \tilde{P}^{\star} .

Quantum case



Goal: we want to show $\Pr[\tilde{P}^{\star,\text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Difference 1

Goal: we want to show

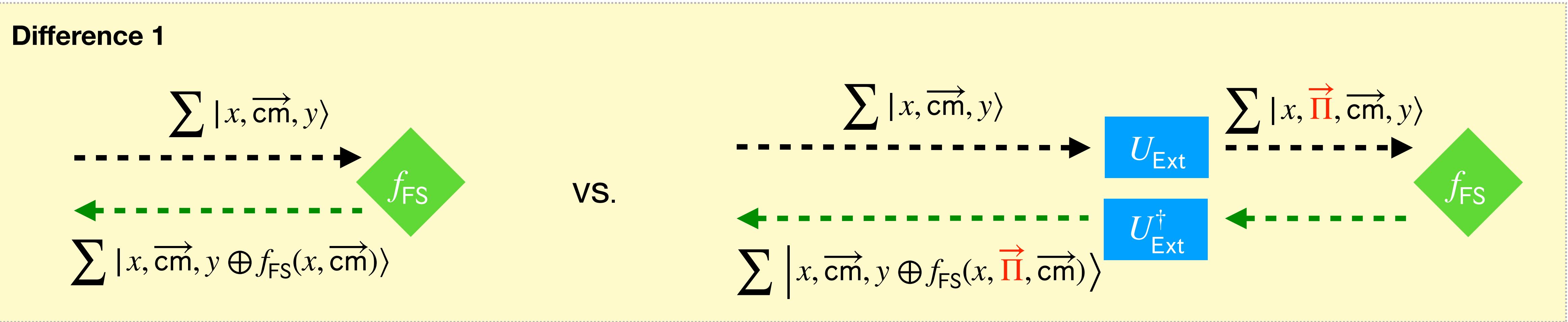
Quantum case

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Difference 1

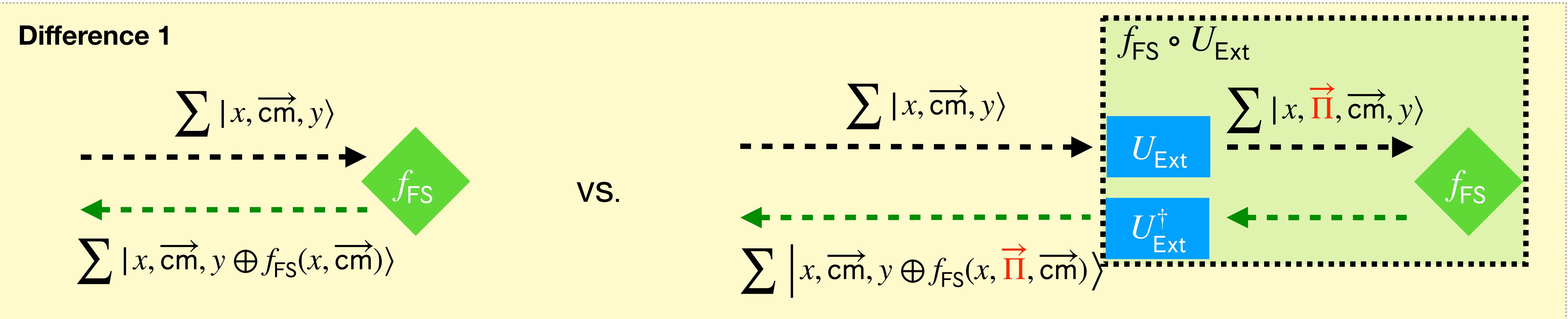
Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$



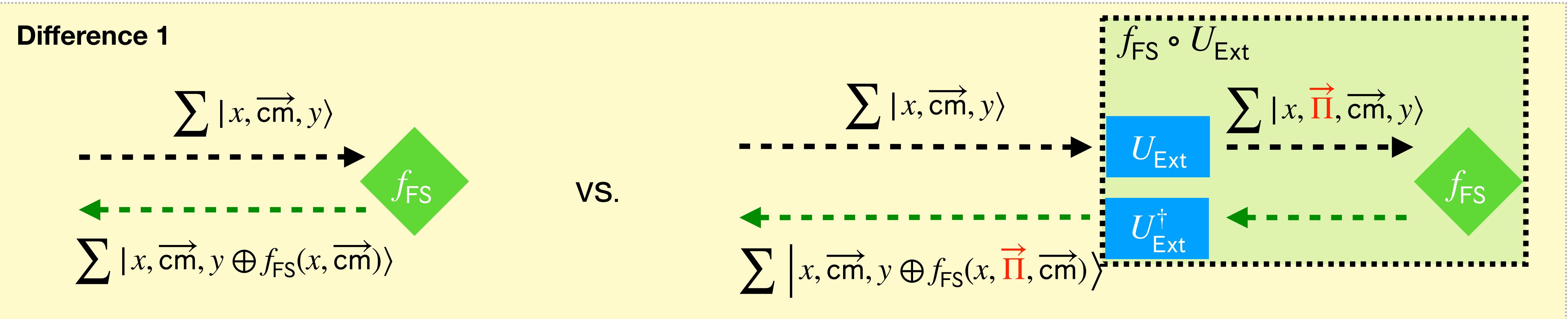
Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$



Goal: we want to show

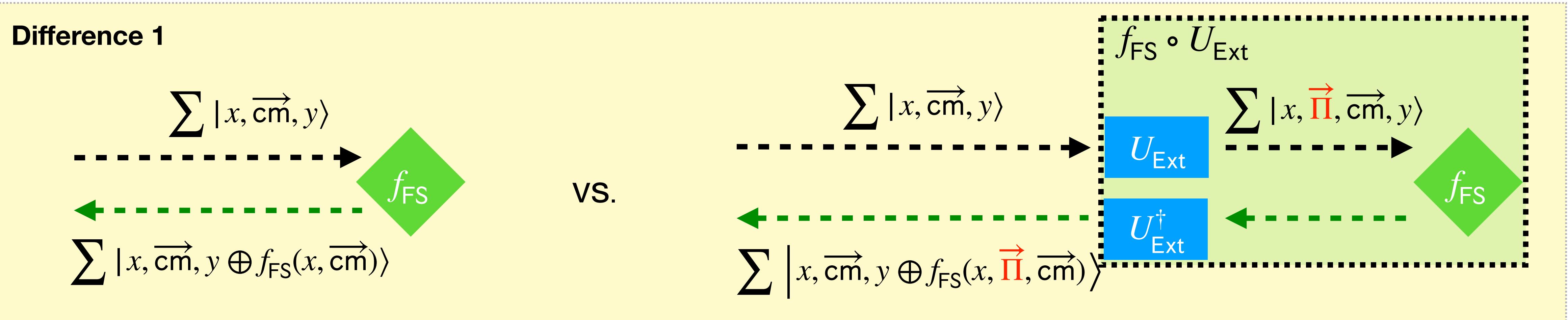
$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$



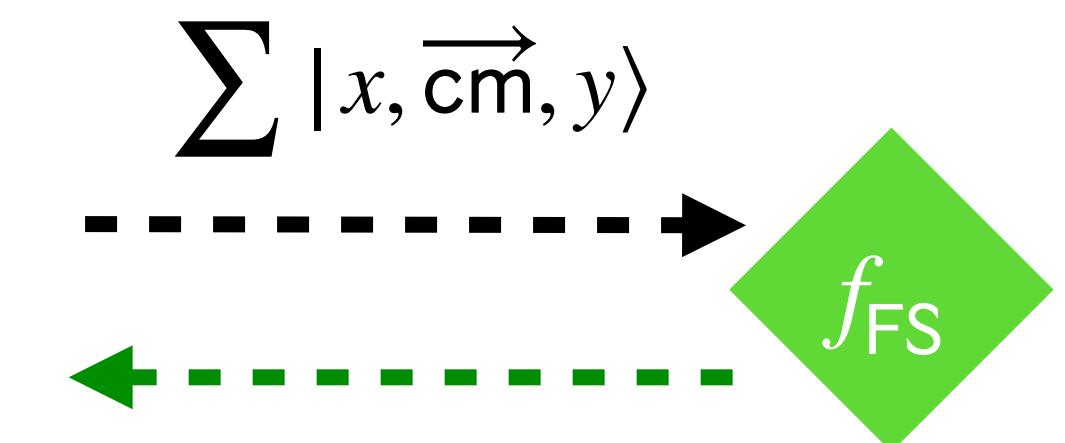
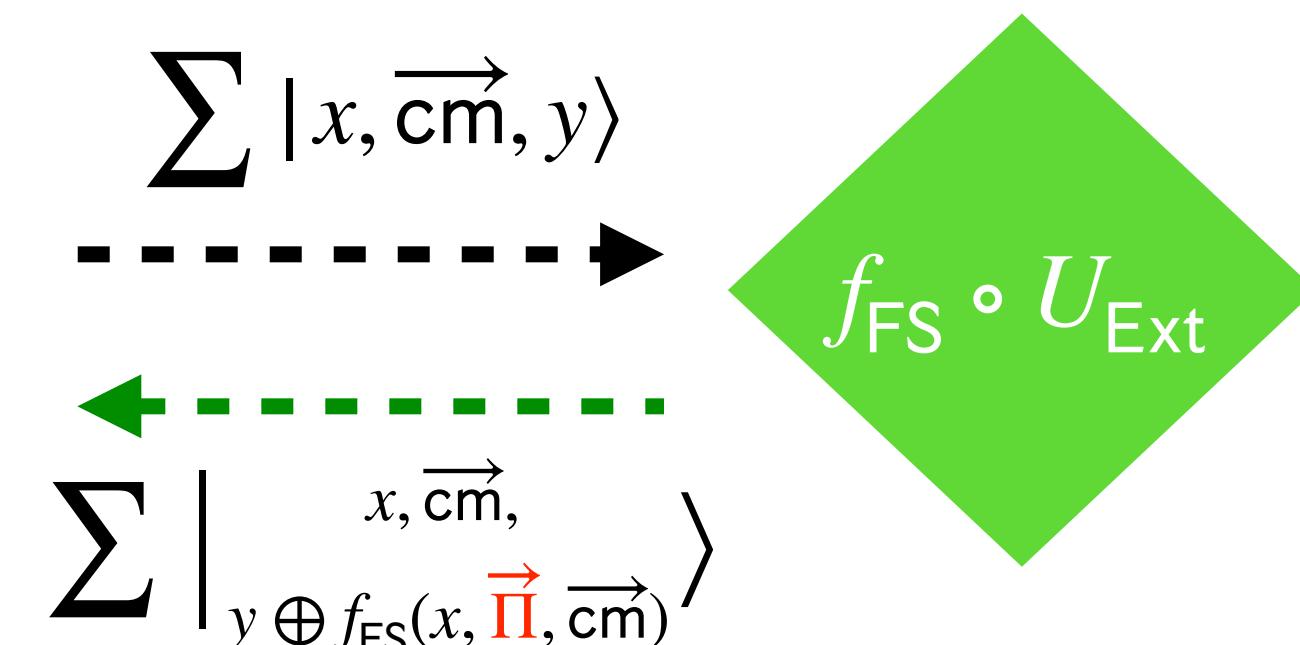
Our **PQ VC Property 1: Online consistency**

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

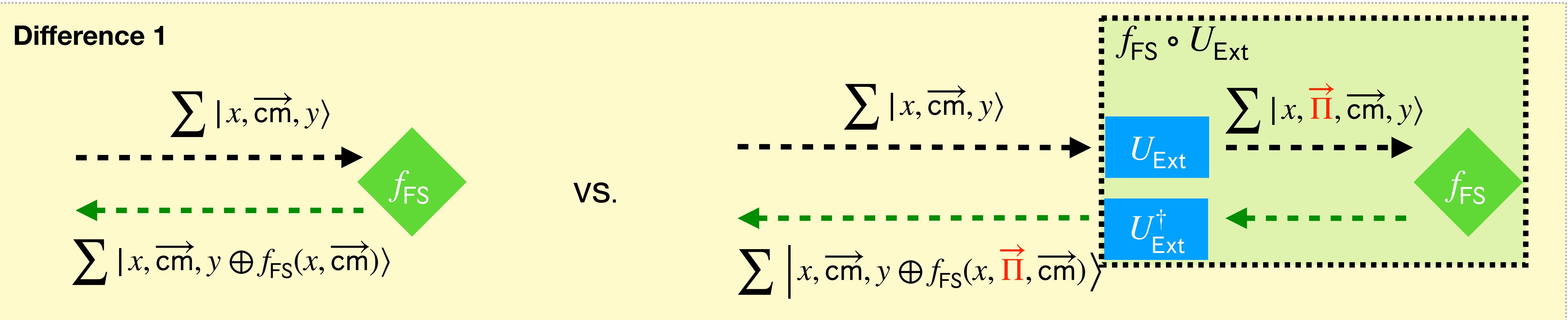


Our **PQ VC Property 1: Online consistency**

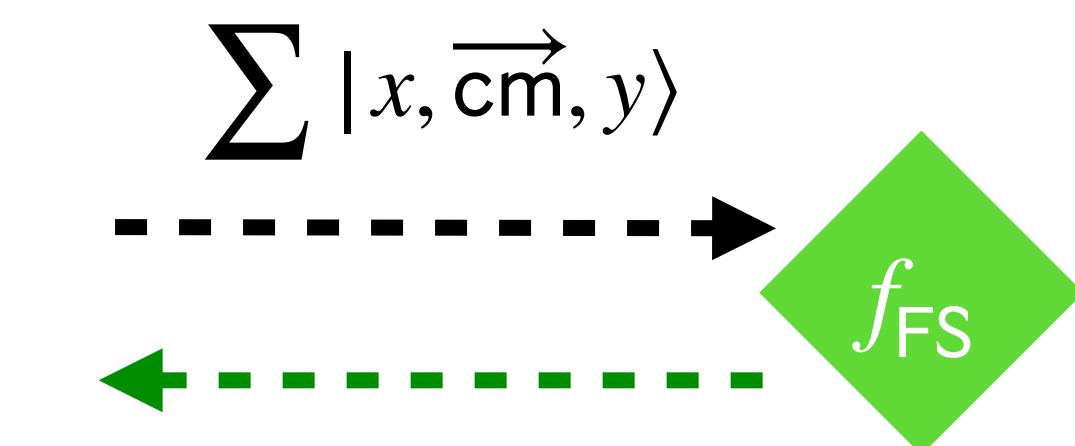


Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

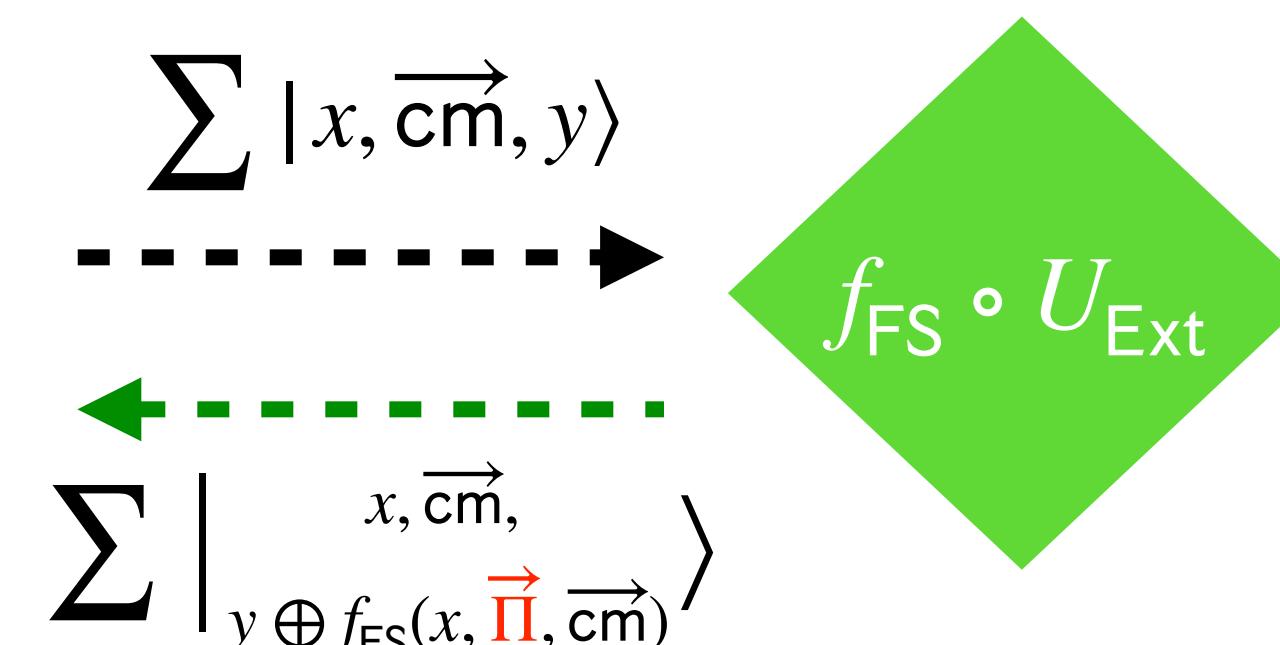


Our PQ VC Property 1: Online consistency



$$\approx \epsilon_{\text{VC,online}}^{\star}$$

$$\sum |x, \overrightarrow{\text{cm}}, y \oplus f_{\text{FS}}(x, \overrightarrow{\text{cm}})\rangle$$



$$\sum |y \oplus f_{\text{FS}}(x, \overrightarrow{\Pi}, \overrightarrow{\text{cm}}), \overrightarrow{\text{cm}}, y\rangle$$

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Goal: we want to show

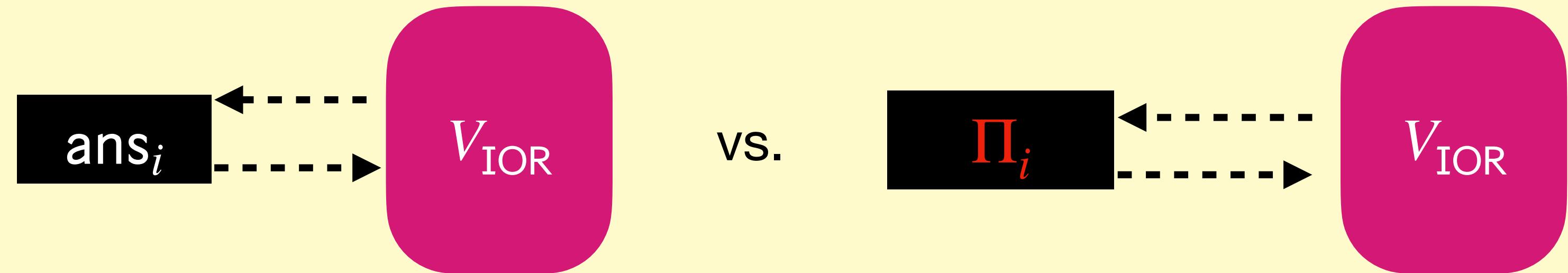
$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Difference 2

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

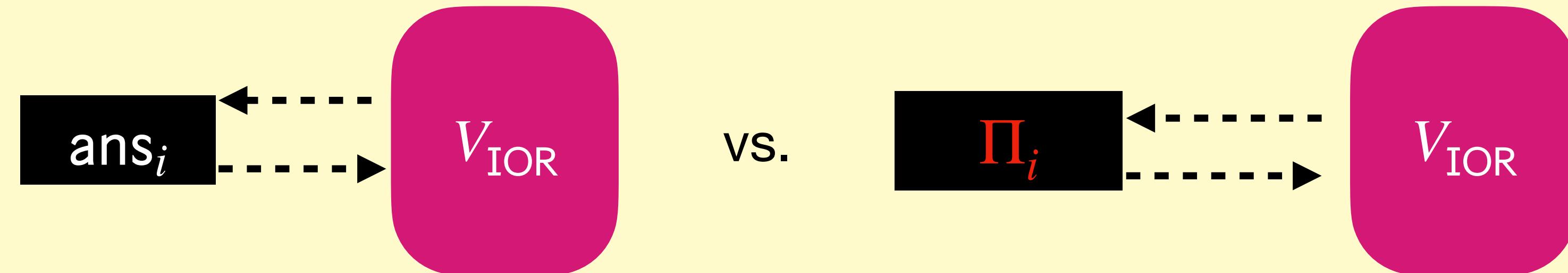
Difference 2



Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Difference 2

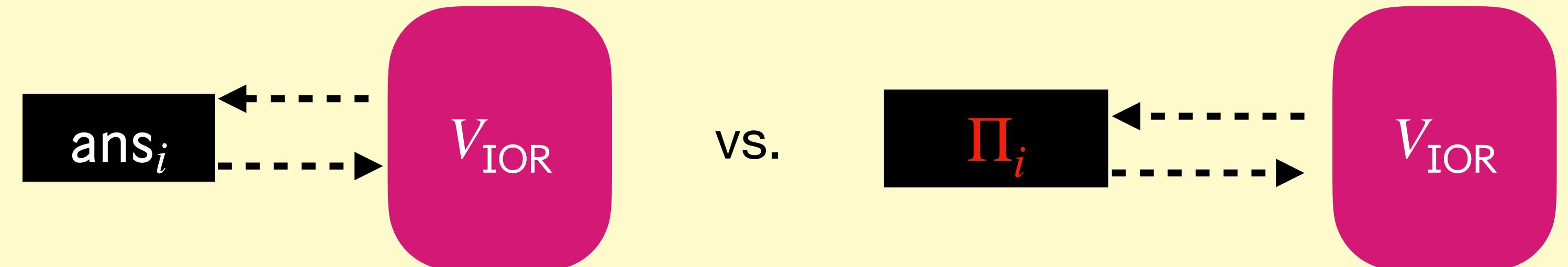


Our **PQ VC Property 2: Offline extractability**

Goal: we want to show

$$\Pr[\tilde{P}^{\star, \text{sr}} \text{ wins PQSR game}] \geq \Pr[\tilde{P}^{\star} \text{ fools } V] - \epsilon_{\text{VC}}^{\star}$$

Difference 2



Our PQ VC Property 2: Offline extractability

Is this the right VC PQ extractability definition?

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

More Challenges!

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

More Challenges!

*For instances that include oracles: require extra VC properties

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

More Challenges!

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

Does MT satisfy this?

More Challenges!

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

Is this the right VC PQ extractability definition?

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

Does MT satisfy this?

Next part

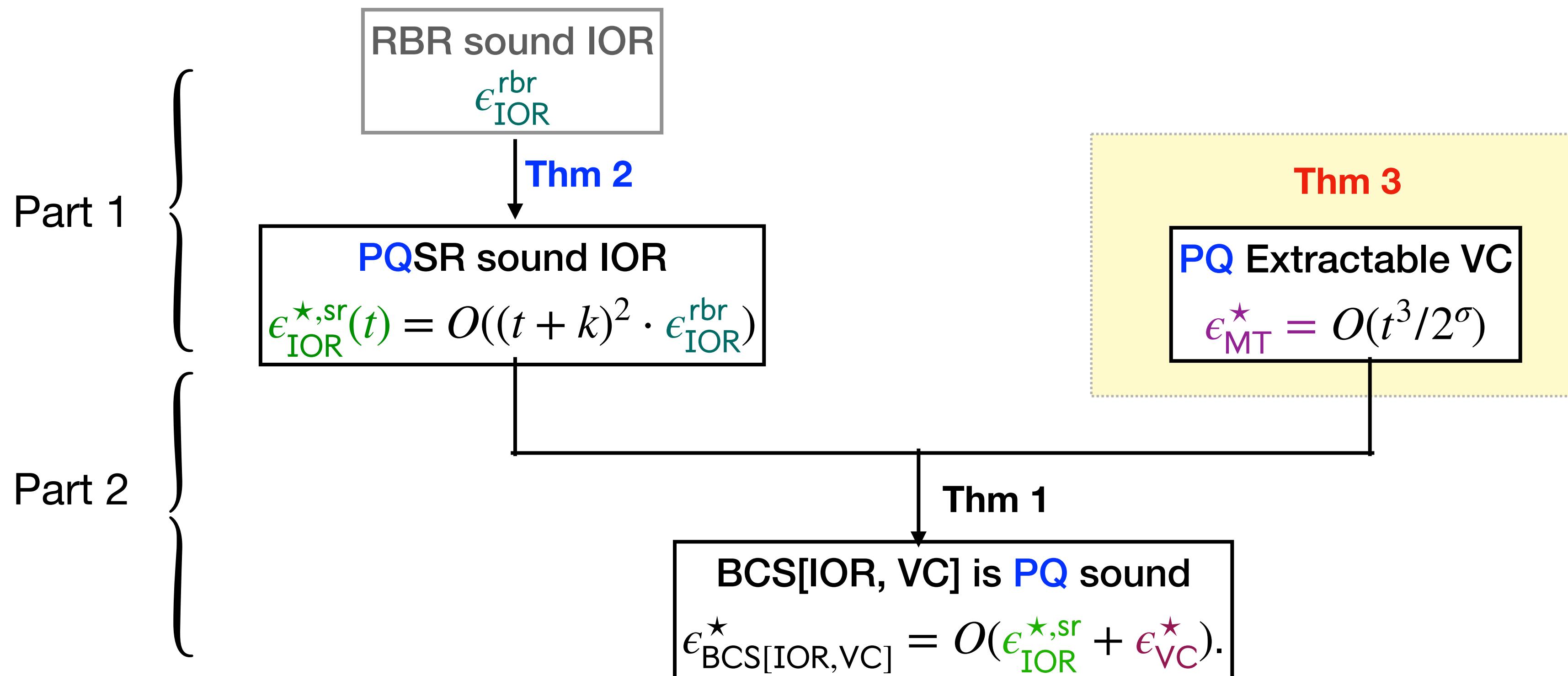
Takeaways

More Challenges!

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

MT has PQ extractability error $O(t^3/2^\sigma)$



Recall our **PQ** VC properties

Recall our **PQ** VC properties

Our **PQ** VC Property 1: Online consistency

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\approx \epsilon_{VC, \text{online}}^*$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\approx \epsilon_{VC, \text{online}}^*$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

Our PQ VC Property 2: Offline extractability

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\sim} \epsilon_{VC, \text{online}}^* f_{FS} \circ U_{Ext}$$
$$\sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$

Our PQ VC Property 2: Offline extractability

$$\text{ans}_i \xleftrightarrow{\sim} \epsilon_{VC, \text{offline}}^* V_{IOR}$$
$$\Pi_i \xleftrightarrow{\sim} V_{IOR}$$

if $VC.\text{Check} = 1$

Recall our PQ VC properties

Our PQ VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\sim} \epsilon_{VC, \text{online}}^* f_{FS} \circ U_{Ext} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$

Diagram illustrating the online consistency property. On the left, a green diamond labeled f_{FS} is connected to a sum of states $\sum |x, \vec{cm}, y\rangle$ via a dashed arrow. A green dashed arrow points from the diamond to the sum. On the right, a green diamond labeled $f_{FS} \circ U_{Ext}$ is connected to a sum of states $\sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$ via a dashed arrow. A green dashed arrow points from the diamond to the sum. The two diagrams are connected by a double-headed arrow labeled \approx .

Proof uses the instability lemma from [CMS19].

Our PQ VC Property 2: Offline extractability

$$\text{if } \text{VC}.\text{Check} = 1 \quad ans_i \xleftrightarrow{\sim} \epsilon_{VC, \text{offline}}^* \Pi_i \xleftrightarrow{\sim} V_{IOR}$$

Diagram illustrating the offline extractability property. On the left, a black box labeled ans_i is connected to a pink rounded rectangle labeled V_{IOR} via a dashed arrow. On the right, a black box labeled Π_i is connected to the same pink V_{IOR} box via a dashed arrow. The two boxes are connected by a double-headed arrow labeled \approx . Below the boxes, the text "if $\text{VC}.\text{Check} = 1$ " is shown in a purple box.

Recall our PQ VC properties

Need new techniques

Our PQ VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\sim} \begin{array}{c} f_{FS} \\ \diamond \end{array} \approx \epsilon_{VC,online}^* \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle \xrightarrow{\sim} \begin{array}{c} f_{FS} \circ U_{Ext} \\ \diamond \end{array}$$

Proof uses the instability lemma from [CMS19].

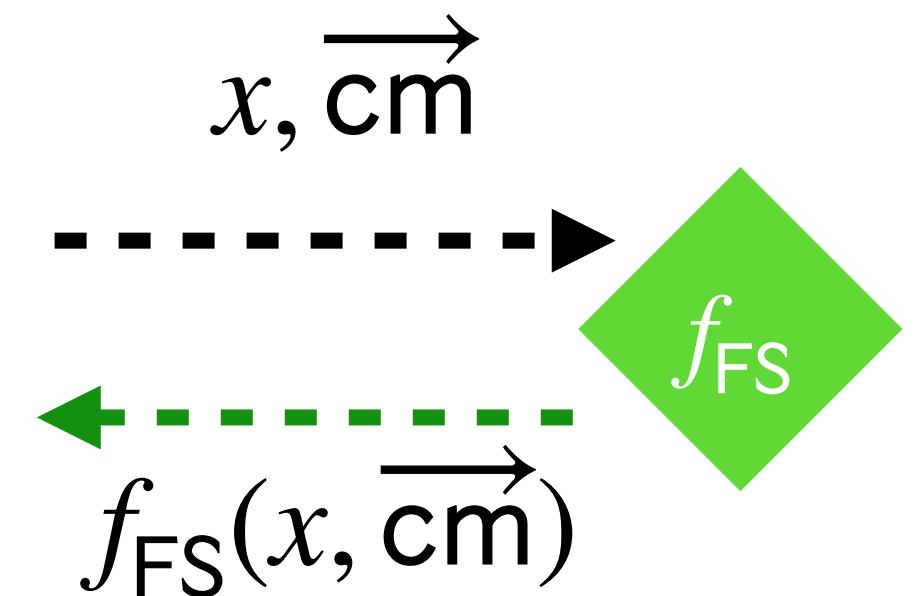
Our PQ VC Property 2: Offline extractability

$$\begin{array}{c} ans_i \\ \leftrightarrow \\ V_{IOR} \end{array} \approx \epsilon_{VC,offline}^* \begin{array}{c} \Pi_i \\ \leftrightarrow \\ V_{IOR} \end{array}$$

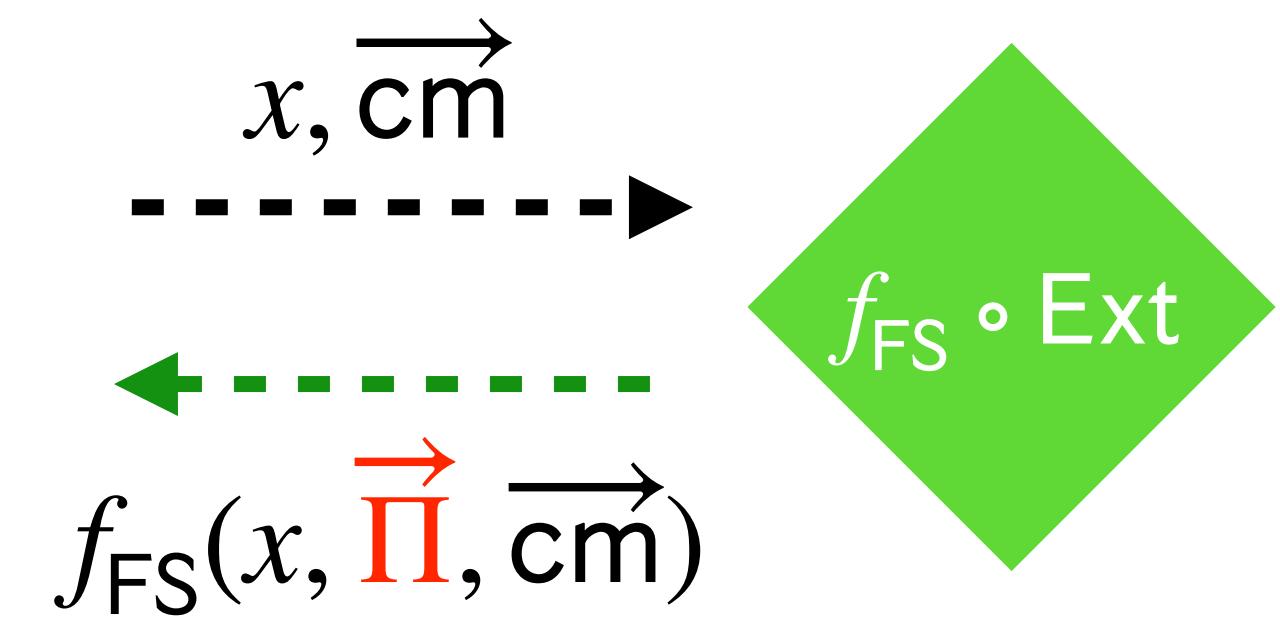
if $VC.\text{Check} = 1$

Online consistency

VC Property 1: Online consistency

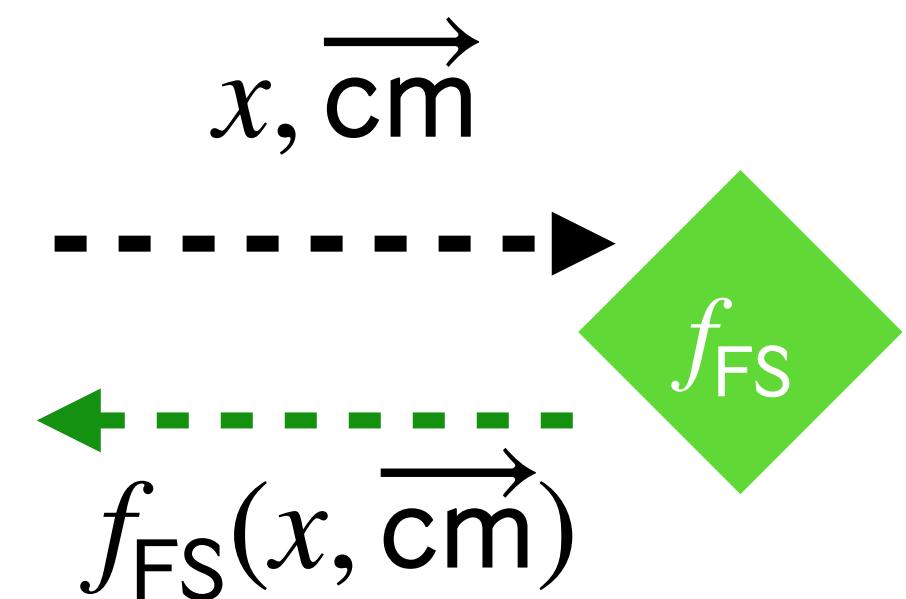


$\approx \epsilon_{VC,online}$

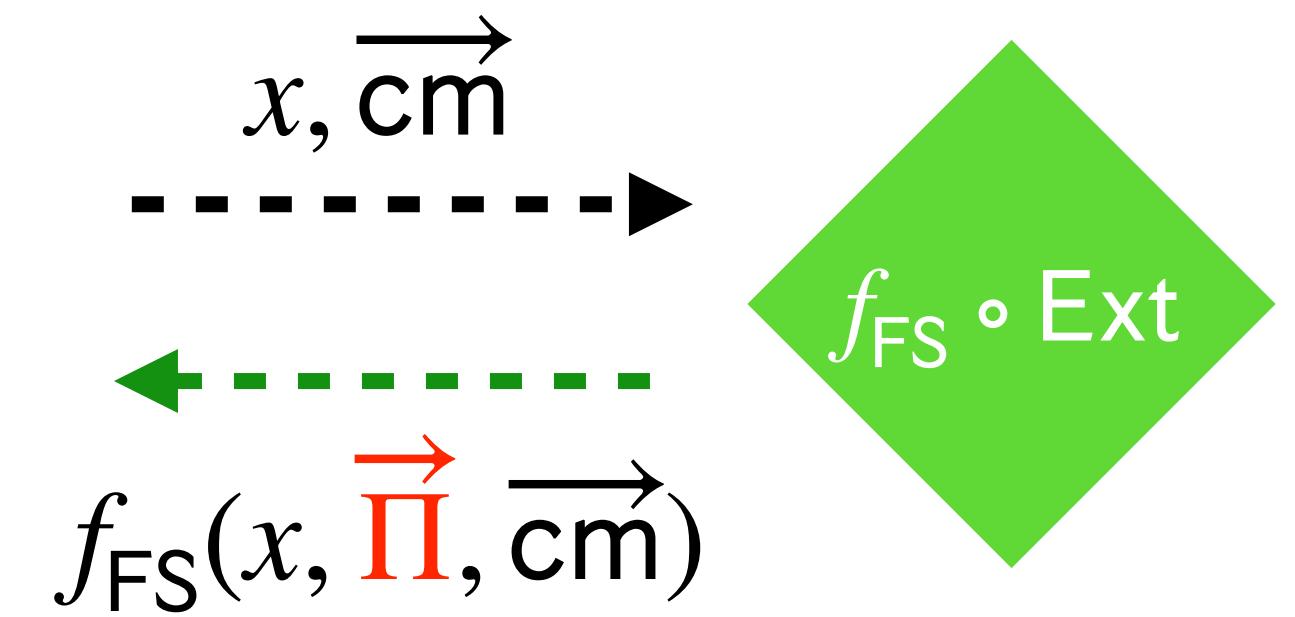
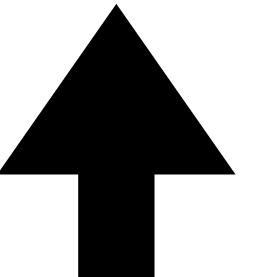


Online consistency

VC Property 1: Online consistency



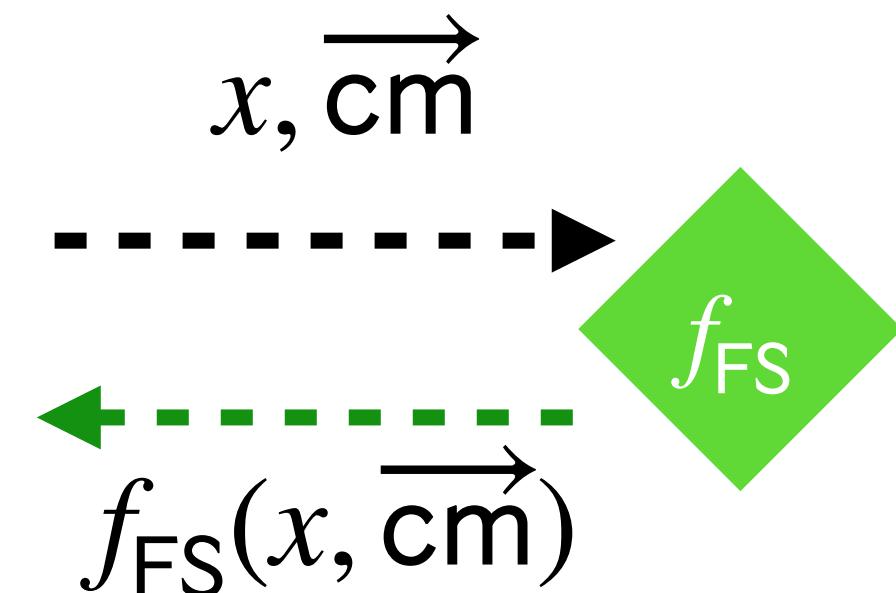
$\approx \epsilon_{VC,online}$



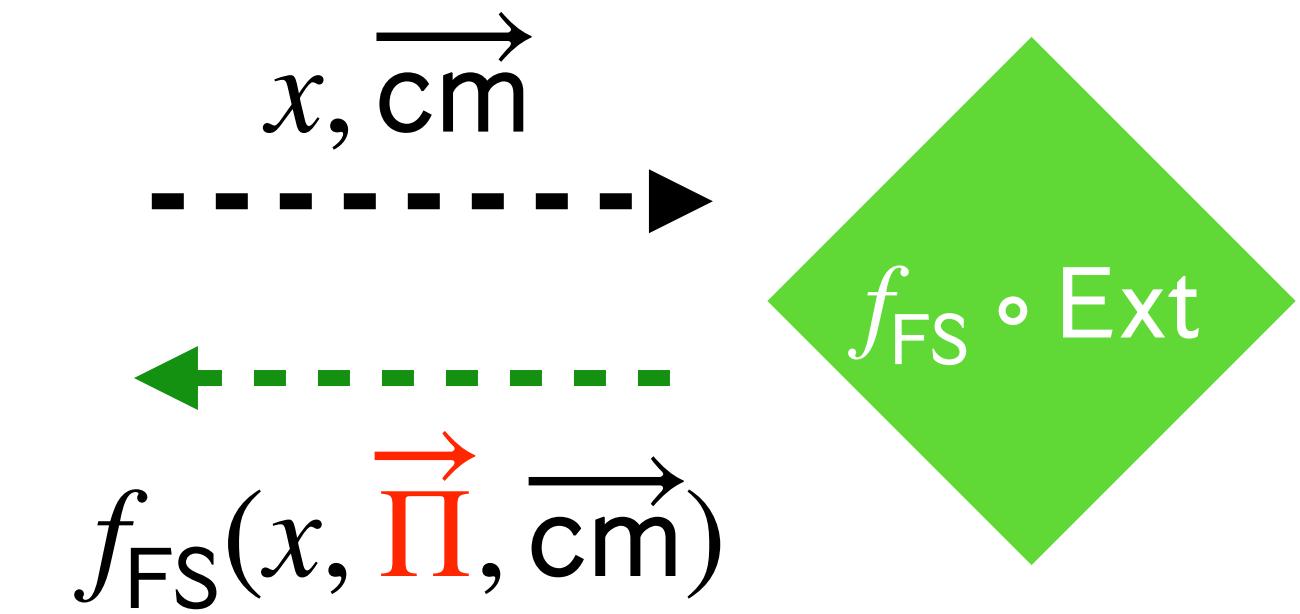
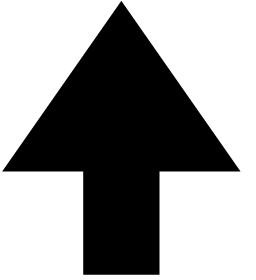
Extract later is the same as extract earlier

Online consistency

VC Property 1: Online consistency



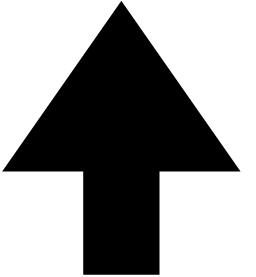
$\approx \epsilon_{VC,online}$



Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

PQ Online consistency



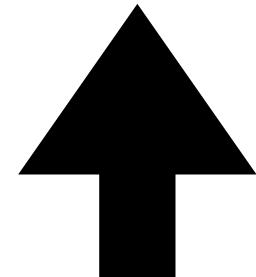
Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

PQ Online consistency

Our **PQ** VC Property 1: Online consistency

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \approx \epsilon_{VC, \text{online}}^* \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$



Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

PQ Online consistency

Our **PQ VC Property 1: Online consistency**

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \approx \epsilon_{VC, \text{online}}^* \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \circ U_{\text{Ext}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

PQ Online consistency

Our **PQ VC Property 1: Online consistency**

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \approx \epsilon_{VC, \text{online}}^* \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

Our solution: Consider the extraction results for **every** cm in the **database of** f_{FS}

PQ Online consistency

Our **PQ VC Property 1: Online consistency**

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \approx \epsilon_{VC, \text{online}}^* \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

Our solution: Consider the extraction results for **every** cm in the **database of** f_{FS}

and show the results does not change after more quantum f_{VC} queries

PQ Online consistency

Our **PQ VC Property 1: Online consistency**

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \approx \epsilon_{VC, \text{online}}^* \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---}} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---}} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same Π even after more VC queries

Our solution: Consider the extraction results for **every** cm in the **database of** f_{FS}

and show the results does not change after more quantum f_{VC} queries

We want some unitary that reads \mathcal{D}_{FS} and do extraction coherently on those cm to almost commute with a VC quantum query !

PQ Online consistency

Our **PQ VC Property 1: Online consistency**

$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \approx \epsilon_{VC, \text{online}}^* \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{cm})\rangle$$
$$\sum |x, \vec{cm}, y\rangle \xrightarrow{\text{---} \rightarrow} f_{FS} \circ U_{\text{Ext}} \xleftarrow{\text{---} \leftarrow} \sum |x, \vec{cm}, y \oplus f_{FS}(x, \vec{\Pi}, \vec{cm})\rangle$$

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by f_{FS} is mapped to the same $\vec{\Pi}$ even after more VC queries

Our solution: Consider the extraction rule

For this talk, let's consider U_{Ext}

and show the results do

that does extraction on only one cm coherently.

We want some unitary that reads \mathcal{D}_{FS} and do extraction coherently on those cm to almost commute with a VC quantum query !

Prior commutator bounds

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,

After an additional classical query,

$$D' = D + [x \mapsto y]$$

$D \notin P$

with small prob

$$D' \in P$$
$$D' = D + [x \mapsto y]$$

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,

After an additional classical query,

$$D' = D + [x \mapsto y]$$

$$D \notin P$$

with small prob

$$D' \in P$$
$$D' = D + [x \mapsto y]$$

$$D \in P$$

with small prob

$$D' \notin P$$
$$D' = D + [x \mapsto y]$$

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

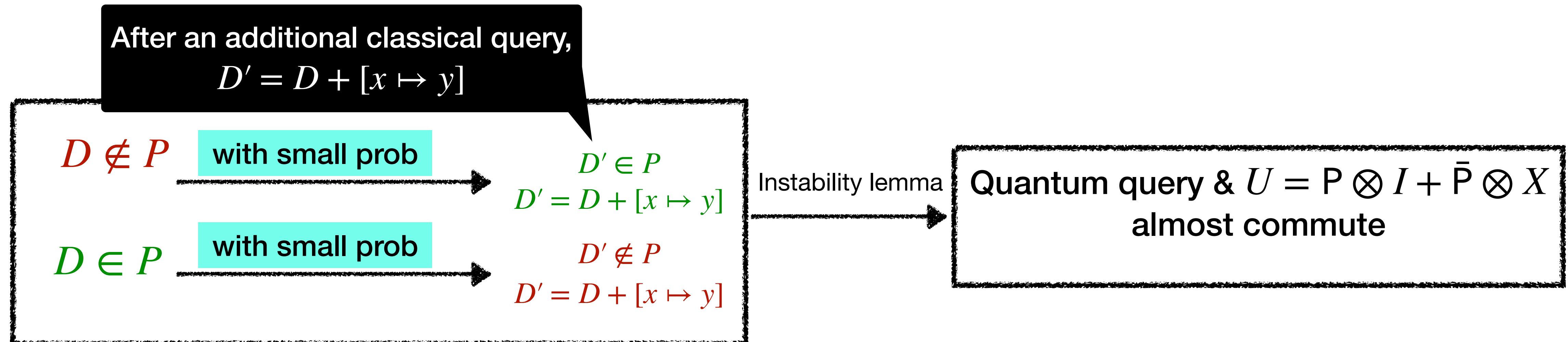
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

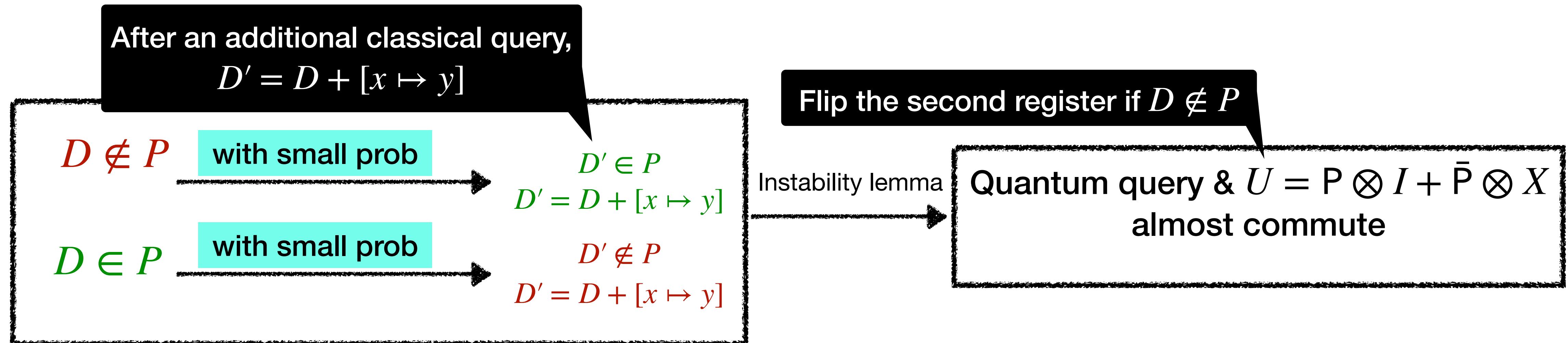
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

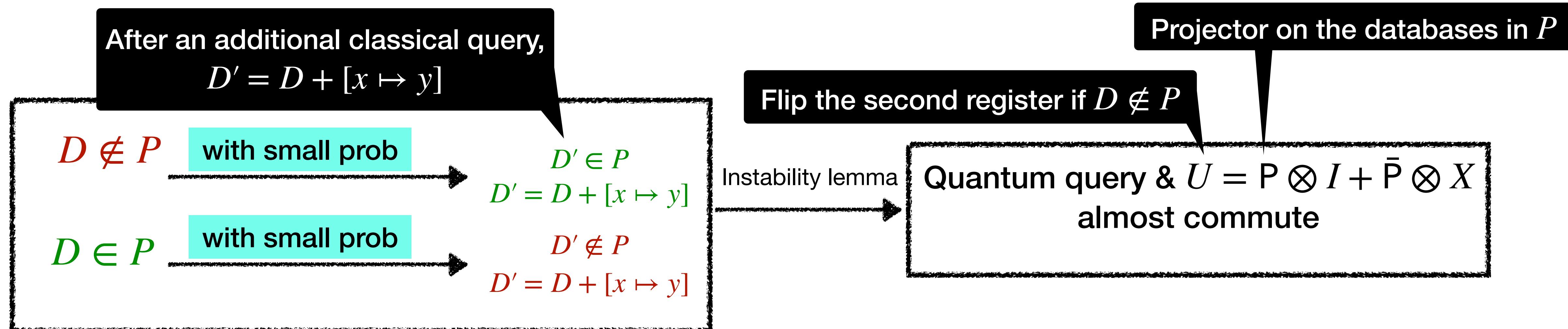
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

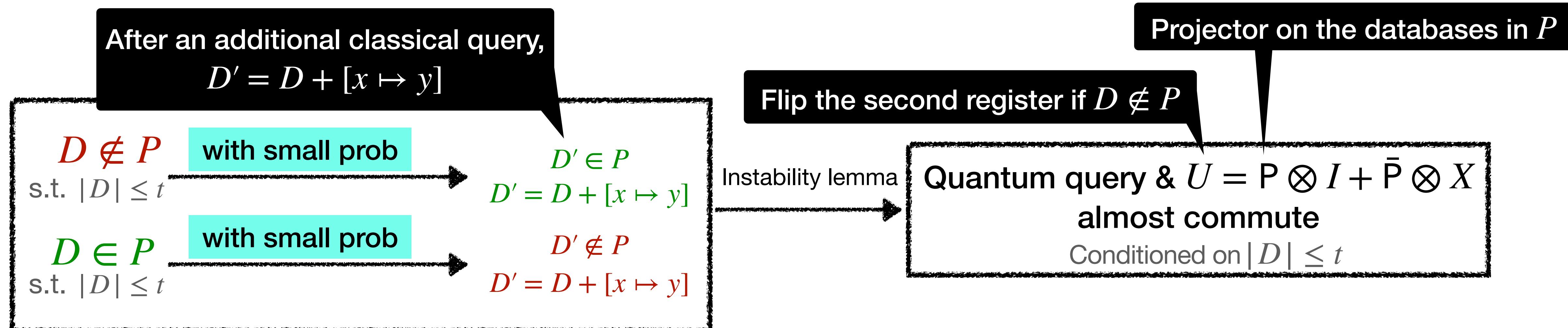
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

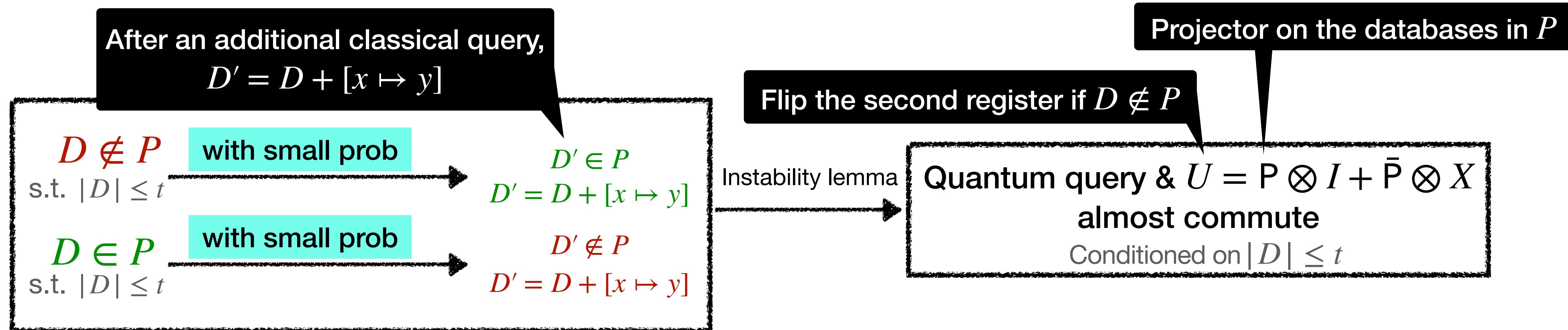
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



A classical quantity that is usually easy to analyze

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

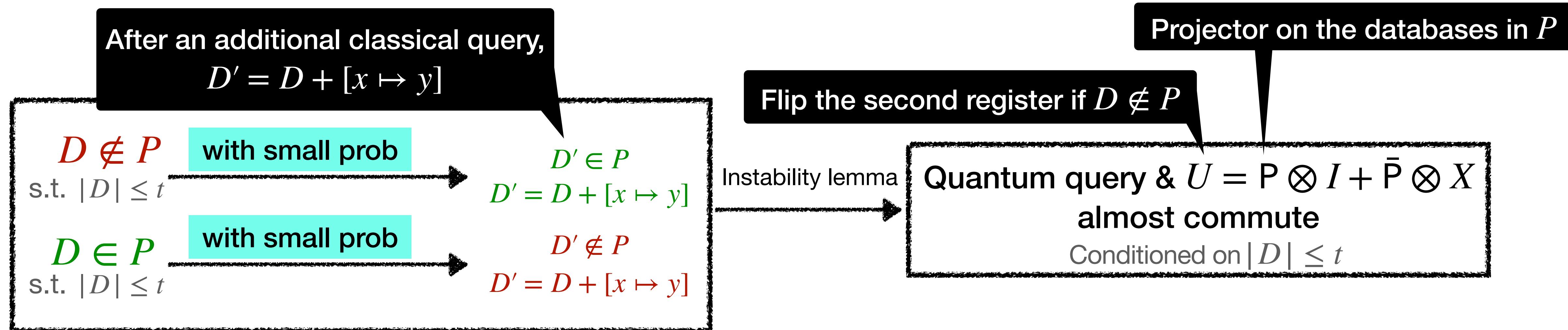
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a **classical** quantity.

For database property P , consider the **binary partition** $= \{P, \bar{P}\}$,



A classical quantity that is usually easy to analyze

It does not work for U_{Ext} .
 U_{Ext} does not form a **binary partition**.

Prior commutator bounds

[DFMS22]: For basic commitments, U_{Ext} almost commutes with the quantum query.

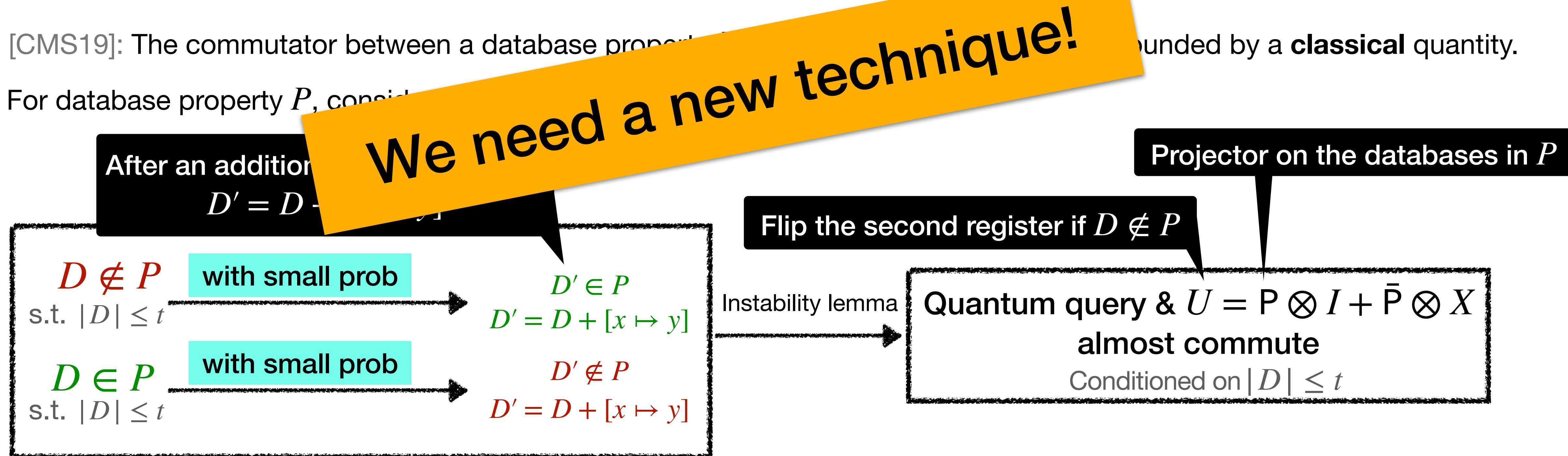
Implies that for MT, U_{Ext} almost commutes with the quantum query.

But not tight enough.

Even worse when there are a lot of cm

[CMS19]: The commutator between a database property and a quantum query is bounded by a **classical** quantity.

For database property P , consider



A classical quantity that is usually easy to analyze

It does not work for U_{Ext} .
 U_{Ext} does not form a **binary partition**.

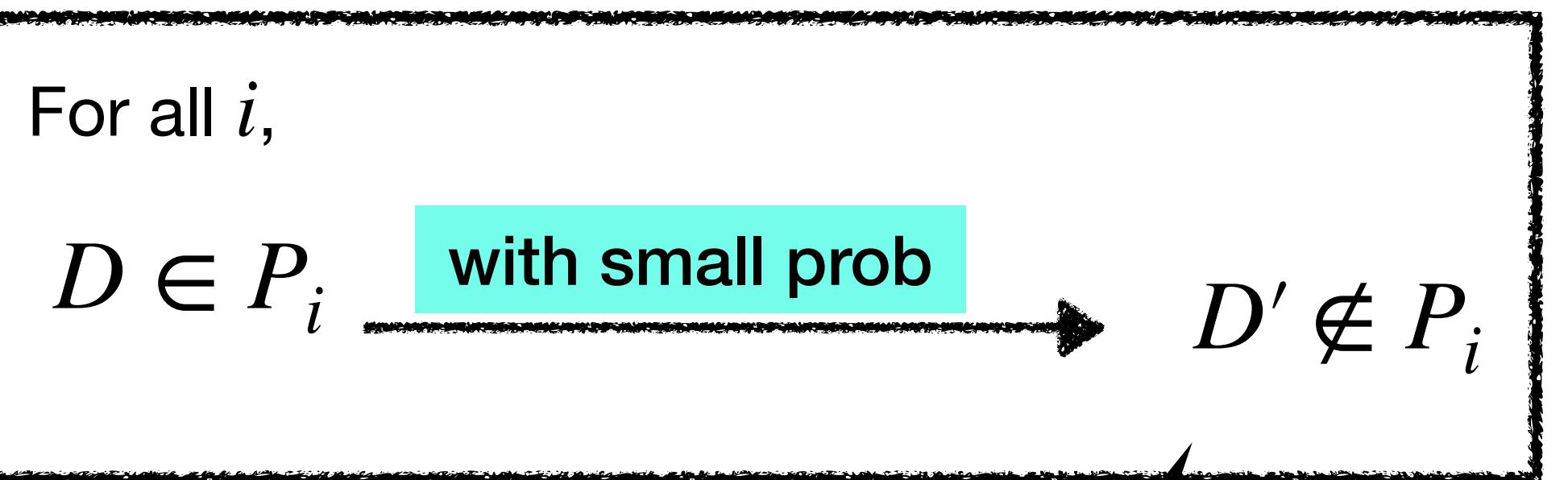
Our generalized instability lemma

Our generalized instability lemma

For **any partition** $\{P_i\}_i$,

Our generalized instability lemma

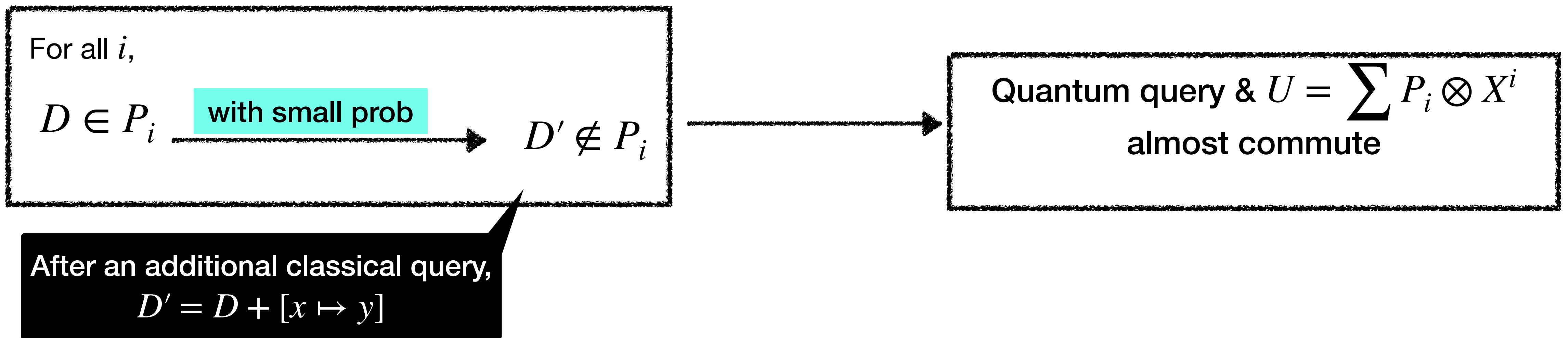
For **any partition** $\{P_i\}_i$,



After an additional classical query,
$$D' = D + [x \mapsto y]$$

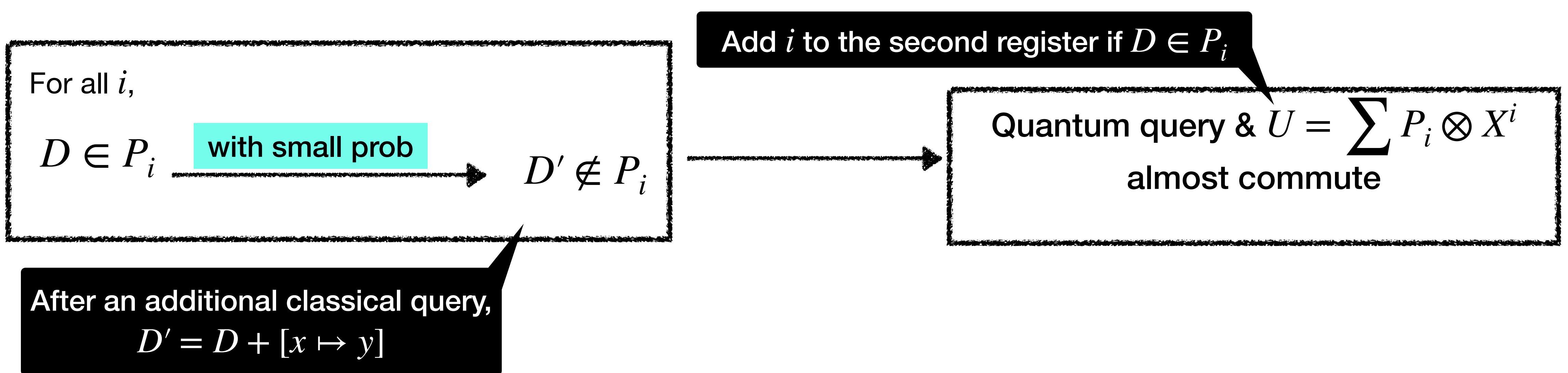
Our generalized instability lemma

For any partition $\{P_i\}_i$,



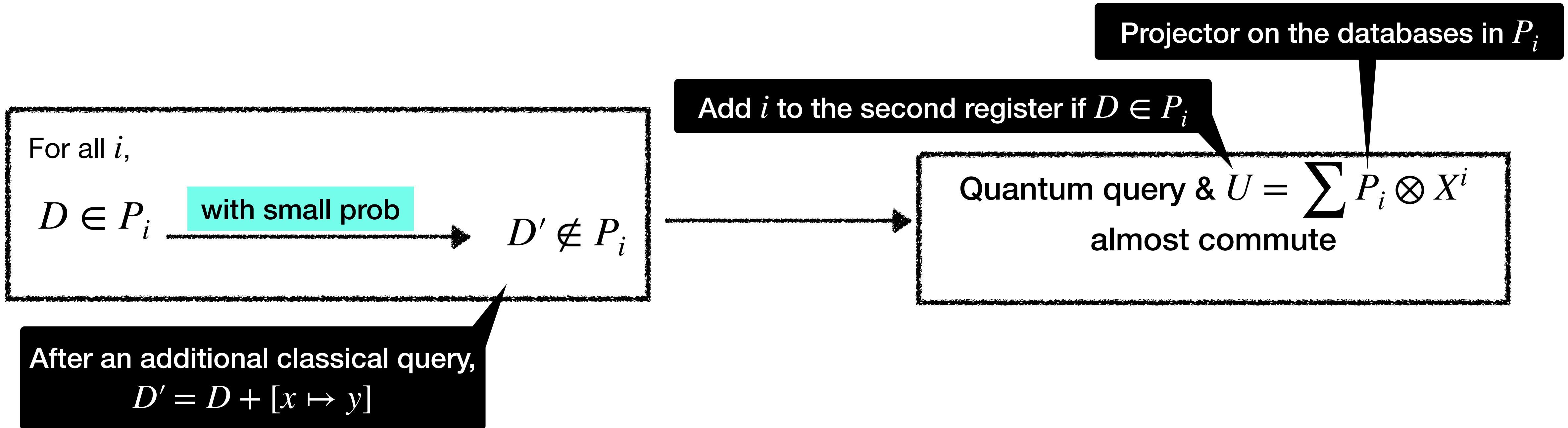
Our generalized instability lemma

For any partition $\{P_i\}_i$,



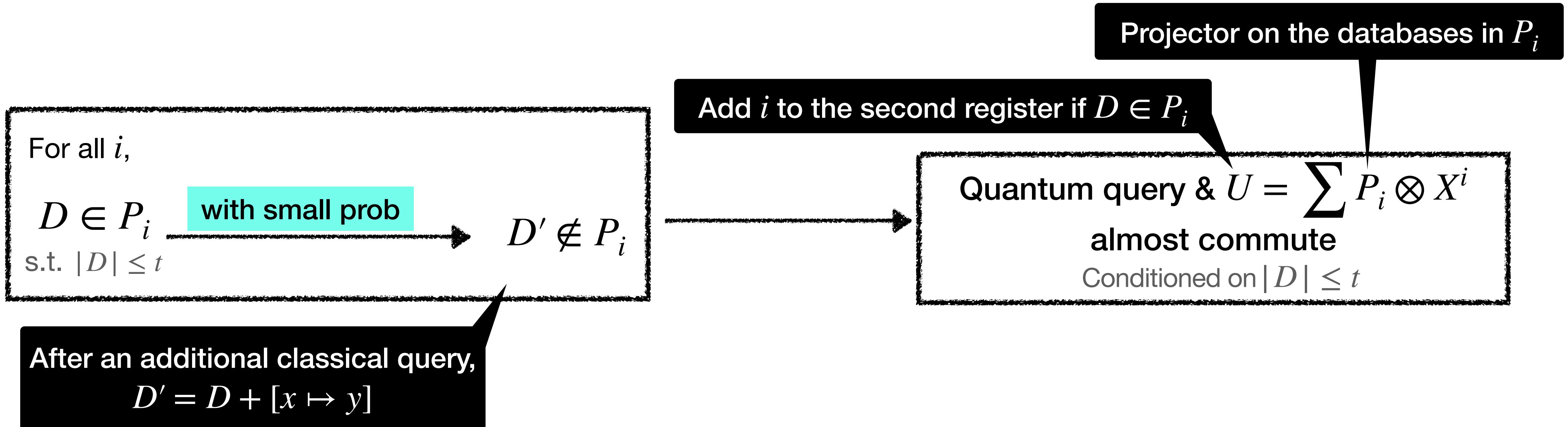
Our generalized instability lemma

For any partition $\{P_i\}_i$,



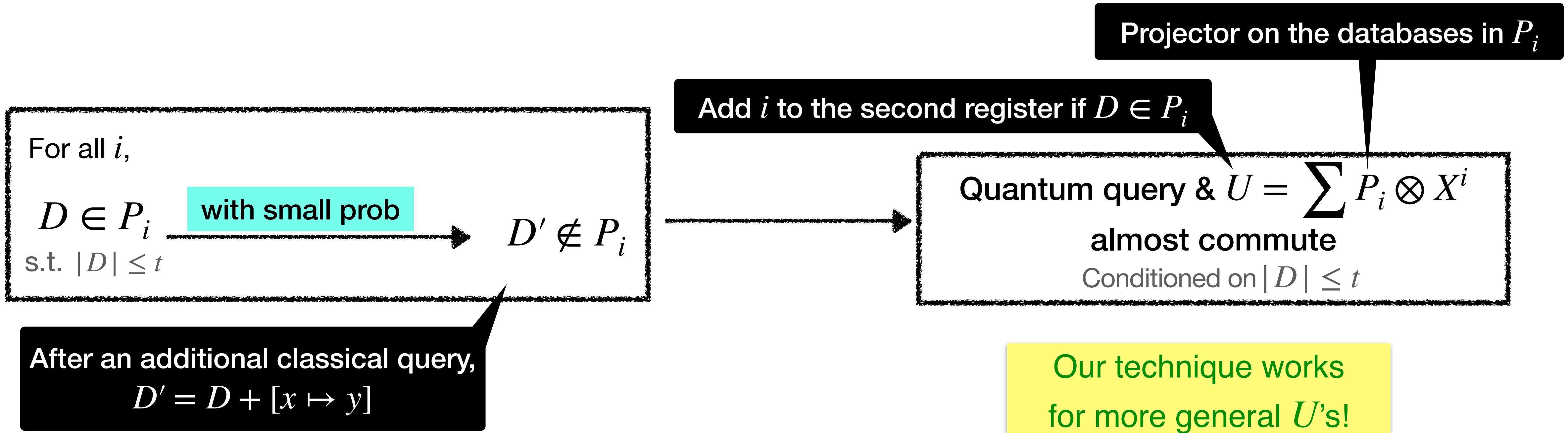
Our generalized instability lemma

For any partition $\{P_i\}_i$,



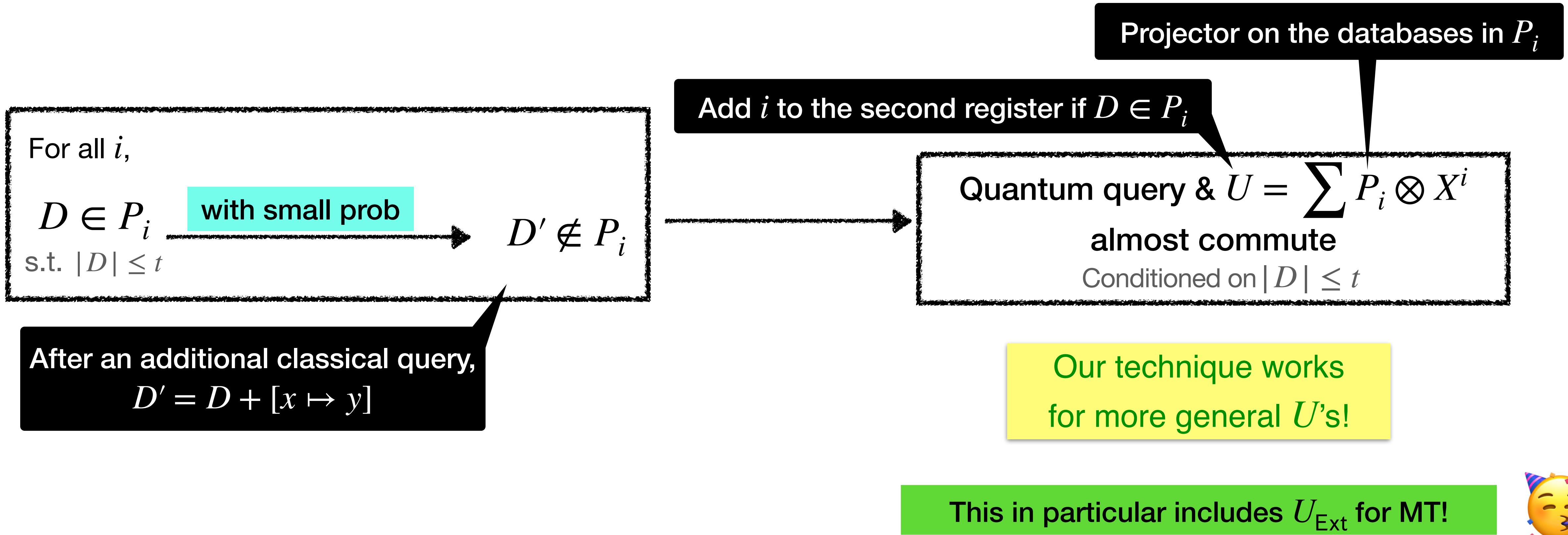
Our generalized instability lemma

For any partition $\{P_i\}_i$,



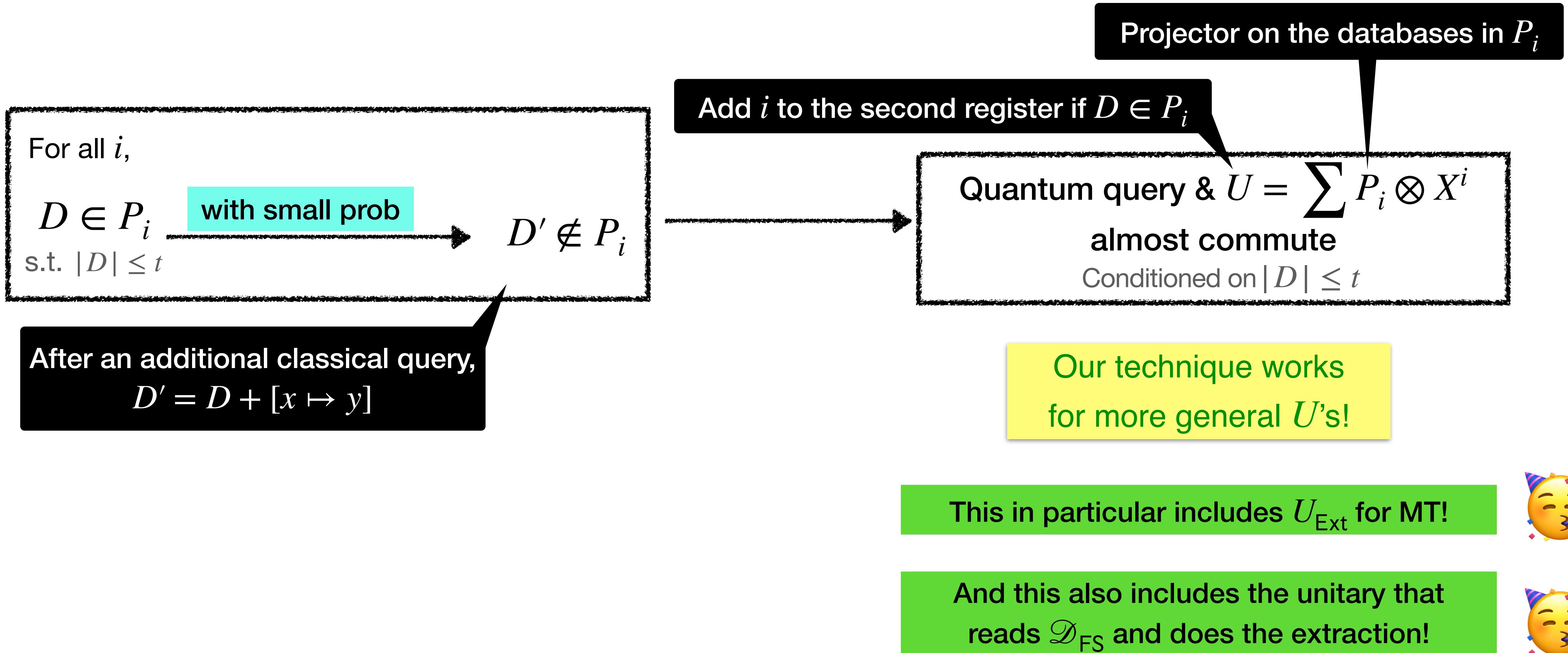
Our generalized instability lemma

For any partition $\{P_i\}_i$,



Our generalized instability lemma

For any partition $\{P_i\}_i$,



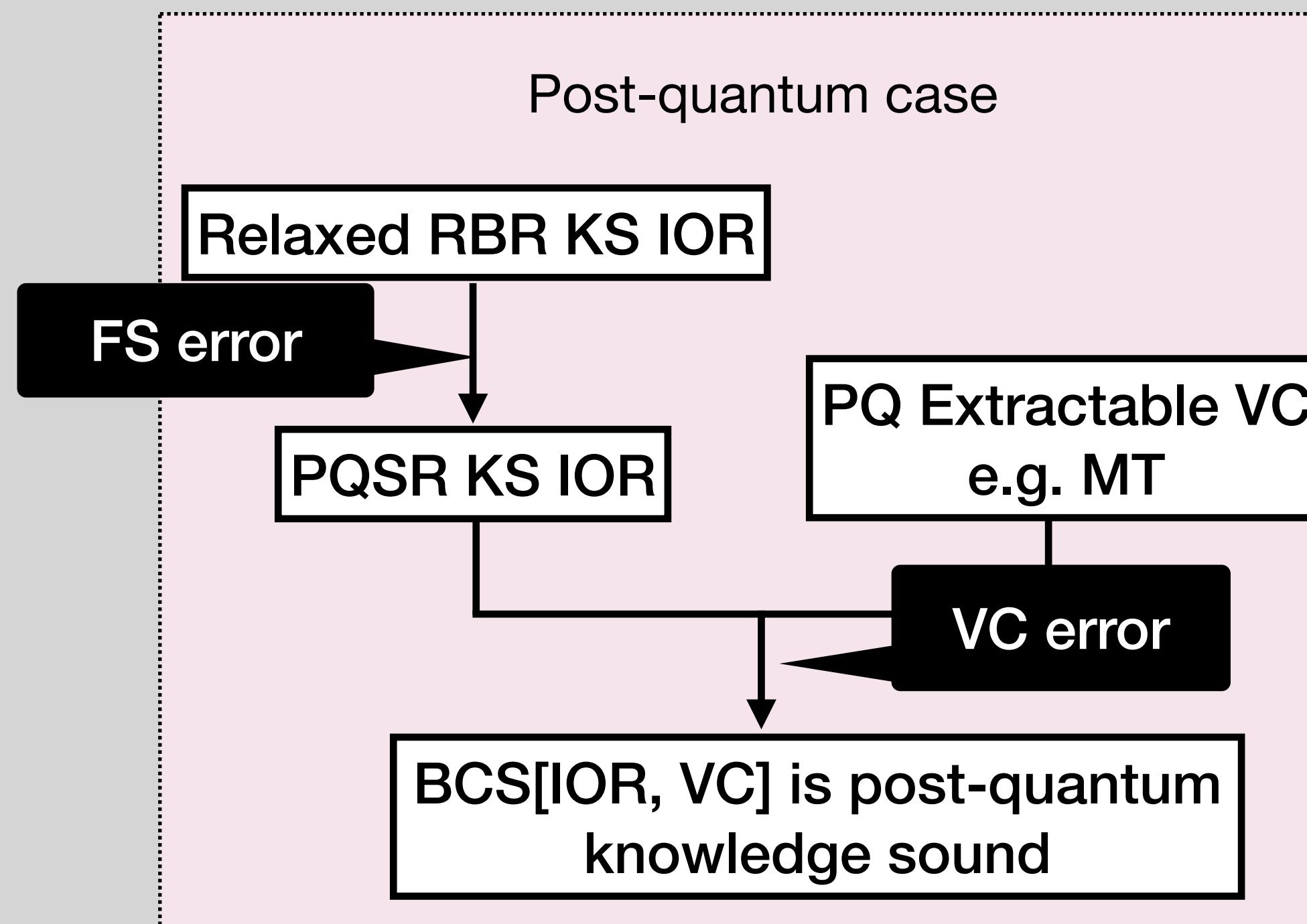
Takeaways

Takeaways

- BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM if the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

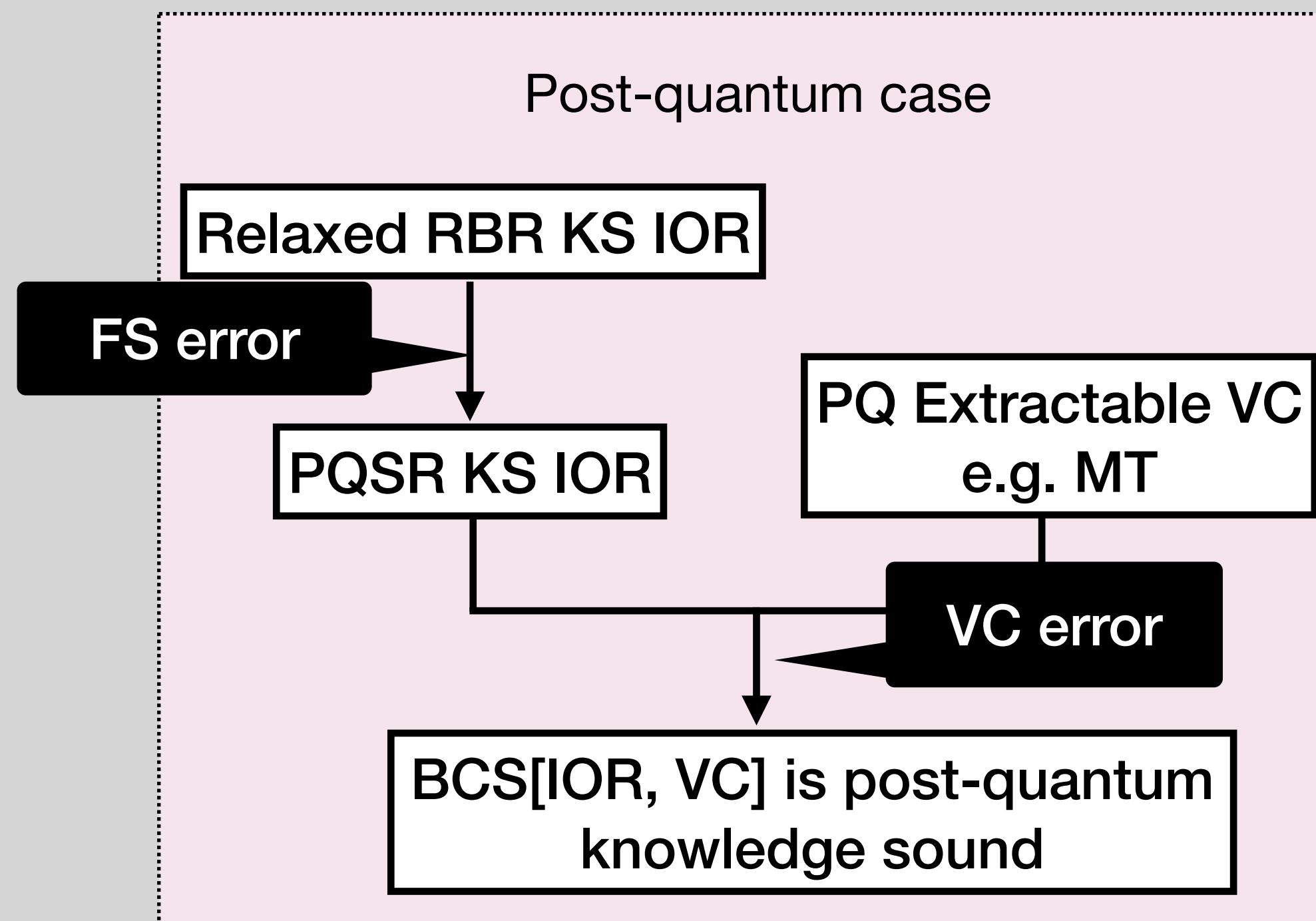
Takeaways

- BCS[IOR, MT] is a **post-quantum straight-line knowledge sound SNRDX** in the QROM if the underlying IOR satisfies (even a **weaker variant of**) **round-by-round knowledge soundness**.
- Our proof analyzes the error from FS and MT **separately** through an intermediate FS-style security notion (PQSR), mirroring the classical proof.



Takeaways

- BCS[IOR, MT] is a **post-quantum straight-line knowledge sound SNRDX** in the QROM if the underlying IOR satisfies (even a **weaker variant of**) **round-by-round knowledge soundness**.
- Our proof analyzes the error from FS and MT **separately** through an intermediate FS-style security notion (PQSR), mirroring the classical proof.



Thank you!

More technical details

More technical details

Can we allow adversaries to query different oracles simultaneously?

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES!

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES!

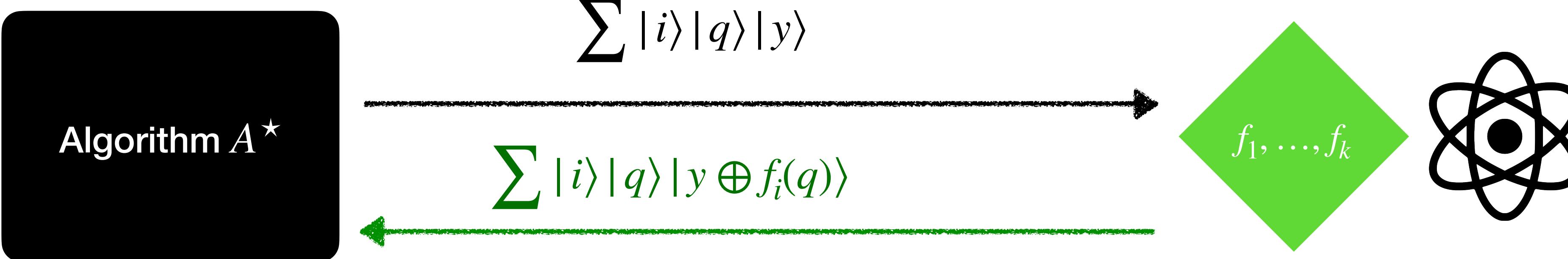
Superposition query model.

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES!

Superposition query model.



More technical details

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

A naïve proposal: $D \rightarrow \mathcal{D}$

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

A naïve proposal: $D \rightarrow \mathcal{D}$

PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', \mathcal{D}) \end{array} \right] \leq \kappa$$

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

A naïve proposal: $D \rightarrow \mathcal{D}$

PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', \mathcal{D}) \end{array} \right] \leq \kappa$$

Problem: no sequential composition. \tilde{P} cannot run E , and E might destroy \mathcal{D} arbitrarily.

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f, \textcolor{red}{U}_{\text{Extract}} \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E^{f, \textcolor{red}{U}_{\text{Extract}}}(x, \tilde{\pi}, x', w') \end{array} \right] \leq \kappa$$

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f, \textcolor{red}{U}_{\text{Extract}} \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E^{f, \textcolor{red}{U}_{\text{Extract}}}(x, \tilde{\pi}, x', w') \end{array} \right] \leq \kappa$$

sequential composition

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f, \textcolor{red}{U}_{\text{Extract}} \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E^{f, \textcolor{red}{U}_{\text{Extract}}}(x, \tilde{\pi}, x', w') \end{array} \right] \leq \kappa$$

So VC adversary should be strengthened as well...

sequential composition

More technical details

Classical knowledge soundness: There exists an extractor E such that for every efficient adversary \tilde{P} ,

$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E(x, \tilde{\pi}, x', w', D) \end{array} \right] \leq \kappa$$

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary \tilde{P} ,

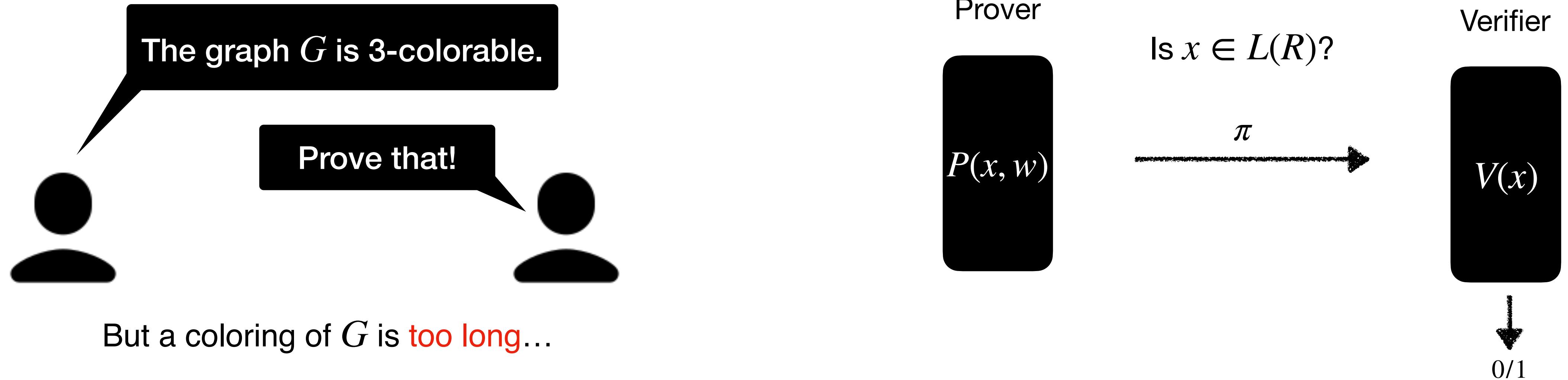
$$\Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} f \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \tilde{\pi}, w') \leftarrow \tilde{P}^f, \textcolor{red}{U}_{\text{Extract}} \\ x' \leftarrow V^f(x, \tilde{\pi}) \\ w \leftarrow E^{f, \textcolor{red}{U}_{\text{Extract}}}(x, \tilde{\pi}, x', w') \end{array} \right] \leq \kappa$$

So VC adversary should be strengthened as well...

sequential composition

And more...

Succinct non-interactive arguments (SNARGs)



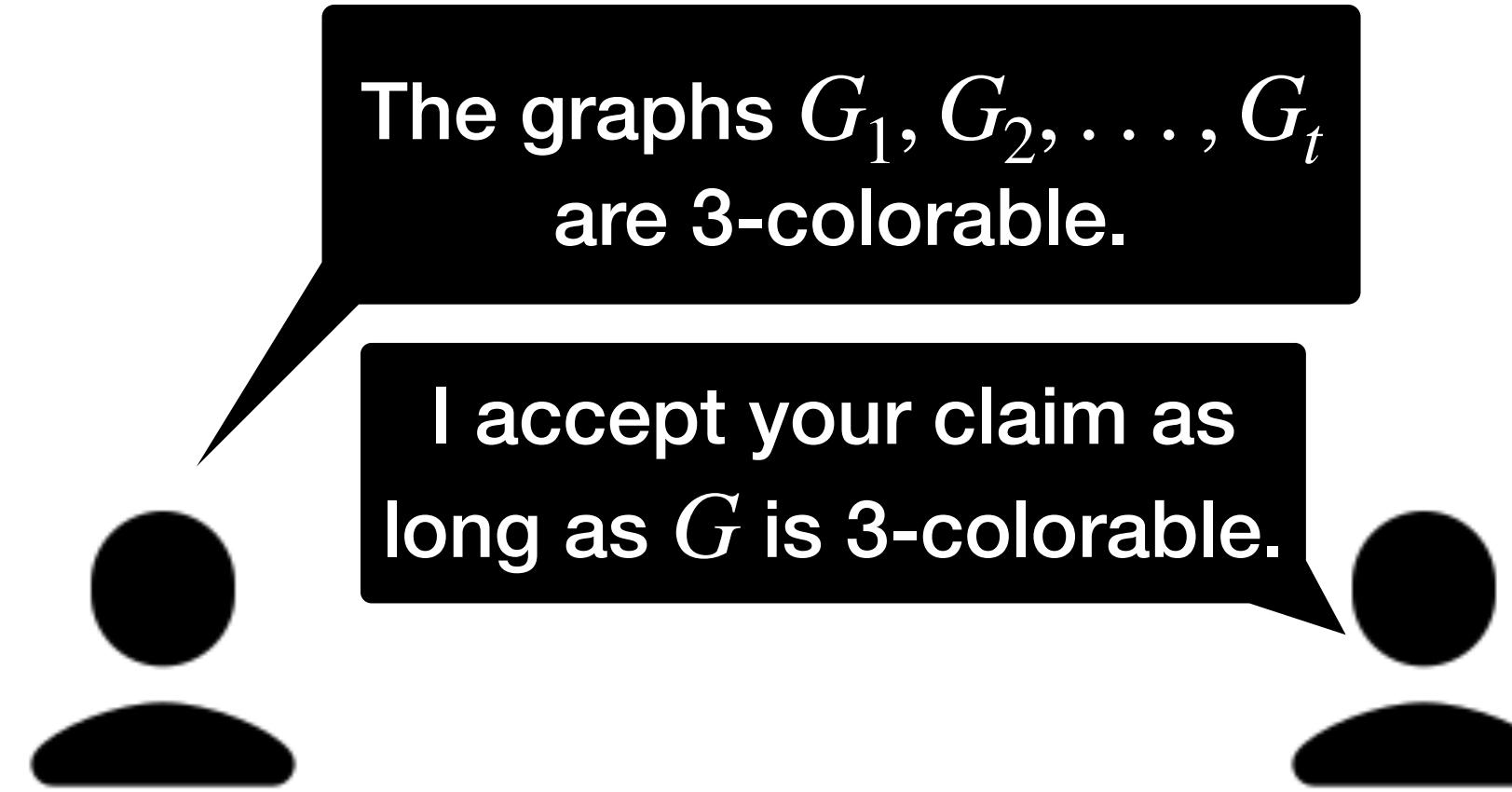
Completeness: $\forall (x, w) \in R, \Pr \left[1 \leftarrow V(x, \pi) \mid \pi \leftarrow P(x, w) \right] = 1.$

Soundness: For every efficient adversary \tilde{P} , $\Pr \left[x \notin L(R) \wedge 1 \leftarrow V(x, \tilde{\pi}) \mid (x, \tilde{\pi}) \leftarrow \tilde{P} \right] \leq \epsilon.$

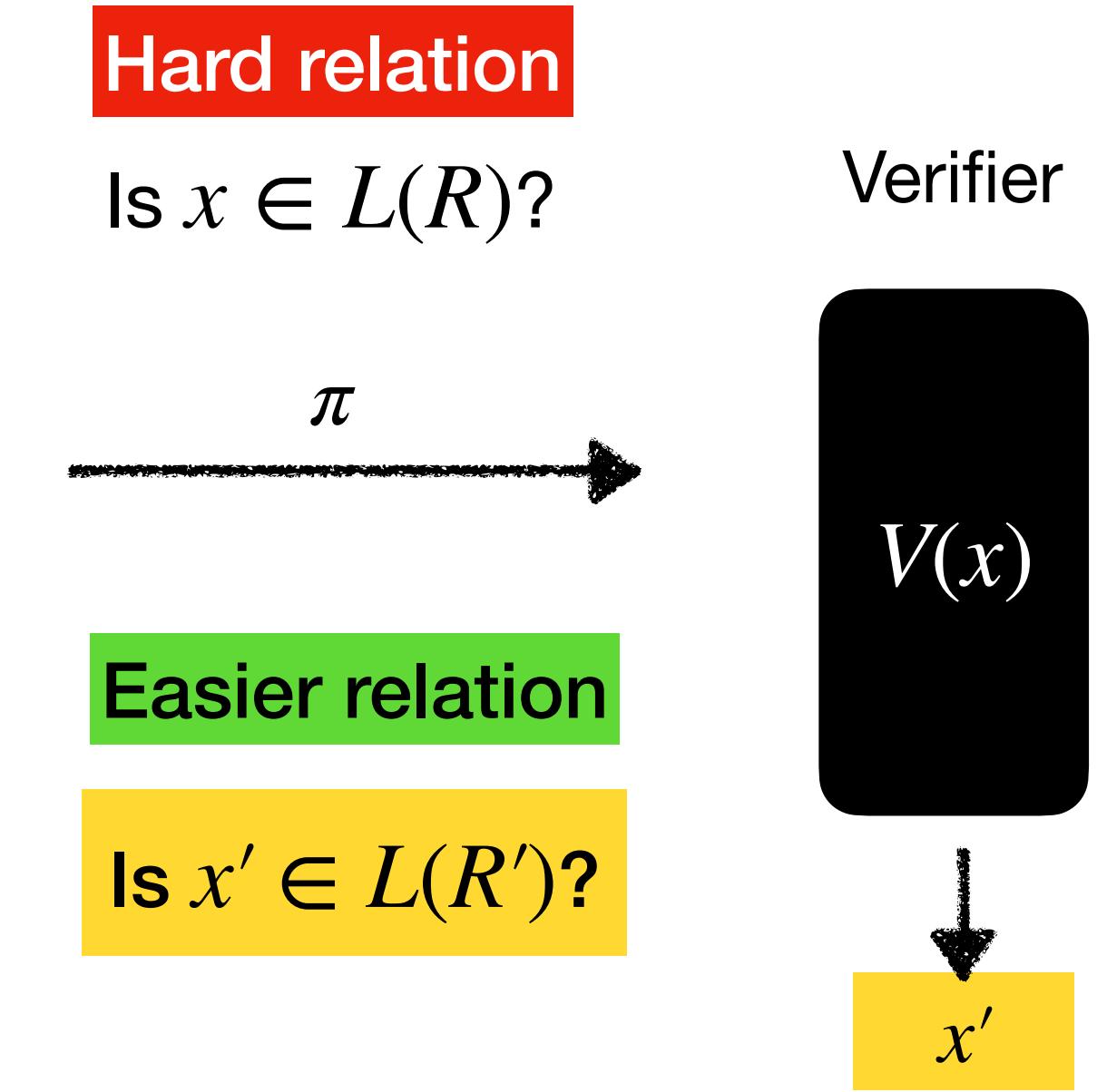
Succinctness: $|\pi| \ll |w|.$

Knowledge soundness: $\exists \mathcal{E}, \forall$ efficient adversary $\tilde{P}, \Pr \left[(x, w) \notin R \wedge 1 \leftarrow V(x, \tilde{\pi}) \mid (x, \tilde{\pi}) \leftarrow \tilde{P}, w \leftarrow \mathcal{E}(x, \tilde{\pi}) \right] \leq \epsilon.$

Succinct non-interactive reductions (SNRDXs)



Then G is checked via other protocols



Completeness: $\forall (x, w) \in R, \Pr \left[(x', w') \in R' \mid (\pi, w') \leftarrow P(x, w), x' \leftarrow V(x, \pi) \right] = 1.$

Soundness: For every efficient adversary \tilde{P} , $\Pr \left[(x', w') \in R' \wedge x \notin L(R) \mid (x, \tilde{\pi}, w') \leftarrow \tilde{P}, x' \leftarrow V(x, \tilde{\pi}) \right] \leq \epsilon.$

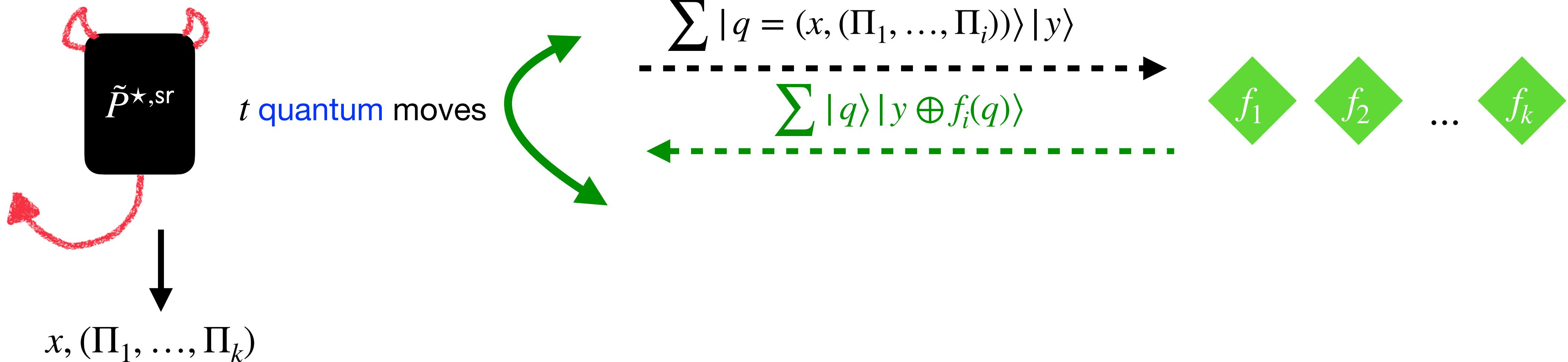
Succinctness: $|\pi| \ll |w|.$

Knowledge soundness: $\exists \mathcal{E}, \forall$ efficient adversary $\tilde{P}, \Pr \left[(x', w') \in R' \wedge (x, w) \notin R \mid \begin{array}{l} (x, \tilde{\pi}, w') \leftarrow \tilde{P}, \\ x' \leftarrow V(x, \tilde{\pi}), \\ w \leftarrow \mathcal{E}(x, \tilde{\pi}, w', x') \end{array} \right] \leq \epsilon.$

Our PQ state-restoration captures the PQ FS error

$\epsilon_{\text{IOR}}^{\star, \text{sr}} = \text{the PQ soundness error of FS[IOR]}$

Quantum adversary



Soundness:

$\forall t\text{-move quantum adversary } \tilde{P}^{\star, \text{sr}},$

$$\Pr \left[x \notin L \wedge x' \in L' \mid \begin{array}{l} \forall i, f_i \leftarrow (\{0,1\}^* \rightarrow \{0,1\}^\sigma) \\ (x, \Pi_1, \dots, \Pi_k, \rho_1, \dots, \rho_k) \leftarrow \langle \tilde{P}^{\star, \text{sr}}, \text{Game}^{(f_i)_{i \in [k]}} \rangle \\ x' \leftarrow V_{\text{IOR}}^{(\Pi_i)_{i \in [k]}}(x; \rho_1, \dots, \rho_k) \end{array} \right] \leq \epsilon_{\text{IOR}}^{\star, \text{sr}}(t).$$

