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The graph  is 3-colorable.G

Prove that!

Recent work shows for certain applications, a more lightweight primitive called SNRDXs suffices.

SNARGs are powerful, but sometimes more than needed.
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OUR QUESTION: 
Are these hash-based SNRDXs 

secure in the QROM?
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Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT] 
require different proofs.

Quantumly, even larger gap.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic" proof approach

We want a quantum proof of BCS[IOR, MT]
that aligns with the classical one (we want the "right" one!).

Back to the 

drawing board!
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The role of state-restoration

Thm 2

RBR sound IOR 
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR 
  ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

Thm 1

PQ Extractable VC 
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound 
  .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)
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Today’s focus: soundness 

PQSR is strong enough  
s.t. from PQSR to BCS, there is only VC error 

PQSR is weak enough  
s.t. it only captures the FS error  

and is implied by a classical property 

So how to define PQSR game 
to separate two errors nicely? 🤔

Part 1



Part 1: 
PQSR soundness is  

implied by RBR soundness
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Our PQ state-restoration captures the PQ FS error
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🤔  has quantum power.  
What if it queries multiple oracles at once?

P̃⋆,𝗌𝗋
Our final definition captures this!

🤔 PQSR is a quantum property (too difficult).  
Can we connect it with an easy classical property?

P̃⋆,𝗌𝗋

⋮f1 f2 fk∑ |q⟩ |y ⊕ fi(q)⟩

Quantum adversary
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PQSR soundness is implied by RBR soundness

Thm 1

Thm 2
Part 1

Part 2

RBR sound IOR 
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱
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  ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC 
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound 
  .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

  ϵ⋆
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𝖵𝖢)

FS error

VC error

  ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:

A classical property. Standard. Easier to deal with.
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🥳
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BCS PQ soundness = PQSR soundness + VC PQ error

Thm 1

Thm 2
Part 1

Part 2

RBR sound IOR 
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR 
  ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC 
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound 
  .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

FS error

VC error

  ϵ⋆
𝖡𝖢𝖲[𝖨𝖮𝖱,𝖬𝖳] = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋

𝖨𝖮𝖱) + O(t3/2σ)Putting it together:
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Step 1: how to answer quantum  queries?f𝖵𝖢

Quantum case Our construction of P̃⋆,𝗌𝗋
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*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

More Challenges!😲

Similar to the classical VC extractability definition✅
Strong enough to prove BCS[IOR, VC] is post-quantum secure*✅

Does MT satisfy this?? Next part Takeaways 
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MT has PQ extractability error O(t3/2σ)

Thm 2
Part 1

Part 2

RBR sound IOR 
ϵ𝗋𝖻𝗋

𝖨𝖮𝖱

PQSR sound IOR 
  ϵ⋆,𝗌𝗋

𝖨𝖮𝖱(t) = O((t + k)2 ⋅ ϵ𝗋𝖻𝗋
𝖨𝖮𝖱)

PQ Extractable VC 
ϵ⋆

𝖬𝖳 = O(t3/2σ)

Thm 3

BCS[IOR, VC] is PQ sound 
  .ϵ⋆

𝖡𝖢𝖲[𝖨𝖮𝖱,𝖵𝖢] = O(ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 + ϵ⋆

𝖵𝖢)

Thm 1
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But now  is in superposition𝖼𝗆

Our solution: Consider the extraction results for every  in the database of 𝖼𝗆 f𝖥𝖲
and show the results does not change after more quantum  queriesf𝖵𝖢

We want some unitary that reads  and do extraction coherently on those  
to almost commute with a  quantum query !

𝒟𝖥𝖲 𝖼𝗆
𝖵𝖢

For this talk, let’s consider   
that does extraction on only one  coherently.

U𝖤𝗑𝗍
𝖼𝗆

🤔
i.e. every  queried by  is mapped to the same  even after more VC queries𝖼𝗆 f𝖥𝖲 Π
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Conditioned on |D | ≤ t

s.t.  |D | ≤ t

s.t.  |D | ≤ t

A classical quantity that is usually easy to analyze

Instability lemma

After an additional classical query, 
D′￼ = D + [x ↦ y]

We need a new technique! 
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Our technique works
for more general ’s!U

For any partition {Pi}i,

After an additional classical query, 
D′￼ = D + [x ↦ y]

Quantum query &  
almost commute 

U = ∑ Pi ⊗ Xi

Projector on the databases in Pi

Add  to the second register if i D ∈ Pi

Conditioned on |D | ≤ ts.t.  |D | ≤ t

This in particular includes  for MT!U𝖤𝗑𝗍

And this also includes the unitary that  
reads  and does the extraction!𝒟𝖥𝖲 🥳

🥳

with small probD ∈ Pi

For all , i
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More technical details

Can we allow adversaries to query different oracles simultaneously?

Superposition query model.

Algorithm A⋆ f1, …, fk

∑ | i⟩ |q⟩ |y⟩

∑ | i⟩ |q⟩ |y ⊕ fi(q)⟩

YES!
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Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

So VC adversary should be strengthened as well… sequential composition



More technical details

Can we have a reasonable post-quantum knowledge soundness definition?

Classical knowledge soundness: There exists an extractor  such that for every efficient adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
f ← ({0,1}* → {0,1}σ)

(x, π̃, w′￼) ← P̃f

x′￼← Vf(x, π̃)
w ← E(x, π̃, x′￼, w′￼, D)

≤ κ

56

PQ knowledge soundness: There exists an extractor  such that for every efficient quantum adversary ,E P̃

Pr (x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R

f ← ({0,1}* → {0,1}σ)
(x, π̃, w′￼) ← P̃f,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍

x′￼← Vf(x, π̃)
w ← Ef,U𝖤𝗑𝗍𝗋𝖺𝖼𝗍(x, π̃, x′￼, w′￼)

≤ κ

YES!

So VC adversary should be strengthened as well…

And more…

sequential composition
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Completeness: , .∀ (x, w) ∈ R Pr [1 ← V(x, π) π ← P(x, w)] = 1

Soundness: For every efficient adversary , .P̃ Pr [x ∉ L(R) ∧ 1 ← V(x, π̃) (x, π̃) ← P̃] ≤ ϵ

Knowledge soundness: ,  efficient adversary , .∃ℰ ∀ P̃ Pr [(x, w) ∉ R ∧ 1 ← V(x, π̃) (x, π̃) ← P̃, w ← ℰ(x, π̃)] ≤ ϵ

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

0/1

The graph  is 3-colorable.G

Prove that!

But a coloring of  is too long…G

Succinct non-interactive arguments (SNARGs)

Succinctness: .|π | ≪ |w |
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Completeness: , .∀ (x, w) ∈ R Pr [(x′￼, w′￼) ∈ R′￼ (π, w′￼) ← P(x, w), x′￼← V(x, π)] = 1

Soundness: For every efficient adversary , .P̃ Pr [(x′￼, w′￼) ∈ R′￼∧ x ∉ L(R) (x, π̃, w′￼) ← P̃, x′￼← V(x, π̃)] ≤ ϵ

Knowledge soundness: ,  efficient adversary , .∃ℰ ∀ P̃ Pr [(x′￼, w′￼) ∈ R′￼∧ (x, w) ∉ R
(x, π̃, w′￼) ← P̃,
x′￼← V(x, π̃),

w ← ℰ(x, π̃, w′￼, x′￼)] ≤ ϵ

The graphs  
are 3-colorable.

G1, G2, . . . , Gt

I accept your claim as 
long as  is 3-colorable.G

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L(R)

π

Hard relation

Easier relation

Then  is checked via other protocols G
Is ?x′￼∈ L(R′￼)

x′￼w′￼

Succinct non-interactive reductions (SNRDXs)

Succinctness: .|π | ≪ |w |
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Our PQ state-restoration captures the PQ FS error

P̃⋆,𝗌𝗋

⋮f1 f2 fk

Quantum adversary

V𝖥𝖲

V𝖨𝖮𝖱(x)

∀ i, ρi := fi(x, Π1, . . . , Πi)
x, (Π1, …, Πk) x′￼

the PQ soundness error of     ϵ⋆,𝗌𝗋
𝖨𝖮𝖱 = 𝖥𝖲[𝖨𝖮𝖱]

Soundness:


 -move quantum adversary , 


.

∀ t P̃⋆,𝗌𝗋

Pr x ∉ L ∧ x′￼∈ L′￼

∀ i, fi ← ({0,1}* → {0,1}σ)

(x, Π1, …, Πk, ρ1, …, ρk) ← ⟨P̃⋆,𝗌𝗋, 𝖦𝖺𝗆𝖾( fi)i∈[k]⟩

x′￼← V (Πi)i∈[k]
𝖨𝖮𝖱 (x; ρ1, …, ρk)

≤ ϵ⋆,𝗌𝗋
𝖨𝖮𝖱(t)

x, (Π1, …, Πk)

∑ |q⟩ |y ⊕ fi(q)⟩

∑ |q = (x, (Π1, …, Πi))⟩ |y⟩

 quantum movest


