How to Prove
Post-Quantum Security for
Succinct Non-Interactive Reductions

Alessandro Chiesa, Zijing Di, Zihan Hu, Yuxi Zheng

=PrL

1a.cr/2025/2166

To appear in Eurocrypt 2026

| What are |
succinct non-interactive reductions?

Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)

Succinct non-interactive arguments (SNARGs)

The graph G is 3-colorable.

Succinct non-interactive arguments (SNARGs)

The graph G is 3-colorable.
Prove that!

Succinct non-interactive arguments (SNARGs)

The graph G is 3-colorable.
Prove that!

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover
The graph G is 3-colorable.
Prove that!

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable.
Prove that!

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that!

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
]T _

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that! SRERE——

But a coloring of G is too long...

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that! SRERE——

But a coloring of G is too long...

Completeness: (x, w) € R = P(x, w) convinces V(x).

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that! SRERE——

But a coloring of G is too long...

Completeness: (x, w) € R = P(x, w) convinces V(x).

Soundness: X & L(R) — every efficient P convinces V(x) with small probability €.

Succinct non-interactive arguments (SNARGs)

Prover Verifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

But a coloring of G is too long...

JT

Completeness: (x, w) € R = P(x, w) convinces V(x).
Soundness: X & L(R) — every efficient P convinces V(x) with small probability €.

Succinctness: | 7| < |w].

Succinct non-interactive arguments (SNARGs)

Prover \Verifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

But a coloring of G is too long...

JT

Completeness: (x, w) € R = P(x, w) convinces V(x).
Soundness: X & L(R) — every efficient P convinces V(x) with small probability €.
Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that convinces V(x) must “know” a witness w s.t. (x, w) € R (up to a small error).

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that! SRERE——

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)

oV Verifier
The graph G is 3-colorable. sx € L(R)Y
Prove that! . SO S—Y
dh

SNARGs have numerous real-world applications.

3 Succinct =1 VALIDA 1lrreducible
& STARKWARE Sl Ll Iligero A

4

Succinct non-interactive arguments (SNARGs)

Prover Verifier
The graph G is 3-colorable. Isx € L(R)?
Prove that! SRERE——

SNARGs have numerous real-world applications.

Succinct non-interactive arguments (SNARGs)

Prover \erifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

JT

SNARGs have numerous real-world applications.

SNARGs are powerful, but sometimes more than needed.

Succinct non-interactive arguments (SNARGs)

Prover \erifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

JT

SNARGs have numerous real-world applications.

SNARGs are powerful, but sometimes more than needed.

Recent work shows for certain applications, a more lightweight primitive called SNRDXs suffices.

Succinct non-interactive reductions (SNRDXs)

Succinct non-interactive reductions (SNRDXs)

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,

are 3-colorable.

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,

are 3-colorable.

| accept your claim as
long as G is 3-colorable.

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,
are 3-colorable.

| accept your claim as
‘ long as G is 3-colorable.

Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

The graphs G,, G, Prover Verifier
are 3-colorable.

| accept your claim as
‘ long as G is 3-colorable.

Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

The graphs G,, G, Prover s x € L(R)? Verifier
are 3-colorable.

T
| accept your claim as S

‘ long as G is 3-colorable.

Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G,, G, Prover s x € L(R)? Verifier

are 3-colorable.

T
| accept your claim as e

‘ long as G is 3-colorable.

Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G,, G, Prover s x € L(R)? Verifier

are 3-colorable.

| accept your claim as
‘ long as G is 3-colorable.

Then G is checked via other protocols

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier

are 3-colorable.

. T
| accept your claim as S

‘ long as G is 3-colorable. .

Easier relation

Isx" € L(R")?
Then G is checked via other protocols ,

S g
><\

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)?
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. .

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L

Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.

Verifier

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)?
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. .

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L

Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.

Soundness: X & L(R) — every efficient P makes V(x) output x’s.t. x’ & L(R’) (up to a small error).

Verifier

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)?
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L
Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.
Soundness: X & L(R) — every efficient P makes V(x) output x’ s.t. x’ & L(R’) (up to a small error ¢).

Succinctness: | 7| < |w].

Verifier

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L
Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.
Soundness: X & L(R) — every efficient P makes V(x) output x’s.t. x’ & L(R’) (up to a small error).
Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that outputs a witness w’s.t. (x, w’) € R’, must “know” w s.t. (x, w) € R (up to a small error k).

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

| accept your claim as

‘ long as G is 3-colorable. ‘

Then G is checked via other protocols

Easier relation

$ Isx’ € L(R')?
W

Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.

Soundness: X & L(R) — every efficient P makes V(x) output x’s.t. x’ & L(R’) (up to a small error).

Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that outputs a witness W’ s.t. (x’, w’) € R’, must “know” w s.t. (x, w) € R (up to a small error «).

Why are SNRDXs useful?

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

| accept your claim as

‘ long as G is 3-colorable. ‘

Then G is checked via other protocols

Easier relation

$ Isx’ € L(R')?
W

Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.

Soundness: X & L(R) — every efficient P makes V(x) output x’s.t. x’ & L(R’) (up to a small error).

Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that outputs a witness W’ s.t. (x’, w’) € R’, must “know” w s.t. (x, w) € R (up to a small error «).

Why are SNRDXs useful? (+) generalization of SNARGs: SNARG for R = SNRDX from R to trivial relation R’ = {(x’,w’) : x’ = 1}.

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

| accept your claim as

‘ long as G is 3-colorable. ‘

Then G is checked via other protocols

Easier relation

$ Isx’ € L(R')?
W

Completeness: (x, w) € R = P(x, w) outputs (7, w’) and V(x,) outputs x" such that (x’, w’) € R’.

Soundness: X & L(R) — every efficient P makes V(x) output x’s.t. x’ & L(R’) (up to a small error).

Succinctness: | 7| < |w].

Knowledge soundness: every efficient P that outputs a witness W’ s.t. (x’, w’) € R’, must “know” w s.t. (x, w) € R (up to a small error «).

Why are SNRDXs useful? (+) generalization of SNARGs: SNARG for R = SNRDX from R to trivial relation R’ = {(x’,w’) : x’ = 1}.

(+) cheaper to construct than SNARGs for some relations R’
)

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G,, G, Prover s x € L(R)? Verifier

are 3-colorable.

T
| accept your claim as S

long as G is 3-colorable.

Easier relation

Isx’" € L(R")?

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier

are 3-colorable.

. T
| accept your claim as e

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
W’

SNRDXs have numerous real-world applications.
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
iIncrementally verifiable computation, etc.

Succinct non-interactive reductions (SNRDXs)

Hard relation

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier

are 3-colorable.

. T
| accept your claim as e

‘ long as G is 3-colorable. .

Easier relation

$ Isx’ € L(R')?
W’

SNRDXs have numerous real-world applications.
SNRDXs (packaged as accumulation schemes or folding schemes) yield proof-carrying data,
iIncrementally verifiable computation, etc.

RISC
b

Where do SNARGs/SNRDXs come from?

Where do SNARGs/SNRDXs come from?

A few places.

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

V Efficient

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

’ Efficient ’ Public (transparent) setup

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

Public (transparent) setup

Efficient

"/ HEPlausibly post-quantum

Where do SNARGs/SNRDXs come from?

A few places. Our focus:

Hash-based SNARGs/SNRDXs

- Efficient

Recall: SNARG BCS[IOP, MT]

Recal: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

11,

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

~
Prop(x, w) 44; % (X)

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

-
Prop(x, w) 44; Viop(X)
— .

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

> 11,

-
Prop(x, w) 44; Viop(X)
— .

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— R
-
Prop(x, w) 44; Viop(X)

11,

<4 =--

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— I,
~

Prop(x, w) 44; % (X)

— T

IOP

=

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP)

x € L(R)?

— I,
~

Prop(x, w) 44; % (X)

— T

IOP

=

\

bIOP

SNARG BCS[IOF, MT]

Recall:

Ingredient #1: Interactive oracle proof (IOP)

X E L(R)’?

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

sﬁs

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

r n
"
([

[]

° []

° [

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)? | | m

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

-

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

0/1

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

7 = ((cmy,...,cmy), ans, path)_

Ol
[

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

7 = ((cmy,...,cmy), ans, path)_

0/1

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

0/1

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

Security holds even against quantum attackers:

0/1

Recall: SNARG BCS[IOP, MT]

Ingredient #1: Interactive oracle proof (IOP) Ingredient #2: Merkle commitment scheme (MT)

The BCS protocol is widely-used in practice.

Security is analyzed in an ideal model: random oracle model.

7 = ((cmy,...,cmy), ans, path)_

Security holds even against quantum attackers:

[CMSI191]:
) ARAY

the BCS protocol is secure in the | "3)
quanfum random oracle model ’

0/1

BMNW25: SNRDX BCS[IOR, MT]

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #2: Merkle commitment scheme (MT)

-

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?) | m

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?) | m

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

x € L(R)?

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

T = ((le, ceos ka)a ans, path)

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

9 W’ x' € L(R")? o

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25]. x € L(R)?

9 W’ x' € L(R")? o

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25]. x € L(R)?

Secure in the ROM against classical attackers [BMNW25].

9 W’ x' € L(R")? x

BMNW25: SNRDX BCS[IOR, MT]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: Merkle commitment scheme (MT)

Simple and efficient hash-based SNRDXs [BMNW25; BCFW25]. x € L(R)?

Secure in the ROM against classical attackers [BMNW25].

OUR QUESTION: .
Are these hash-based SNRDXs [P

secure in the QROM?

9 w' x' € L(R")? x

Why post-quantum security matters
for hash-based SNRDXs?

Why post-quantum security matters
for hash-based SNRDXs?

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

Why post-quantum security matters
for hash-based SNRDXs?

Hash-based SNRDXs
(packaged as hash-based accumulation/folding schemes),

are likely to be an important building block
for post-quantum redesigns of Ethereum.

4

N ethereum

Why not use [CMSI19]?

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic” proof approach

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [CMSI19]?

We cannot. Also, we should not.

Problem 3: proves non-adaptive security of BCS[IOP, MT]

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic” proof approach

We want a quantum proof of BCS[IOR, MT]
that aligns with the classical one (we want the "right” one!).

Problem 1: requires the IOP to satisfy RBR knowledge soundness

State-of-the-art IOPs/IORs satisfy a variant.

Problem 2: applies to BCS[IOP, MT], not BCS[IOR, MT]

Classically, BCS[IOR, MT] and BCS[IOP, MT]
require proofs.
Quantumly, even

Why not use [C""‘"é

We cannot. Also, we shoi

Problem 3: proves non-adaptive security of BCS[IOP, MT] dx

We target adaptive security of BCS[IOR, MT].

Problem 4: adopts a "monolithic" proof approach

We want a quantum proof of BCS[IOR, MT]
that aligns with the classical one (we want the "right” one!).

Our results

13

Theorem 1:

13

Classical case

SR KS IOR Extractable VC
Ko €
Theorem I 1OR =
l[BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgcsitor.ve] = OKor + €ve).

13

Classical case

Vector commitment (VC) :

an abstraction of MT

Sr
K €
Theorem 1: IOR Ve

—_— Sr
Kgesitor.ve] = OKor + €vo)-

13

Theorem 1:

Post-quantum case

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR \I/C
I

BCSIIOR, VC] is PQ
knowledge sound

* . *
Kacsitorve] = O Gr + €ve)-

*,Sr

13

Classical case

Vector commitment (VC) :

an abstraction of MT

Sr
K10R €ve

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 2:

Theorem 1:

Post-quantum case

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR \I/C
I

BCSIIOR, VC] is PQ
knowledge sound

* . *
Kacsitorve] = O Gr + €ve)-

*,Sr

13

Classical case

Vector commitment (VC) :

an abstraction of MT

Sr
K10R €ve

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 2:

Theorem 1:

Post-quantum case

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR \I/C
I

BCSIIOR, VC] is PQ
knowledge sound

* . *
Kacsitorve] = O Gr + €ve)-

*,Sr

13

RBR KS IOR

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

kiR (1) = O((t + k) - K[

Vector commitment (VC) :

an abstraction of MT

Sr
K10R €ve

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Post-quantum case Classical case

RBR KS IOR
PQSR KS IOR _
Theorem 2: * sr() 0((k)2 rrbr) | d
K. 2> (F) = [+ - K < reiaxe
IOR IOR |RBR KS IOR Kior(?) = O((t + k) - ng’é)
K'Irg)bé Vector commitment (VC) :
an abstraction of MT
PQSR KS IOR PQ Extractable VC
3 KI*CV),SRr 6\7C : Sr
: K
Theorem I: | | * | IOR €ve

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kacsitorve] = O Gr + €ve)-

—_— Sr
Kgesitor.ve] = OKor + €vo)-

13

Theorem 2:

Theorem 1:

Post-quantum case

K511 = O((t + k) - KIr(r)bé <

PQSR KS IOR Grover's alg:
Preimage finding

IOR

PQSR KS IOR PQ Extractable VC

*,Sr *
K1oR €y
| |

v
BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 3:

Theorem 2:

Theorem 1:

Post-quantum case

K511 = O((t + k) - KIr(r)bé <

PQSR KS IOR Grover's alg:
Preimage finding

IOR

PQSR KS IOR PQ Extractable VC

*,Sr *
K1oR €y
| |

v
BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 3:

Theorem 2:

Theorem 1:

Post-quantum case

K511 = O((t + k) - Kf(r)bé <

PQSR KS IOR Grover's alg:
Preimage finding

IOR

PQSR KS IOR PQ Extractable VC

*,Sr *
K1oR €y
| |

v
BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 3:

Theorem 2:

Theorem 1:

Post-quantum case

MT has PQ extractability error
evir = O(1°/2°)

K1) = O((t + k)™ - ko) [

PQSR KS IOR Grover's alg:
Preimage finding

IOR

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR XC
I
v

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Theorem 3:

Theorem 2:

Theorem 1:

Post-quantum case

evir = O(1°/2°)

MT has PQ extractability error

PQSR KS IOR

KI’BSRr(t) = O((t + k)2 : ngblg

<

BHT alg:
The collisin error

Grover’s alg:

Preimage finding

K*,sr

*
IOR €ve

PQSR KS IOR PQ Extractable VC

| |
v

BCSIIOR, VC] is PQ
knowledge sound
*,Sr

* _ *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgcsiior.ve] = OKor + €yo)-

Theorem 3:

Theorem 2:

Theorem 1:

Putting it
together:

Post-quantum case

PQSR KS IOR Grover’s alg:
K551 = O((t + k)* - Kf(r)blg >

MT has PQ extractability error BHT Ig:
eve = O(t°/2°) The collision error

Preimage finding

IOR

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR YC
I
v

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgcsiior.ve] = OKor + €yo)-

Theorem 3:

Theorem 2:

Theorem 1:

Putting it
together:

Post-quantum case

PQSR KS IOR Grover’s alg:
K551 = O((t + k)* - Kf(r)bé >

MT has PQ extractability error BHT Ig:
eve = O(t°/2°) The collision error

Preimage finding

IOR

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR YC
I
v

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgcsiior.ve] = OKor + €yo)-

Kacsiiormt] = O + k) - ki5R) + O(1%/2°)

Theorem 3:

Theorem 2:

Theorem 1:

Putting it
together:

| Mcsiormm = O+ K)° - kig) + O(°/27)

Post-quantum case

PQSR KS IOR Grover’s alg:
K551 = O((t + k)* - Kf(r)bé >

MT has PQ extractability error BHT Ig:
eve = O(t°/2°) The collision error

Preimage finding

IOR

PQSR KS IOR PQ Extractable VC
K*,sr 6*
IOR YC
I
v

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
KISCr)R €vc
1 [BMNW25b,BCS16]

BCSIIOR, VC] is knowledge sound

—_— Sr
Kgcsiior.ve] = OKor + €yo)-

Kacsiiormt] = O + k) - ki5R) + O(1%/2°)

Theorem 3:

Theorem 2:

Theorem 1:

Putting it
together:

Post-quantum case

MT has PQ extractability error
evir = O(1°/2°)

IOR

K551 = O((t + k)* - Kf(r)bé

PQSR KS IOR Grover’s alg:

<

BHT alg:
The collisin error

Preimage finding

PQSR KS IOR
K*,sr
IOR

PQ Extractable VC

*
Eve

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

Kacstormt) = O + k) - K[on) + O(t12°)

e Asymptotica

lly tight bound ...

13

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
Ko €
IOR

VC

{[BMNW25b,BCS16]
BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Kacsiiormt] = O + k) - ki5R) + O(1%/2°)

Theorem 3:

Theorem 2:

Theorem 1:

Putting it
together:

Post-quantum case

MT has PQ extractability error
evir = O(1°/2°)

IOR

K551 = O((t + k)* - Kf(r)bé

PQSR KS IOR Grover’s alg:

<

BHT alg:
The collisin error

Preimage finding

PQSR KS IOR
K*,sr
IOR

PQ Extractable VC

*
Eve

BCSIIOR, VC] is PQ
knowledge sound

* — *,Sr *
Kgcsitor.ve] = O Ge + €ve):

Kacstormt) = O + k) - K[on) + O(t12°)

e Asymptotica

RBR KS IOR

I

relaxed
RBR KS IOR

rrbr
KI0R

Classical case

MT has extractability error
ep = O(17/2°)

[BCFW25] SR KS IOR
>

lly tight bound..... Small constant in O notation

Kior(?) = O((t + k) - ng’é

Vector commitment (VC) :

an abstraction of MT

SR KS IOR Extractable VC
Ko €
IOR

VC

{[BMNW25b,BCS16]
BCSIIOR, VC] is knowledge sound

—_— Sr
Kgesitor.ve] = OKor + €vo)-

Kacsiiormt] = O + k) - ki5R) + O(1%/2°)

Technical Overview

Ideal model for hash functions

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

Quantum random oracle f < ({0,1}* — {0,1}°)

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

Quantum random oracle f < ({0,1}* — {0,1}°)

Alg A*

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

Quantum random oracle f < ({0,1}* — {0,1}°)

Alg A*

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

Quantum random oracle f < ({0,1}* — {0,1}°)

Superposition query Z) |)

15

Ideal model for hash functions

Random oracle f < ({0,1}* — {0,1}°)

Query g € {0,1}*

Quantum random oracle f < ({0,1}* — {0,1}°)

Superposition query Z) |)

How to remove interaction?

16

How to remove interaction?

Interactive oracle reduction (IOR)

x € L(R)?

16

How to remove interaction?

Interactive oracle reduction (IOR)

x € L(R)?

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive
x € L(R)?

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive
x € L(R)?

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

16

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

Omitted: instances x, x’ can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

(M, ..., T

Omitted: instances x, x’ can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

VEs

Derive §g
like Ppg

(M, ..., T

Omitted: instances x, x’ can also include oracles.

How to remove interaction?

Interactive oracle reduction (IOR) Interactive Non-interactive
x € L(R)?

Use random function to derive randomness

VEs

Derive §g
like Ppg

(I, ... T

()

Omitted: instances x, x’ can also include oracles.

[BCS16,BMNW25]
Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR)

x € L(R)?

17

IBCS16,BMNW25]
Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR)

x € L(R)?

17

IBCS16,BMNW25]
Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

17

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

17

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

x € L(R)?

17

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

17

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

\/OR @0l li Outputs a commitment cm for I1.

\AOM O -l Provides a proof pf for ans = I1[/].
IO @ [dd Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

\/OR @0l li Outputs a commitment cm for I1.

\AOM O -l Provides a proof pf for ans = I1[/].
IO @ [dd Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

\/OR @0l li Outputs a commitment cm for I1.

\AOM O -l Provides a proof pf for ans = I1[/].
IO @ [dd Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

\/OR @0l li Outputs a commitment cm for I1.

\AOM O -l Provides a proof pf for ans = I1[/].
IO @ [dd Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

\/OR @0l li Outputs a commitment cm for I1.

\AOM O -l Provides a proof pf for ans = I1[/].
IO @ [dd Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

: PAAON @G nlil Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

: PAAON @G nlil Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

Non-interactive

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

: PAAON @G nlil Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

Non-interactive

x € L(R)?

T = ((lea ceey ka)a ans, pf)

x' € L(R')?

IBCS16,BMNW25]

Review: the BCS protocol for IOR

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

ll

x € L(R)? R "

: PAAON @G nlil Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

Non-interactive

x € L(R)?

cooo ka), anS, pf)

T = (C1,

Now succinct!
s

17

x' € L(R')?

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR)

x € L(R)?

IBCS16,BMNW25]

Ingredient #2: \Vector commitment scheme (VC)

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].

\ON @ [-eld Checks if pf is correct. :
. 11 T

.

x € L(R)?

T = ((lea ceey ka)a ans, pf)

x' € L(R')?

18

IBCS16,BMNW25]

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].

\ON @ [-eld Checks if pf is correct. :
. 11 T

.

Two potential attacks to BCS[IOR, VC]: x € L(R)?

T = ((lea ceey ka)a ans, pf)

x' € L(R')?

18

'BCS16,BMNW25]

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].

\ON @ [-eld Checks if pf is correct. :
. 11 T

.

Two potential attacks to BCS[IOR, VC]: x € L(R)?

1. P can query many times to r = ((cmy,...,cmy), ans, pf)

get § that makes Vjqr output x” € L(R').

x' € L(R')?

18

IBCS16,BMNW25]

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

ll
L 4 g

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].

\ON @ [-eld Checks if pf is correct. :
. 11 T

.

Two potential attacks to BCS[IOR, VC]: x € L(R)?

1. P can query many times to r = ((cmy,...,cmy), ans, pf)

get § that makes Vjqr output x” € L(R').

> . . x" € L(R)?
2. P can attack VC (e.g. use inconsistent ans).

18

'BCS16,BMNW25]

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

--
7' L 2

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

Two potential attacks to BCS[IOR, VC]:

~ x € L(R)?
1. P can query many times to P |
get § that makes V;or output x” € L(R'). o \ememe.ans Pl o
x' € L(R))?

2. P can attack VC (e.g. use inconsistent ans).

18

'BCS16,BMNW25]

BCSIIOR, VC]

Ingredient #1: Interactive oracle reduction (IOR) Ingredient #2: \/ector commitment scheme (VC)

x € L(R)?

--
7' L 2

: Yool il Outputs a commitment cm for I1.
: BWASMOIL N Provides a proof pf for ans = T1[/].
\OM O 1=l d Checks if pf is correct.

Two potential attacks to BCS[IOR, VC]:

~ x € L(R)?
1. P can query many times to P |
get § that makes V;or output x” € L(R'). o \ememe.ans Pl o
m x' € L(R")?

2. P can attack VC (e.g. use inconsistent ans).

The role of state-restoration

RBR sound IOR
ror

€I0R
lThm 2 Thm 3
PQSR sound IOR PQ Extractable VC
€0 (1) = Ot + k)* - €1) evir = O(t°12°)

Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

19

The role of state-restoration

Today’s focus: soundness

RBR sound IOR
ror

€I0R
lThm 2 Thm 3
PQSR sound IOR PQ Extractable VC
€0 (1) = Ot + k)* - €1) evir = O(t°12°)

Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

19

The role of state-restoration

Today’s focus: soundness

Part 1

|
|

RBR sound IOR

rbr
€I0R

lThm 2 J Thm 3

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)% - ef)

PQ Extractable VC
evie = O/2°)

Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

19

The role of state-restoration

Today’s focus: soundness

Part 1

Part 2

|
|
|
|

RBR sound IOR

rbr
€I0R

lThm 2 J Thm 3

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)% - ef)

PQ Extractable VC
evie = O/2°)

—
Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

19

The role of state-restoration

Today’s focus: soundness

Part 1

Part 2

Putting it together:

|
|
|
|

RBR sound IOR

rbr
€I0R

lThm 2 m

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)% - ef)

—
Thm 1

Thm 3

PQ Extractable VC
evie = O/2°)

\4

BCS[IOR, VC] is PQ sound

*,Sr *
+ €)¢0)-

* —
€gcsiiorve] = Oy

egcsitormr = O + k) - ef2) + O(°/2°)

19

The role of state-restoration

Today’s focus: soundness

Part 1

Part 2

Putting it together:

|
|
|
|

RBR sound IOR

rbr
€I0R

lThm 2 m

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)% - ef)

—
Thm 1

Thm 3

PQ Extractable VC
evie = O/2°)

\4

BCS[IOR, VC] is PQ sound

*,Sr *
+ €)¢0)-

* —
€gcsiiorve] = Oy

egcsitormr = O + k) - ef2) + O(°/2°)

BCS error = FS error + VC error for PQ case!

19

The role of state-restoration PQSR is weak enough

: s.t. it only captures the FS error
Today’s focus: soundness and is implied by a classical property

RBR sound IOR

ror
lThm 2 Thm 3

Part 1

PQSR sound IOR PQ Extractable VC

€0 (1) = Ot + k)* - €1) evir = O(t°12°)

|
|
{ TEER

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

Putting it together: GI;(CS[IOR MT] = O((t + k)* - GfgrR) + O(£3/2°)

BCS error = FS error + VC error for PQ case!

19

The role of state-restoration

Today’s focus: soundness

Part 1

Part 2

Putting it together:

|
|
|
|

RBR sound IOR

rbr
€I0R

PQSR is weak enough
s.t. it only captures the FS error
and is implied by a classical property

PQSR is strong enough

m s.t. from PQSR to BCS, there is only VC error
lThm 2 Thm 3

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)* - €13) evr = O(1°/2°)

PQ Extractable VC

—
Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

GI;(CS[IOR,MT] = O((t+k)° - GfgrR) + 0(t°/2°)

BCS error = FS error + VC error for PQ case!

19

The role of state-restoration

Today’s focus: soundness

Part 1

Part 2

Putting it together:

|
|
|
|

RBR sound IOR

rbr
€I10R

PQSR is weak enough
s.t. it only captures the FS error
and is implied by a classical property

PQSR is strong enough

m s.t. from PQSR to BCS, there is only VC error
lThm 2 Thm 3

€

*.Sr
IOR

PQSR sound IOR

(1) = O((t + k)* - €13) evr = O(1°/2°)

PQ Extractable VC

—
Thm 1

v So how to define PQSR game

BCS[IOR, VC] is PQ sound

to separate two errors nicely?

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

GSCS[IOR,MT] = O((t+k)° - EfgrR) + 0(t°/2°)

BCS error = FS error + VC error for PQ case!

19

Part I

PQSR soundness is
implied by RBR soundness

State-restoration captures the classical FS error

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

21

State-restoration captures the classical FS error

Classical adversary

[, 1y, ..., 11))

x, (114, ..., 11})

Soundness:
t-move P°" cannot output x, (I1;, ..., IT,)

s.t. it reduces a no instance x & L(R)
to a yes instance x’ € L(R’), except with error €75 (1)

21

State-restoration captures the classical FS error

e;or = the (classical) soundness error of FS[IOR]

Classical adversary

{ classical moves filx, (0, . . ., I1))

x, (114, ..., 11})

Soundness:
t-move P°" cannot output x, (I1;, ..., IT,)

s.t. it reduces a no instance x & L(R)
to a yes instance x’ € L(R’), except with error €75 (1)

21

Our PQ state-restoration captures the PQ FS error

G;E)SRr = the PQ soundness error of FS[IOR]

Quantum adversary

Z |g = (x, (AL, ..., 1)) [y)

t quantum moves Z () |y @ fi(q))

x, (11, ..., 11

Soundness:
t-move P cannot output x, (I1;, ..., IT,)
s.t. it reduces a no instance x & L(R)

to a yes instance x” € L(R’), except with error Gféﬂer(t)

22

Our PQ state-restoration captures the PQ FS error

Quantum adversary

Z |g = (x, (AL, ..., 1)) [y)

23

Our PQ state-restoration captures the PQ FS error

Quantum adversary

P**" has quantum power.
What if it queries multiple oracles at once?

23

Our PQ state-restoration captures the PQ FS error

Quantum adversary

x, (114, ..., 11})

P**" has quantum power.
k ag = . .

What if it queries multiple oracles at once?

23

Our PQ state-restoration captures the PQ FS error

Quantum adversary

x, (114, ..., 11})

P**" has quantum power.
k ag = . .

What if it queries multiple oracles at once?

PQSR is a quantum property (too difficult).
Can we connect it with an easy classical property?

23

PQSR soundness is implied by RBR soundness

RBR sound IOR

ror
lThm 2 Thm 3

Part 1
PQSR sound IOR PQ Extractable VC
el (1) = O((t + k)* - €13R) evr = O(1°12°)
— R ‘
Part 2 Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

Putting it together: GI;CS[IOR MT] = O((t + k)* - EfgrR) + O(£3/2°)

24

PQSR soundness is implied by RBR soundness

Part 1

RBR sound IOR

rbr
€I0R

A classical property. Standard. Easier to deal with.

lThm 2) Thm 3

*.Sr

€I0R

PQSR sound IOR

(1) = O((t + k)* - e12) evr = O(1°/2°)

PQ Extractable VC

Part 2

Putting it together:

—
Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

cesitormr) = O+ K)* - e5) + O(/2%)

24

25

rbr . 'J

(Detinition of RBR soundness <1y
Each partial transcript is labeled either

doomed

| or not doomed ‘

25

rbr .)

(Detinition of FER soundness 5
Each partial transcript is labeled either

doomed Almost impossible to make V output x’ € L’

| or not doomed '

25

rbr .)

(Detinition of FER soundness 5
Each partial transcript is labeled either

doomed Almost impossible to make V output x’ € L’

,~ or not doomed Promising to make V output x’ € L’ ;

25

)
rbr . .
.

(Definition of RBR soundness €[2;

Each partial transcript is labeled either

doomed Almost impossible to make V output x’ € L’

or not doomed Promising to make V output x’ € L’ ‘

25

)
rbr . .
.

(Definition of RBR soundness €[2;

ror

' Each partial transcript is labeled either
“ W.P. €I0R

doomed Almost impossible to make V output x’ € L’

or not doomed Promising to make V output x’ € L’ ‘

25

(Definition of RBR soundness ¢[2;

x9H19p19°°°3pi—19Hi

ror

' Each partial transcript is labeled either
“ W.P. €I0R

doomed Almost impossible to make V output x’ € L’ w
not doomed e Al D1, 1L p
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

25

o = " o _ L o o S g aias iy e e o i LI S = . o I AN iy S o AN . .8 - Sl ATy . LS MR- i T S o o
)
rbr . .
g

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'

25

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

25

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

X

25

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

25

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

25

S S N S oS S NS NE AR SN NN SRS - SN AL IS NS AL NG AR N S S T e .. . oo NEANTIRSNE A ISR
)
ror . .
s

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

ror
| W'p' EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

25

S S N S oS S NS NE AR SN NN SRS - SN AL IS NS AL NG AR N S S T e .. . oo NEANTIRSNE A ISR
)
ror . .
s

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

ror
| W'p' EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11, x, 11, p

25

S S N S oS S NS NE AR SN NN SRS - SN AL IS NS AL NG AR N S S T e .. . oo NEANTIRSNE A ISR
)
ror . .
s

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

ror
| W'p' EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11, X, 11, p ey

25

)
rbr . .
.

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

X, H]’ /01 ‘“'”“‘”+ X, Hl’pl’ H2

25

s A e AR R AP AR N oS T e) S = s T L S e . . oS L S Y SN AN ACAS. IS
f
rbr . .
.

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

xaH]apl ““""“"’"} X’Hl’pl’HZ ooty

25

s A e AR R AP AR N oS T e) S = s T L S e . . oS L S Y SN AN ACAS. IS
f
rbr . .
.

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

xaH]apl ““""“"’"} X’Hl’pl’HZ ooty

25

s A e AR R AP AR N oS T e) S = s T L S e . . oS L S Y SN AN ACAS. IS
f
rbr . .
.

[Definition of RBR soundness €/
" 1OR X, H19p19 °°°9pi—19 Hi
' Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

xaH]apl ““""“"’"} X’Hl’pl’HZ ooty

25

Definition of RBR soundness efgrR'

‘; Each partial transcript is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

x, 11,

xaHl?/Ol A X,H1,,01,H2 S

x, 11y, p15 -5 i, py

25

S S N S oS S S e) o S = N o S SRS - SN AL IS NS AL NG AR N S S T e .. . oo NEANTIRSNE A ISR
)
ror . .
s

[Definition of RBR soundness €/
" 1OR X, Hlapb °°°9pi—19 Hl’
' Each partial transcript is labeled either

ror
| W'p' EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed B I P I, FET || P/’
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

X, Hl """"”"‘"‘b X, Hl’pl

x, Hl,pl, H2 X,Hl,pl,...,Hk,pk

25

o i S . i oS = S o AN iy S . i S = N e . N 8 S e . _ e e AN S o - o S AP S e AN iy Il R
)
rbr . .
"

(Definition of RBR soundness ¢/
" 1OR X, H19p19 °°°9pi—19 Hi
 Each partial transcript Is labeled either

rbr
| W.p. EIOR

doomed Almost impossible to make V output x’ € L’ w
not doomed e Al D1, 1L p
or not doomed Promising to make V output x’ € L’ - UL P s Pint i P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

p 1L —— L) e

x, Hl,pl, H2 X,Hl,pl,...,Hk,pk

of: run P*" and compute p;, +++, p; (at most ¢ + k classical queries);

then P wins = & can find x,I1,, p,, ..., I1. and p; that jumps to not doomed.

25

Deflmhon of RBR soundness efgrR'

| Each partial transcript is labeled either l W, et
| €I0R
doomed Almost impossible to make V output x’ € L’
not doomed I1 . I,
or not doomed Promising to make V output x’ € L’ - BB PL o Pib M P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

b [, —p 0 101,p —3

X, Hl’pl’ coeo Hk’pk

of: run P and compute p;, ---, p, (at most ¢ + k classical queries);

then P wins = < can find x. I1,,p;,...,II.and p; that jumps to not doomed.

eror(?) < Prl¢f finds such x, I, ..., p;] for a (f + k)-query </

25

Deflnl’rlon of RBR soundness efgrR'

| Each partial transcript is labeled either l wp. et
,. €I0R
doomed Almost impossible to make V output x’ € L’
td of x, I1 . I1.
or not doomed Promising to make V output x’ € L’ BB PL o Pib M P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

p x, 11 X, 01, py e

X, Hl,pl, coey Hk’pk

of: run P*" and compute p;, +++, p; (at most ¢ + k classical queries);

then P wins = & can find x, I1,, p;, ..., I1. and p; that jumps to not doomed

eror(?) < Prl¢f finds such x, I, ..., p;] for a (f + k)-query </

25

Deflmhon of RBR soundness efgrR'

| Each partial transcript is labeled either l wp. et
! €10R
doomed Almost impossible to make V output x’ € L’
td of x, I1 . I1.
or not doomed Promising to make V output x’ € L’ BB PL o Pib M P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

p ., IT, X, 01, py e

X, Hl’pl’ coeo Hk’pk

Search problem for

o run P and compute py, -++, p, (@t most ¢ + k classical queries); some sparse set!

then P*" wins = &/ can find x, I1,,p;, ..., I and p; that jumps to not doomed

eror(?) < Prl¢f finds such x, I, ..., p;] for a (f + k)-query </

25

RBR soundness induces a search problem in the SR game

7 Deflnl’rlon of RBR soundness erbr :
' tOR doomed X, 1y, prs e oo pizys 1
{ Each partial transcript is labeled either ;
W.P. €10r
doomed Almost impossible to make V output x’ € L’
not doomed I1 11,
or not doomed Promising to make V outputx’ € L’ - AP P M P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

& X, Hl S X, Hlaplar[Z — Xt prs s e P

_ Search problem for
' run P°" and compute py, -+, p, (at most ¢ + k classical queries); some sparse set!

then P wins = & can find x, I1,, p;, ..., I1. and p; that jumps to not doomed

eror(?) < Prl¢f finds such x, I, ..., p;] for a (f + k)-query </

25

RBR soundness induces a search problem in the SR game

f Deflmhon of RBR soundness erbr . % o
'. TR doomed X, 1y, pys s picrs 1 .
t Each partial transcript is labeled either i
W.P. €or
doomed Almost impossible to make V output x’ € L’
td d I1 11,
or not doomed Promising to make V output x’ € L’ BB PL o Pib M P

To win SR game, P*" needs to find x, (I1;,...,II,) such that x & L but V¢ outputs x" € L'
x is doomed, but x, L1, p;,..., 11, p, is not doomed.

PN G s PG RN SRR SN § AN U S SO
_ Search problem for
' run P°" and compute py, -+, p, (at most ¢ + k classical queries); some sparse set!

then P*" wins = &/ can find x, I1,,p;, ..., I and p; that jumps to not doomed

eror(?) < Prl finds such x,I1, ..., p;] for a (t + k)-query &/ = O0((t+k)-)

IOR

25

What happens in the quantum case?

26

What happens in the quantum case?

rbr Quantumly, the same search problem,
find x, L1, py, ..., 11, and p, €ror™SParse but with quantum queries!

26

What happens in the quantum case?

;E)er(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

26

What happens in the quantum case?

GI’BSI‘{(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

26

What happens in the quantum case?

I’éf{(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

26

What happens in the quantum case?

GI’BSI‘{(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality

26

What happens in the quantum case?

I’éf{(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality

Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).

26

What happens in the quantum case?

I’éf{(t) < Pr[o/™ finds such x,I1, ..., p.] for a (t + k)-query quantum &/*

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality

Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).

Almost there...

But we are not searching p; in a set §

26

What happens in the quantum case?

ror

€3 (1) < Pr[of™ finds such x,I1,, ..., p;] for a (¢t + k)-query quantum o/*

IOR

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality

Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).
Almost there... S o/* needs tofind g = (x,I1;,...,IL) and p; = f(q)

But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

26

What happens in the quantum case?

ror

€3 (1) < Pr[of™ finds such x,I1,, ..., p;] for a (¢t + k)-query quantum o/*

IOR

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality

Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).
Almost there... S o/* needs tofind g = (x,I1;,...,IL) and p; = f(q)

But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

Grover’s optimality is also true for finding (g, f.(g)) € R for sparse relation R.

26

What happens in the quantum case?

ror

€3 (1) < Pr[of™ finds such x,I1,, ..., p;] for a (¢t + k)-query quantum o/*

IOR

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality
Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).

Almost there... = o/* needs to find ¢ = (x,I1;,...,II.) and p; = f(q)
But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

Grover’s optimality is also true for finding (g, f.(g)) € R for sparse relation R.

But wait, we have pq, ..., p;_; in the relation.

26

What happens in the quantum case?

ror

€3 (1) < Pr[of™ finds such x,I1,, ..., p;] for a (¢t + k)-query quantum o/*

IOR

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality
Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).

Almost there... - o/ needs to find ¢ = (x,I1;,...,IL) and p; = f(q)
But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

Grover’s optimality is also true for finding (g, f.(g)) € R for sparse relation R.

But wait, we have pq, ..., p;_; in the relation.

Our solution: fix f,, ..., f._; when analyzing for f, then it’s searching (g, f.(g)) € R'for GfgrR-sparse R’

26

What happens in the quantum case?

ror

€23 (1) < Pr[of™ finds such x,I1,, ..., p;] for a (¢t + k)-query quantum /™

IOR

We can find a preimage of a set $ for some f. w.p. Q(T? - sparsity of S) with T queries to fiseees i

There’s a limit to the speed up: Grover’s optimality
Every T-query &/* can find a preimage of a set S for some f. w.p. O(T? - sparsity of S).

Almost there... S o/ needs to find g = (x,I1,,...,II) and p; = f(q)
But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

Grover’s optimality is also true for finding (g, f.(g)) € R for sparse relation R.

But wait, we have pq, ..., p;_; in the relation.

Proof uses instability lemma from [CMS19].

Our solution: fix f,, ..., f._; when analyzing for f, then it’s searching (g, f.(g)) € R'for efgrR-sparse R’

26

What happens in the quantum case?

ror

eI’BSRr(t) < Pr[&/* finds such x,I1,, ..., p.] for a (¢ + k)-query quantum o/* = O((t + k)* efgrR

Almost there... - o/ needs to find ¢ = (x,I1;,...,IL) and p; = f(q)
But we are not searching p, in a set § s.t. ((x, I, py, ..., I1), p,) in a relation

Grover’s optimality is also true for finding (g, f.(g)) € R for sparse relation R.

But wait, we have pq, ..., p;_; in the relation.

Proof uses instability lemma from [CMS19].

Our solution: fix f,, ..., f._; when analyzing for f, then it’s searching (g, f.(g)) € R'for GfgrR-sparse R’

26

Part 2: From PQSR IOR
to PQ NRDX

BCS PQ soundness = PQSR soundness + VC PQ error

RBR sound IOR

ror
lThm 2 Thm 3

Part 1
PQSR sound IOR PQ Extractable VC
el (1) = O((t + k)* - €13R) evir = O(t°12°)
Part 2 m Thm 1

\4

BCS[IOR, VC] is PQ sound

* — *,Sr *
€gcsiiorve] = OlEr5e + €ye)-

Putting it together: GI;CS[IOR MT] = O((t + k)* - EfgrR) + O(£3/2°)

28

What happens in the classical case?

30

Classical case

Goal: we want to construct a SR prover P such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

30

Classical case

Goal: we want to construct a SR prover P such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P simulates P.

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover
*7) How fo...
\ (/

llllllllllll

1. Answer f\,~ queries?

.

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover
*7) How fo...
\ (/

llllllllllll

1. Answer f\,~ queries?

.

2. Answer frg queries?

30

Classical case

Goal: we want to construct a SR prover P*' such that
Pr[P°" wins SR game] > Pr[P fools V] — ey

A construction: P°' simulates P.

Malicious BCS prover
*7) How fo...
\ (/

1. Answer f\,~ queries?

2. Answer frg queries?

lllllllllllllllllllllllllllllll

i x, (cmj, ans;, pf);cpy | 3. Derive the output of P*" from the output of P?

llllllllllllllllllllllllllllllll

30

Classical case

Construction of P
Step 1: how to answer f\,~ queries?

31

Classical case

Construction of P
Step 1: how to answer f\,~ queries?

Malicious BCS prover

31

Classical case

Construction of P
Step 1: how to answer f\,~ queries?

Malicious BCS prover

31

Classical case

Construction of P
Step 1: how to answer f\,~ queries?

P*" does not have oracle access to f/~

Malicious BCS prover

31

Classical case

Construction of P
Step 1: how to answer f\,~ queries?

P*" does not have oracle access to fy/

Malicious BCS prover Malicious SR prover P*'

31

Construction of P > Classical case
Step 2: how to answer frq queries?

32

COhS'l'I"UC'l'iOh of P > Classical case

Step 2: how to answer frq queries?
A natural attempt

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

cm = (ij)je[i] for some i € [k]

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

cm = (ij)je[i] for some i € [k]

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

cm = (ij)je[i] for some i € [k]

32

Construction of P*' Classical case
Step 2: how to answer frq queries?

A natural attempt

~/

P*" needs to query fr5 on IOR strings

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

_)
- IT = (I1);,; for some i € []
clm = (ij)jE[i] for some i1 € [k] E v] e [i], EXt(ij, DVC) = Hj

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

32

Construction of P*" Classical case

Step 2: how to answer frq queries?
A natural attempt

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—>

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

But P can query cm; # cm, with the same
underlying message 11;.

32

Construction of P*' Classical case
Step 2: how to answer frq queries?

Instead. ..

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

But P can query cm; # cm, with the same
underlying message 11;.

32

Construction of P*' Classical case
Step 2: how to answer frq queries?

Instead. ..

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

- IT = (I1);,; for some i € []
cm = (cm;);c(; for some i € [k] Vj € [i], Ext(cm;, Dy¢) = 1I;

But P can query cm; # cm, with the same
underlying message 11;.

32

Construction of P*' Classical case
Step 2: how to answer frq queries?

Instead. ..

~/

P*" needs to query fr5 on IOR strings

Extractor needs database

—

IT = (I1);,; for some i € []
Vj € [i], Ext(cm;, Dyc) = 11,

But P can query cm; # cm, with the same
underlying message 11;.

Omitted: actual PQSR definition includes salt
32

Construction of P > Classical case
Step 3: how to derive the output

33

Construction of P > Classical case
Step 3: how to derive the output

A,

(cm;, ans;, pf.)

33

Construction of P > Classical case
Step 3: how to derive the output

A,

Cmi, ans;, Pfii LI

33

Construction of P Classical case
Step 3: how to derive the output

BCS verifier V

& VC . Check
cm,-,asi, pfil.[] .

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

BCS verifier V

& VC . Check
cm,-,asi, pfil.[] .

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

P needs to output the chosen IOR strings

BCS verifier V

i VC . Check
(cm;, ans;, ph)icy |5

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

P needs to output the chosen IOR strings

BCS verifier V

As VC . Check
Cmi, ans;, pfii K]

<4 =--
ans; [N VioR

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

P needs to output the chosen IOR strings

BCS verifier V

i VC . Check
(cm;, ans;, ph)icy |5

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

P needs to output the chosen IOR strings

BCS verifier V

i VC . Check
(cm;, ans;, ph)icy |5

with randomnesses
Jes(x, (ij)je[i])

33

Construction of P Classical case
Step 3: how to derive the output

P needs to output the chosen IOR strings

BCS verifier V : (P FS verifier Vc

s VC . Check

with randomnesses
Jes(x, (ij)je[i])

33

34

Classical case

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

Malicious BCS prover

Malicious SR prover P*'

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

How to answer f\,~ queries?

Malicious BCS prover

Malicious SR prover P*'

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

How to answer f-q queries?

Malicious BCS prover

Malicious SR prover P*'

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

How to derive the output of P*" from the output of P?

Malicious BCS prover Malicious SF

 prover P>

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

How to derive the output of P*" from the output of P?

Malicious BCS prover

Malicious SR prover P*'

lll
L 4 L

Extractor needs database

lll

34

- - . DSl @ D
The construction in summary: P> simulates P. Classical case

Malicious BCS prover

Malicious SR prover P*'

Extractor needs database

Goal: we want to show Pr[P*" wins SR game] > Pr[P fools V] — Eve

34

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

35

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

35

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

35

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

35

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

35

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

;1 VC Property 1: Online consistency

35

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 1

—>
X, CM
-------- - ~
< =-=-=- -:)- €VC,onIine
Jrs(x, cm)

35

Classical case

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

36

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 2

36

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 2

36

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 2

36

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 2

36

Classical case

Goal: we want to show
Pr[P°" wins SR game]| > Pr[P fools V]—¢\,~

Difference 2

&

€

VC,offline

if NoNeed — 1

36

What happens in the quantum case?

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

Our construction: P*°" simulates P*.

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P™*" wins PQSR game] > Pr[P* fools V] — €y~

Our construction: P*°" simulates P*.

Malicious BCS prover

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P™*" wins PQSR game] > Pr[P* fools V] — €y~

Our construction: P*°" simulates P*.

Malicious BCS prover
) How to...

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

Our construction: P*°" simulates P*.

Malicious BCS prover
*#) How to...

llllllllll
.‘ .‘ \l (/
- n
-]
-]
-]
=]
]

1. Answer quantum fy queries?

llllllllllll

x, (cm;, ans;, pfi)iek]

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

Our construction: P*°" simulates P*.

Malicious BCS prover

e , & How to...
............. 1. Answer quantum fy queries?

2. Answer quantum feq queries?

x, (cm;, ans;, pfi)iek]

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

Our construction: P*°" simulates P*.

Malicious BCS prover
*#) How to...

| 4
1. Answer quantum fy queries?

2. Answer quantum feq queries?

llllllllllllllllllllllllllllllll

:x, (cmj, ans;, pf) iy 3. Derive the output of P**5" from the output of P*?

llllllllllllllllllllllllllllllll

38

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

39

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

The VC extractor needs some trapdoor information
about adversary’s queries.

39

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

The VC extractor needs some trapdoor information
about adversary’s queries.

Starting point: Use compressed oraclel

39

Quantum case

Goal: we want to construct a PQSR prover P**" such that
Pr[P**" wins PQSR game] > Pr[P* fools V] — €~

The VC extractor needs some trapdoor information
about adversary’s queries.

Starting point: Use compressed oraclel

It gives you “Quantum Database” 9y,

but additional care Is required to simulate P* without much disturbance.

39

Quantum case

Our construction of P**
Step 1: how to answer quantum f\,~ queries?

40

Quantum case

Our construction of P**
Step 1: how to answer quantum f\,~ queries?

Malicious BCS prover

40

Quantum case

Our construction of P**
Step 1: how to answer quantum f\,~ queries?

Malicious BCS prover Malicious SR prover P*"

40

Our construction of P Quantum case
Step 2: how to answer quantum fgq queries?

41

Our construction of P Quantum case
Step 2: how to answer quantum fgq queries?

41

Our construction of P Quantum case
Step 2: how to answer quantum fgq queries?

41

Our construction of P** Quantum case
Step 2: how to answer quantum fgq queries?

cm = (cm;);¢(;; for some i € [£]

41

Our construction of P** Quantum case
Step 2: how to answer quantum fgq queries?

cm = (cm;);¢(;; for some i € [£]

41

Our construction of P Quantum case
Step 2: how to answer quantum fg queries?

cm = (cm;);¢(;; for some i € [£]

41

Our construction of P Quantum case
Step 2: how to answer quantum fg queries?

cm = (ij)je[i] for some i € [k]

41

Our construction of P Quantum case
Step 2: how to answer quantum fg queries?

41

Our construction of P Quantum case
Step 2: how to answer quantum fg queries?

Dye i y Do
| [om) — BT —— [cm)

41

Our construction of P Quantum case
Step 2: how to answer quantum fg queries?

Dye I y Do
'; cm) ——» [/ —— |Cm)

Vj € [i], Ext(cm;, D) = 11

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS C]LjerleS? Extractor needs database

Dy u y D
| |cm) ——) — |cm)

Vj € [i], Ext(cm;, D) = 11

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS ql'fe”eS? Extractor needs database

Dye u y D
’ |cm) ——» U ——» |Cm)

Vj € [il, Ext(cm;, Dyc) = 1T,

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS ql'fe”eS? Extractor needs database

Dye u y D
’ |cm) ——» U ——» |Cm)

10) — I — |1 = ExGR. 2,0)) |

Vj € [il, Ext(cm;, Dyc) = 1T,

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS ql'fe”eS? Extractor needs database

Ve sy e D/
3 lcm) ——» U ——» |cm)

Vj € [i], Ext(cmj, Dyc) = I1,

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS ql'fe”eS? Extractor needs database

Ve sy e D/
3 lcm) ——» U ——» |cm)

Vj € [i], Ext(cmj, Dyc) = I1,

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS C]LjerleS? Extractor needs database

Dye u y D

Vj € [i], Ext(cm;, D) = 11

41

Our construction of P** Quantum case

Step 2: how to answer quantumfFS C]LjerleS? Extractor needs database

Dye u y D

Vj € [i], Ext(cm;, D) = 11

41

Quantum case

Our construction of P**
Step 3: how to derive the output

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

x, (cm;, ans., pfi)ie[k]

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check
x, (€m;, ans;, pf);ciy

4---
ans; IS VioR

with randomnesses
Jes(x, (ij)je[i])

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check
x, (€m;, ans;, pf);ciy

4---
ans; IS VioR

with randomnesses
Jes(x, (ij)je[i])

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check
x, (€m;, ans;, pf);ciy

4---
ans; IS VioR

with randomnesses
Jes(x, (ij)je[i])

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check

==
ans WY Viox

with randomnesses
Jes(x, (ij)je[i])

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check X, (€My)ca

4.--
ans; NS VioR

with randomnesses
Jes(x, (ij)je[i])

Miew

42

Quantum case

Our construction of P**
Step 3: how to derive the output

BCS verifier V

VC . Check

FS verifier Vg

==
ans WY Viox

with randomnesses
Jes(x, (ij)je[i])

42

43

Quantum case

Our construction in summary: P**" simulates P*. Quantum case

43

Our construction in summary: P**" simulates P*. Quantum case

43

Our construction in summary: P**" simulates P*. Quantum case

How to answer quantum f\,- queries?

43

Our construction in summary: P**" simulates P*. Quantum case

How to answer quantum frg queries?

43

Our construction in summary: P**" simulates P*. Quantum case

How to derive the output?

43

Our construction in summary: P**" simulates P*. Quantum case

How to derive the output?

43

Our construction in summary: P**" simulates P*. Quantum case

Extractor needs database

Goal: we want to show Pr[P**" wins PQSR game] > Pr[P* fools V]—e\’;c

43

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 1

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 1

Z ‘X, C_fn), Y @fFS(X’ C_rn>)>

44

Quantum case

Goal: we want to show
Pr[P**" wins PQSR game] > Pr[P* fools V]—¢/)

Difference 1

VS.

Y |x,cm,y @ fis(x,cm)) Y |x.em,y @ frlr, 11, 5m))

44

Quantum case

Goal: we want to show
Pr[P**" wins PQSR game] > Pr[P* fools V]—¢/)

Difference 1

e VS. -

Z ‘X, C_fn), y @fFS(X, C_m))) 2 ‘x, c_rn>, y @fFS(xa ﬁ)’ C_rn>)>; E

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 1

VS.

Our PQ VC Property 1: Online consistency

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 1

VS.

Z\x Cm,y) Z\x,c_m),y)

D |x,cm,y @ frs(x,cm))

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 1

VS.

Z\x Cm,y) Z\x,c_m),y)

......... , S
N/
¢ -rmmmcsann * ¢ mmmmman.
€ : ‘ X, cm,
VC,online _)
Z |X, C_m),y @fFS(xa C_rn))> Z yEBfFS(X’H’C_m))>

44

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

45

Quantum case

Goal: we want to show
Pr[P*" wins PQSR game] > Pr[P* fools V]—¢)

Difference 2

45

Quantum case

Goal: we want to show
Pr[P**" wins PQSR game] > Pr[P* fools V]—¢/)

Difference 2

45

Quantum case

Goal: we want to show
Pr[P**" wins PQSR game] > Pr[P* fools V]—¢/)

Difference 2

45

Quantum case

Goal: we want to show
Pr[P**" wins PQSR game] > Pr[P* fools V]—¢/)

Difference 2

&

*

€VC,ofﬂine

if Noleed — 1

45

Similar to the classical VC extractability definition

Similar to the classical VC extractability definition

Strong enough to prove BCS[IOR, VC] is post-quantum secure*

*For instances that include oracles: require extra VC properties

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

*For instances that include oracles: require extra VC properties

*For knowledge soundness: more caveats (later)

MT has PQ extractability error O(1°/2°)

Part 1

Part 2

RBR sound IOR

rbr
€I0R

lThm 2

€

* . Sr
IOR

PQSR sound IOR

(1) = O((t + k)* - e[,

)

Thm 3

PQ Extractable VC
evir = O(1°12°)

lThm1

BCSIIOR, VC] is PQ sound

* _ *
€BCS[IOR,VC] — O(€e/5n + €ve)-

47

Recall our PQ VC properties

Recall our PQ VC properties

| Our PQ VC Property 1: Online consistency

48

Recall our PQ VC properties

| Our PQ VC Property 1: Online consistency
D |x.cm,y)

Z | x,Cm, y @ frs(x, cm))

48

X, Cm,
VC online Z ‘y@fFS(x =

Recall our PQ VC properties

| Our PQ VC Property 1: Online consistency
D |x.cm,y)

' Our PQ VC Property 2: Offline extractability

N/
NS

48

*

€ .
VC,online
E | x,cm, y @ frs(x,cm))

Recall our PQ VC properties

| Our PQ VC Property 1: Online consistency
. Z‘X,C_rﬁay) Z‘x’c_rn),y>

VC online ‘ x,m,
Z | x, c_m),y D fes(x, c_m))) Z y @ fes(, 11, Cm)

' Our PQ VC Property 2: Offline extractability

N
N/

6*

VC,offline

1T RIONEd —

48

Recall our PQ VC properties

| Our PQ VC Property 1: Online consistency
. Z‘X,C_rﬁa)}) Z‘x’c_rn),y>

VC online ‘ x,m,
Z | x, c_m),y D fes(x, c_m))) Z y @ fes(, 11, Cm)

Proof uses the instability lemmma from [CMS19].

' Our PQ VC Property 2: Offline extractability

€

VC,offline

Yl VC . Check

48

Recall our PQ VC properties

Need new techniques

| Our PQ VC Property 1: Online consistency
. Z\X,CTn),y> Z‘x,c_rn),y>

VC online ‘ x,m,
Z | x, C_rn),y D fes(x, C_m))) Z y @ fes(, 11, Cm)

Proof uses the instability lemmma from [CMS19].

' Our PQ VC Property 2: Offline extractability

€

VC,offline

1T RIONEd —

48

Online consistency

VC Property 1: Online consistency

N
NN/

€VC,onIine

49

Online consistency

VC Property 1: Online consistency

Y
Y
& =—======- €VC,onIine

Extract later is the same as extract earlier

49

Online consistency

VC Property 1: Online consistency

N X,Cm
X, Cm -- -, """ >
-------- > N * B B OB B O OEm
€ . —
- VC,online ™
Jrs(x, C_m)) Jret%, 1 om)

Extract later is the same as extract earlier

i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries

49

PQ Online consistency

4

Extract later is the same as extract earlier

i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries

50

PQ Online consistency

” Our PQ VC Property 1: Online consistency
Z ‘ X, C_m>, y> Z ‘ X, C_m), y>

—

€ : ‘ X, cm
VC,online ’ _)_)
Z ‘X, C_rn)ay @fFS(x, C_rn))> Z Y D frs(x. H’Cm)>

Extract later is the same as extract earlier

i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

D |x.cm,y) D lx.cm,y)
¢ === o <4¢=-==-=-
VC,onll m
Z | x,cm, y @ frg(x,cm)) o Z ‘y@st(x 11, em)>

But now cm is in superposition

Extract later is the same as extract earlier

i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries

50

PQ Online consistency

0ur PQ VC Property 1: Online consistency

Z\X,C_rﬁ,y) Z\x,c_m),y)
BT = ~ T =
€------ x €«-----

€ ‘ X, Cm,
VC,online ’
> 16,5,y @ fes(, Sm) 2|5 s

But now cm is in superposition (\
Extract later is the same as extract earlier
i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries
Our solution: Consider the extraction results for every cm in the database of frq

50

PQ Online consistency

0ur PQ VC Property 1: Online consistency

Z\x,c_m),y) Z\x,c_m),y)
BT = ~ T =
€---=== X €«---==

€ ‘ X, Cm,
VC,online ’
> 16,5,y @ fes(, Sm) 2|5 s

But now cm is in superposition K}Q
Extract later is the same as extract earlier
i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries
Our solution: Consider the extraction results for every cm in the database of frq

and show the results does not change after more quantum fy,~ queries

50

PQ Online consistency

Our PQ VC Property 1: Online consistency

Z\x,c_rﬁ,y) Z\x,c_m),y)
€------ x *-----
R . GVConIme Z‘ m_’) >

Z | x,cm,y @ frg(x, cm)) y @ frs(x, [T, cm)

But now cm is In superposition

Extract later is the same as extract earlier
i.e. every cm queried by fr¢ is mapped to the same 11 even after more VC queries
Our solution: Consider the extraction results for every cm in the database of frq

and show the results does not change after more quantum f\,~ queries

50

PQ Online consistency

" Our PQ VC Property 1: Online consistency

Z\x,c_rﬁ,y) Z‘X-}C_rn)’y)
BT = ~ TEEET =
€= " €-----

€ - ‘ x,cm
VC,online ’ _’>_)
2 ‘X, C_rn)ay @fFS(-x, C_rn))> Z y@st(x’H’Cm)>

Extract later is the same as extract earlier
l.e. every cm queried by isaannad o dhe oo Ll ovan oftor mare aTHT=YaT=1S

Our solution: Consider the extraction For this talk, let’s consider Ug,,
that does extraction on only one cm coherently.

and show the results dog

We want some unitary that reads s and do extraction coherently on those cm
to almost commute with a VC quantum query !

50

=)

1,

Prior commutator bounds

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Q‘j)

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm

51

°))

°)

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ... 'z

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

D & P withsmallprob

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm

" —

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

D & P withsmallprob

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm

" —

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

D & P withsmallprob

with small prob

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

S — ! Instablllty Iemma -4 Quantum query & U P ® I + P ® X j.'

D’=D+[x1—>y] -
| — almost commute
with small prob D' &P

D'=D+[xr y] |

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

After an additional classical query,
D'=D+|x— Y]

Flip the second register if D & P

D¢ P _ withsmallprob | Der
D’:D+[x|—>y]
with small prob D &P
R —" D= D+ [t ¥ :.

' Instablllty lemma | ' Quantum query & U P ® I + P ® X '
E—— almost commute '

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D¢ P _wihsmalpob | — per
S © D'=D+[xm 7])
with small prob D' &P
— e y] :.

- Instablllty Iemma ' Quantum query & U P ® I + P ® X '
E— almost commute '

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D % P ~ with small prob D' e P
, " D'=D+[xw 7])
with small prob D' &P
EE— IS

] Instabilty lemma ’ Quantum query & U p ® I + P ® X |
—1 almost commute
Conditionedon|D| <7 |

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ...

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D % P ~ with small prob D' e P
, " D'=D+[xw 7])
with small prob D' &P
EE— IS

] Instabilty lemma ’ Quantum query & U p ® I + P ® X |
—1 almost commute
Conditionedon|D| <t]

A classical quantity that is usually easy to analyze

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of cm ... K‘?J

[CMS19]: The commutator between a database property P and a quantum query can be bounded by a classical quantity.

For database property P, consider the binary partition = {P, P},

Projector on the databases in P

After an additional classical query,

D' =D
+ [x =yl Flip the second register if D & P

D gé P ~ with smallprob D e P
o Y D=D+[x+— o]
with small prob D' &P
% ey :.

] Instabilty lemma ’ Quantum query & U p ® I + P ® X |
| almost commute
Conditionedon|D| <7 |

: : : It does not work for Ug,;. ~
A classical quantity that is usually easy to analyze U.... does not form a binary partition \
xt - |

51

Prior commutator bounds

[DFMS22]: For basic commitments, Ug,, almost commutes with the quantum query.

Implies that for MT, Ug,; almost commutes with the quantum query.

But not tight enough. Even worse when there are a lot of K‘?J
[CMS19]: The commutator between a database proras “'\que‘- ywunded by a classical quantity.
ch

For database property P, corsis e d 3 “e\N te
We “e Projector on the databases in P

After an additio
D' =D

Flip the second register if D & P

| D % P with small prob

D'=D+[x y] ! lnstablllty lemma Quantum query & U P ® I + P ® X |
e almost commute "

DeP_ \\ D &P { ~ Conditionedon|D| <1 o

: : : It does not work for Ug,. A D\
A classical quantity that is usually easy to analyze Uk, does not form a binary partition K\?/
xt "

51

Our generalized instability lemma

52

Our generalized instability lemma

For any partition { P;},

52

Our generalized instability lemma

For any partition { P;},

i Forall i,

with small prob

) Dep;, _ W

D'¢P, |

After an additional classical query,

D'=D+|x— Y]

52

Our generalized instability lemma

For any partition { P;},

: | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52

Our generalized instability lemma

For any partition { P;},

Add 1 to the second register if D € P,

: | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52

Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

, | Quantum query & U = Z PRX |

with small prob

Dep, W

almost commute

After an additional classical query,

D'=D+|x— Y]

52

Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query,

D'=D+|x— Y]

52

Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

52

Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
D ¢ P i \

with small prob

Depr;, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

This in particular includes Ug,, for MT! b

52

Our generalized instability lemma

For any partition { P;} .,

Projector on the databases in P,

Add 1 to the second register if D € P,

: { Quantum query & U = Z P.®X" |
/ J rrememsmenmmc s — e —— : ‘
D g P l '; "

with small prob

DepP, W

L st. |D| <t

almost commute ,
Conditionedon|D | <t i

After an additional classical query, Our technique works

D'=D+|x— Y]

for more general U’s!

00/*‘N
))’

This in particular includes Ug,, for MT!

And this also includes the unitary that
reads Y5 and does the extraction!

0"*‘S
))’

52

Takeaways

Takeaways

 BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM
iIf the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

Takeaways

 BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM
iIf the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

* Our proof analyzes the error from FS and MT separately through an intermediate
FS-style security notion (PQSR), mirroring the classical proof.

Post-quantum case

[Relaxed RBR KS IOR
Ml PQ Extractable VC

e.g. MT
VC error

PQSR KS IOR
BCSI[IOR, VC] is post-guantum
knowledge sound

Takeaways

 BCS[IOR, MT] is a post-quantum straight-line knowledge sound SNRDX in the QROM
iIf the underlying IOR satisfies (even a weaker variant of) round-by-round knowledge soundness.

* Our proof analyzes the error from FS and MT separately through an intermediate
FS-style security notion (PQSR), mirroring the classical proof.

Post-quantum case

[Relaxed RBR KS 10R
e.g. MT
VC error

PQSR KS IOR
. -'I'
Op L
BCSI[IOR, VC] is post-guantum
knowledge sound 1a.cr/2025/2166

Thank youl

More technical details

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES!

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES! Superposition query model.

54

More technical details

Can we allow adversaries to query different oracles simultaneously?

YES! Superposition query model.

D 1D1a)y)

LDy ef@)

Algorithm A ™

54

More technical details

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —
PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary P,
J < {0,1}* = {0,1}°)
~ N Df
Pr|(X,w)€ER A(x,w) € R o w) < P <K

¥« VI(x, #)
w <« E(x,7,x',w', D)

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

A naive proposal: D —
PQ knowledge soundness (first attempt): There exists an extractor E such that for every efficient quantum adversary P,
J < {0,1}* = {0,1}°)
~ N Df
Pr|(X,w)€ER A(x,w) € R o w) < P <K

x' « VI(x, %)
w <« E(x,7,x',w', D)

008 R T R sty P cannot run £, and E might destroy & arbitrarily.

55

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

56

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

56

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

56

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

seguential composition

56

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

So VC adversary should be strengthened as well... sequential composition

56

More technical details

Classical knowledge soundness: There exists an extractor I such that for every efficient adversary P,

J < (10,1}* = 10,1}

= N Pf
Pr|(x,w)€ER A(x,w) € R o w) < P <K
X« VI(x, #)

w <« E(x,7,x,w',D)

Can we have a reasonable post-quantum knowledge soundness definition?

YES!

PQ knowledge soundness: There exists an extractor E such that for every efficient quantum adversary P,

f < ({0,1}* = {0,1}°)

7 w') «— Df,UExtract
Prl(x,w)eEeR A(x,w) &R . mw) < B ~E <K
x « VI(x, #)

W «— Ef’UExtract(x, T, X', W/)

So VC adversary should be strengthened as well... sequential composition

56

Succinct non-interactive arguments (SNARGs)

Prover \Verifier

The graph G is 3-colorable. Isx € L(R)?

Prove that!

But a coloring of G is too long...

JT

Completeness:V (x,w) € R, Pr [1 «— V(x, 7 ‘ <« P(x, w)] = 1.
Soundness: For every efficient adversary P, Pr [x & L(R) A1 « V(x,) | (x, T) < P] <eE.

Succinctness: | 7| < |w].

Knowledge soundness: 3&, V efficient adversary P, Pr [(x, w) & RA1 « V(x, 7) | (x,7) « P,w <« &(x, 7%')] <eE.

57

Succinct non-interactive reductions (SNRDXs)

The graphs G, G,, ..., G, Prover s x € L(R)? Verifier
are 3-colorable.

JU

| accept your claim as

‘ long as G is 3-colorable. ‘

Easier relation

$ Isx’ € L(R')?
Then G is checked via other protocols L

Completeness:V (x,w) € R, Pr [(x’, w)€eR | (m,w) « P(x,w),x < V(x, 71')] = 1.

Soundness: For every efficient adversary P, Pr [(x,w’) € R’ A x & L(R) | (x, 7, W) « P,x" <« V(x, 7%')] <e.

Succinctness: | 7| < |w].
- (x, 7, w") < P,
Knowledge soundness: 3&, V efficient adversary P, Pr | (X, w') € R'A (x,w) & R ‘ Ceven | <e.
w— &Ex,T,w,x")

58

Our PQ state-restoration captures the PQ FS error

G;E)SRr = the PQ soundness error of FS[IOR]

Quantum adversary

x, (114, ..., 11})

Soundness:
V t-move quantum adversary P*-",

Vi, f < ({0,1}* > {0,1}°)

Pr|x@LAX €L | @l ..Tlp,....p) « (P, GameViethl) | < e 2 (1),

X« Vloéle[k](x Pl -« Pr)

59

